首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used ENU mutagenesis in the mouse for the rapid generation of novel mutant phenotypes for both gene function studies and use as new animal models of human disease (Nolan et al. 2000b). One focus of the program was the development of a blood biochemistry screen. At 8-12 weeks of age, approximately 300 ml of blood was collected from F1 offspring of ENU mutagenized male mice. This yielded approximately 125 ml of plasma, used to perform a profile of 17 standard biochemical tests on an Olympus analyzer. Cohorts of F1 mice were also aged and then retested to detect late onset phenotypes. In total, 1,961 F1s were screened. Outliers were identified by running means and standard deviations. Of 70 mice showing consistent abnormalities in plasma biochemistry, 29 were entered into inheritance testing. Of these, 9 phenotypes were confirmed as inherited, 10 found not to be inherited, and 10 are still being tested. Inherited mutant phenotypes include abnormal lipid profiles (low total and HDL cholesterol, high triglycerides); abnormalities in bone and liver metabolism (low ALP, high ALP, high ALT, and AST); abnormal plasma electrolyte levels (high sodium and chloride); as well as phenotypes of interest for the study of diabetes (high glucose). The gene loci bearing the mutations are currently being mapped and further characterized. Our results have validated our biochemical screen, which is applicable to other mutagenesis projects, and we have produced a new set of mutants with defined metabolic phenotypes.  相似文献   

2.
MOTIVATION: To study biology from the systems level, mathematical models that describe the time-evolution of the system offer useful insights. Quantitative information is required for constructing such models, but such information is rarely provided. RESULTS: We propose a scheme-based on random searches over a parameter space, according to criteria set by qualitative experimental observations-for inferring quantitative parameters from qualitative experimental results. We used five mutant constraints to construct genetic network models for sensory organ precursor formation in Drosophila development. Most of the models were capable of generating expression patterns for the gene Enhancer of split that were compatible with experimental observations for wild type and two Notch mutants. We further examined factors differentiating the neural fate among cells in a proneural cluster, and found two opposite driving forces that bias the choice between middle cells and the peripheral cells. Therefore, it is possible to build numerical models from mutant screening and to study mechanisms behind the complicated network.  相似文献   

3.
4.
This paper is aimed principally at bioinformaticians and biologists as an introduction to recent advances in mouse mutagenesis, concentrating on genome-wide screens utilising the powerful mutagen N-ethyl-N-nitroso-urea (ENU). It contains a brief background to the underlying genetics as well as details of the practical aspects of organisation and data capture for such projects.  相似文献   

5.
Training stimulates glucose uptake and metabolism by muscles independent of a rise in serum glucose. Whether this increased insulin action is associated with enhanced insulin binding in muscles is unknown. We studied the effect of 6 weeks of treadmill running on insulin binding, uptake of 2-deoxy-D-glucose, glycolysis, and glycogenesis by the soleus muscle of Swiss Webster mice. Training was progressively increased. The in vitro studies using intact soleus preparations were done 48 h after the last exercise bout. Training increased insulin binding, insulin-stimulated uptake of 2-deoxy-D-glucose, and glycogenesis but not glycolysis in the soleus. Our data suggest that the enhanced glucose uptake and metabolism in muscles induced by exercise training are associated with an increase in insulin binding.  相似文献   

6.
7.
Certain genetic disorders are rare in the general population but more common in individuals with specific trisomies, which suggests that the genes involved in the etiology of these disorders may be located on the trisomic chromosome. As with all aneuploid syndromes, however, a considerable degree of variation exists within each phenotype so that any given trait is present only among a subset of the trisomic population. We have previously presented a simple gene-dosage model to explain this phenotypic variation and developed a strategy to map genes for such traits. The mapping strategy does not depend on the simple model but works in theory under any model that predicts that affected individuals have an increased likelihood of disomic homozygosity at the trait locus. This paper explores the robustness of our mapping method by investigating what kinds of models give an expected increase in disomic homozygosity. We describe a number of basic statistical models for trisomic phenotypes. Some of these are logical extensions of standard models for disomic phenotypes, and some are more specific to trisomy. Where possible, we discuss genetic mechanisms applicable to each model. We investigate which models and which parameter values give an expected increase in disomic homozygosity in individuals with the trait. Finally, we determine the sample sizes required to identify the increased disomic homozygosity under each model. Most of the models we explore yield detectable increases in disomic homozygosity for some reasonable range of parameter values, usually corresponding to smaller trait frequencies. It therefore appears that our mapping method should be effective for a wide variety of moderately infrequent traits, even though the exact mode of inheritance is unlikely to be known.  相似文献   

8.
9.
The purpose of this study was to determine whether eccentrically biased exercise training could attenuate changes in muscle and bone function associated with estrogen deficiency in the mouse model. Four groups of ICR mice were used: control (Con), sham ovariectomized (Sham), ovariectomized (OVX), and ovariectomized + high-force resistance training (OVX+Train). All groups except Con were implanted with a nerve cuff surrounding the peroneal nerve to stimulate the left ankle dorsiflexors. Training consisted of 30 stimulated eccentric contractions of the left ankle dorsiflexors at approximately 150% of peak isometric torque every third day for 8 wk. After the training period, groups were not significantly different with regard to peak torque or muscle size. However, the tibial midshaft of the trained leg in the OVX+Train mice exhibited greater stiffness (+15%) than that in the untrained OVX mice, which could not be explained by changes in cross-sectional geometry of the tibia. Scaling of bone mechanical properties to muscle strength were not altered by ovariectomy or training. These data indicate that eccentric exercise training in adult mice can significantly increase bone stiffness, despite the absence of ovarian hormones.  相似文献   

10.
The mouse is an important model of human genetic disease. Describing phenotypes of mutant mice in a standard, structured manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a novel, compositional approach to this problem which combines core ontologies from a variety of sources. This produces a framework with greater flexibility, power and economy than previous approaches. We discuss some of the issues this approach raises.  相似文献   

11.
The metabolism of the beta 2-adrenoceptor agent methoxyphenamine was investigated in rats of the Lewis and Dark Agouti strains, which are proposed models for human extensive and poor metabolizers of debrisoquine, respectively. Following oral ingestion of 20 mg kg-1 of methoxyphenamine, Dark Agouti excreted, on the average, significantly more methoxyphenamine and less O-demethylmethoxyphenamine and 5-hydroxymethoxyphenamine in 0- to 24-h urine than Lewis. In contrast, the N-demethylation of methoxyphenamine showed no interphenotype differences between the two strains. It is possible that in rats, the form of cytochrome P-450, which controls the 4-hydroxylation of debrisoquine, may also control the O-demethylation and aromatic 5-hydroxylation of methoxyphenamine.  相似文献   

12.
13.
To evaluate the contribution of genetic background to phenotypic variation, we compared a large range of biochemical and metabolic parameters at different ages of four inbred mice strains, C57BL/6J, 129SvPas, C3HeB/FeJ, and Balb/cByJ. Our results demonstrate that important metabolic, hematologic, and biochemical differences exist between these different inbred strains. Most of these differences are gender independent and are maintained or accentuated throughout life. It is therefore imperative that the genetic background is carefully defined in phenotypic studies. Our results also argue that certain backgrounds are more suited to study a given physiologic phenomenon, as distinct mouse strains have a different propensity to develop particular biochemical, hematologic, and metabolic abnormalities. These genetic differences can furthermore be exploited to identify new genes/proteins that contribute to phenotypic abnormalities. The choice of the genetic background in which to generate and analyze genetically engineered mutant mice is important as it is, together with environmental factors, one of the most important contributors to the variability of phenotypic results.  相似文献   

14.
Diabetes mellitus (DM) is associated with a number of complications of which chronic vascular complications are undoubtedly the most complex and significant consequence. With a significant impact on health care, 50–80% of people with diabetes die of cardiovascular disease (including coronary artery disease, stroke, peripheral vascular disease and other vascular disease), making it the major cause of morbidity and mortality in diabetic patients. A healthy lifestyle is essential in the management of DM, especially the inclusion of aerobic exercise, which has been shown effective in reducing the deleterious effects in vasculature. Interest in exercise studies has increased significantly with promising results that demonstrate a future for investigation. Considering the importance of this emerging field, the aim of this mini-review is to summarize and integrate animal studies investigating physiological mechanisms of vascular dysfunction and remodeling in type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) and how these are influenced by chronic aerobic exercise training.  相似文献   

15.
Exercise training (EX) induces increases in coronary transport capacity through adaptations in the coronary microcirculation including increased arteriolar diameters and/or densities and changes in the vasomotor reactivity of coronary resistance arteries. In large animals, EX increases capillary exchange capacity through angiogenesis of new capillaries at a rate matched to EX-induced cardiac hypertrophy so that capillary density remains normal. However, after EX coronary capillary exchange area is greater (i.e., capillary permeability surface area product is greater) at any given blood flow because of altered coronary vascular resistance and matching of exchange surface area and blood flow distribution. The improved coronary capillary blood flow distribution appears to be the result of structural changes in the coronary tree and alterations in vasoreactivity of coronary resistance arteries. EX also alters vasomotor reactivity of conduit coronary arteries in that after EX, α-adrenergic receptor responsiveness is blunted. Of interest, α- and β-adrenergic tone appears to be maintained in the coronary microcirculation in the presence of lower circulating catecholamine levels because of increased receptor responsiveness to adrenergic stimulation. EX also alters other vasomotor control processes of coronary resistance vessels. For example, coronary arterioles exhibit increased myogenic tone after EX, likely because of a calcium-dependent PKC signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, EX augments endothelium-dependent vasodilation throughout the coronary arteriolar network and in the conduit arteries in coronary artery disease (CAD). The enhanced endothelium-dependent dilation appears to result from increased nitric oxide bioavailability because of changes in nitric oxide synthase expression/activity and decreased oxidant stress. EX also decreases extravascular compressive forces in the myocardium at rest and at comparable levels of exercise, mainly because of decreases in heart rate and duration of systole. EX does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. While there is evidence that EX can decrease the progression of atherosclerotic lesions or even induce the regression of atherosclerotic lesions in humans, the evidence of this is not strong due to the fact that most prospective trials conducted to date have included other lifestyle changes and treatment strategies by necessity. The literature from large animal models of CAD also presents a cloudy picture concerning whether EX can induce the regression of or slow the progression of atherosclerotic lesions. Thus, while evidence from research using humans with CAD and animal models of CAD indicates that EX increases endothelium-dependent dilation throughout the coronary vascular tree, evidence that EX reverses or slows the progression of lesion development in CAD is not conclusive at this time. This suggests that the beneficial effects of EX in CAD may not be the result of direct effects on the coronary artery wall. If this suggestion is true, it is important to determine the mechanisms involved in these beneficial effects.  相似文献   

16.
Wang K 《Human heredity》2003,55(1):1-15
The use of correlated phenotypes may dramatically increase the power to detect the underlying quantitative trait loci (QTLs). Current approaches for multiple phenotypes include regression-based methods, the multivariate variance of components method, factor analysis and structural equations. Issues with these methods include: 1) They are computation intensive and are subject to problems of optimization algorithms; 2) Existing claims on the asymptotic distribution of the likelihood ratio statistic for the multivariate variance of components method are contradictory and erroneous; 3) The dimension reduction of the parameter space under the null hypothesis, a phenomenon that is unique to multivariate analyses, makes the asymptotic distribution of the likelihood ratio statistic more complicated than expected. In this article, three cases of varying complexity are considered. For each case, the efficient score statistic, which is asympotically equivalent to the likelihood ratio statistic, is derived, so is its asymptotic distribution [correction]. These methods are straightforward to calculate. Finite-sample properties of these score statistics are studied through extensive simulations. These score statistics are for use with general pedigrees.  相似文献   

17.
Mitochondrial diseases are a clinically heterogeneous group of disorders related to dysfunction of various components of oxidative metabolism. Common manifestations of these diseases include encephalopathy, skeletal myopathy, and cardiomyopathy, but essentially any tissue can be affected. To understand better the pathogenesis of mitochondrial disease and to potentially evaluate novel therapies, several mouse models have been reported in the literature over the past few years. In assessing genetically altered mice as potential models of human mitochondrial disease, careful behavioral and physiologic analyses are essential components of the overall phenotypic characterization. Noninvasive, in vivo approaches are useful because they assess end-organ and multiorgan function in a whole-organism context, as well as permit serial measurements of individual animals over time. This review presents various behavioral and exercise physiology protocols that can be used for the evaluation of potential mouse models of human mitochondrial disorders.  相似文献   

18.
Crohn's Disease (CD) affects more than 500,000 individuals in the United States and represents the second most common chronic inflammatory disorder after rheumatoid arthritis. Although major advances have been made in defining the basic mechanisms underlying chronic intestinal inflammation, the precise etiopathogenesis of CD remains unknown. We have recently characterized two novel mouse models of enteritis that express a CD-like phenotype, namely the TNF DeltaARE model of tumor necrosis factor (TNF) overexpression and the SAMP1/Yit model of spontaneous ileitis. The unique feature of these models is that they closely resemble CD for location and histopathology. These genetically manipulated new models of intestinal inflammation offer a powerful tool to investigate potential causes of human disease and may allow the development of novel disease-modifying therapeutic modalities for the treatment of CD.  相似文献   

19.
We study sympatric speciation due to competition in an environment with a broad distribution of resources. We assume that the trait under selection is a quantitative trait, and that mating is assortative with respect to this trait. Our model alternates selection according to Lotka-Volterra-type competition equations, with reproduction using the ideas of quantitative genetics. The recurrence relations defined by these equations are studied numerically and analytically. We find that when a population enters a new environment, with a broad distribution of unexploited food sources, the population distribution broadens under a variety of conditions, with peaks at the edge of the distribution indicating the formation of subpopulations. After a long enough time period, the population can split into several subpopulations with little gene flow between them.  相似文献   

20.
Cardiovascular death is frequently associated with atherosclerosis, a chronic multifactorial disease and a leading cause of death worldwide. Genetically engineered mouse models have proven useful for the study of the mechanisms underlying cardiovascular diseases. The apolipoprotein E-deficient mouse has been the most widely used animal model of atherosclerosis because it rapidly develops severe hypercholesterolemia and spontaneous atherosclerotic lesions similar to those observed in humans. In this review, we provide an overview of the cardiac and vascular phenotypes and discuss the interplay among nitric oxide, reactive oxygen species, aging and diet in the impairment of cardiovascular function in this mouse model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号