首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A full-length cDNA encoding sucrose synthase was isolated from the tropical epiphytic orchid Oncidium Goldiana. The cDNA is 2829 bp in length containing an open reading frame of 2447 bp encoding 816 amino acids with a predicted molecular mass of 93.1 kDa. The deduced amino acid sequence of O . Goldiana sucrose synthase ( Osus ) shares more than 80% identity with those from other monocotyledonous plants. The sucrose synthase gene was demonstrated to encode a functional sucrose synthase protein by expression as recombinant protein in Escherichia coli . The Osus mRNA is present in all the tissues analysed, with the highest levels in strong sinks such as developing inflorescence and root tips. Incubation with sucrose or glucose resulted in a significant increase in the steady-state Osus mRNA levels in root tips and mature leaves in a similar pattern to maize Sus1 . Expression of the Osus mRNA in mature leaves was markedly enhanced by anaerobic conditions and elevated CO2. The expression pattern and regulation of the gene suggest that the sucrose synthase plays an important role in the growth and development of the tropical epiphytic orchid O . Goldiana.  相似文献   

3.
We isolated a complementary DNA sequence for the enzyme sucrose phosphate synthase (SPS) from maize utilizing a limited amino acid sequence. The 3509-bp cDNA encodes a 1068-amino acid polypeptide. The identity of the cDNA was confirmed by the ability of the cloned sequence to direct sucrose phosphate synthesis in Escherichia coli. Because no plant-specific factors were necessary for enzymatic activity, we can conclude that SPS enzyme activity is conferred by a single gene product. Sequence comparisons showed that SPS is distantly related to the enzyme sucrose synthase. When expressed from a ribulose bisphosphate carboxylase small subunit promoter in transgenic tomatoes, total SPS activity was boosted up to sixfold in leaves and appeared to be physiologically uncoupled from the tomato regulation mechanism. The elevated SPS activity caused a reduction of starch and increase of sucrose in the tomato leaves. This result clearly demonstrates that SPS is involved in the regulation of carbon partitioning in the leaves.  相似文献   

4.
5.
A cDNA encoding potato (Solanum tuberosum L.) 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, the first enzyme of the shikimate pathway, was cloned into phage lambda gt11. The clone represents the first cDNA for this enzyme from any eukaryotic source. The nucleotide sequence of the cDNA was determined, and its identity was confirmed through partial amino acid sequence analysis of the encoded enzyme. The cDNA contains a 1527-base pair open reading frame that encodes a polypeptide with a calculated molecular weight of 56,153. The amino terminus of the deduced polypeptide resembles a chloroplast transit sequence. Amino acid sequence identities between the mature potato enzyme and the homologous isoenzymes from Escherichia coli are only about 22%. The potato cDNA hybridized to various plant mRNAs that are all about 2 kilobases in size.  相似文献   

6.
A full-length cDNA encoding sucrose synthase was isolated from the tropical epiphytic CAM orchid Mokara Yellow. The cDNA is 2748bp in length containing an open reading frame of 2447bp encoding 816 amino acids with a predicted molecular mass of 93.1 kDa. The deduced amino acid sequence of M. Yellow sucrose synthase (Msus1) shares more than 80% identity with those from other monocotyledonous plants. The sucrose synthase gene was demonstrated to encode a functional sucrose synthase protein by expression as recombinant protein in Escherichia coli. Northern blot analysis showed that the expression pattern of Msus1 mRNA is tissue specific with highest levels in strong sinks such as expanding leaves and root tips, but not detectable in mature leaves and flowers. Incubation with sugars resulted in a significant increase in the steady-state Msus1 mRNA levels in shoots of seedlings.  相似文献   

7.
8.
9.
Boris KV  Ryzhova NN  Kochieva EZ 《Genetika》2011,47(2):190-198
Nucleotide and amino acid variability of fragments of the Sus4 gene encoding the sucrose synthase enzyme was studied in 24 potato cultivars selected in Russia and other countries and differing in starch content in tubers. Both SNPs and indels were detected in a chosen Sus4 gene fragment including the sequence from exon 3 to exon 6 and corresponding to the main part of the sucrose synthase domain. Four types of Sus4 sequences were revealed depending on the presence of an insertion in introns 4 and 5 and of the mononucleotide octamer (T)8 in intron 5. Differentiation of these sequences was confirmed by statistical methods. Sixteen amino acid substitutions were identified in the translated sequence, of which eleven were nonsynonymous. Specific varietal nucleotide and amino acid substitutions were also revealed, which can be used in future for marking potato cultivars/genotypes. No direct associations between the mutational changes and the starch content were found in the potato cultivars studied by us.  相似文献   

10.
The sequence of ferredoxin-dependent glutamate synthase (EC 1.4.7.1) mRNA from maize has been determined. Complementary DNAs were isolated from a cDNA library of light-induced leaf poly(A)+ RNA constructed in an expression vector. An open reading frame beginning at an ATG codon at nucleotide 328 of the longest cDNA (5617-bases long) encoded 1616 amino acid residues. The amino terminus of the purified mature enzyme coincided with the cysteine residue at position 98 of the predicted sequence. This enzyme is homologous with the large subunit of Escherichia coli NADPH-dependent glutamate synthase having about 42% identical residues between the two proteins. The enzyme also contains a short region similar to a potential FMN-binding region of yeast flavocytochrome b2. The cDNA hybridizes to an RNA band about 5.5 kilobases whose steady-state level is markedly increased upon illumination of etiolated maize seedlings. Analysis of genomic DNA indicates the presence of a single-copy gene for ferredoxin glutamate synthase in maize.  相似文献   

11.
Vassey TL 《Plant physiology》1988,88(3):540-542
The extractable activity of sucrose phosphate synthase was determined in etiolated seedlings of maize (Zea mays L.), soybean (Glycine max [L.] Merr.), and sugar beet (Beta vulgaris L.) following treatments of changing light quality. A 30-minute illumination of 30 microeinsteins per square meter per second white light produced a three-fold increase in sucrose phosphate synthase activity at 2 hours postillumination when compared to seedlings maintained in total darkness. Etiolated maize seedlings treated with 3.6 microeinsteins per square meter per second of red and far-red light showed a 50% increase and a 50% decrease in sucrose phosphate synthase activity, respectively, when compared to etiolated maize seedlings treated with white light. Maize seedlings exposed for 30 minutes to red followed by 30 minutes to far-red showed an initial increase in sucrose phosphate synthase activity followed by a rapid decrease to control level. Neither soybean or sugar beet sucrose phosphate synthase responded to the 30-minute illumination of white light. Phytochrome is involved in sucrose phosphate synthase regulation in maize, whereas it is not responsible for changes in sucrose phosphate synthase activity in soybean or sugar beet.  相似文献   

12.
13.
14.
15.
By sequencing cDNA clones, we have concluded that three distinct sucrose genes are expressed in rice (Oryza sativa cv. Tainong 67). When the amino acid sequences deduced from these cDNAs as well as those of known sucrose synthase are compared, the highest divergence is found in the C-termini. The most suitable DNA sequences for use as specific for the mRNA derived from these genes have been suggested.  相似文献   

16.
17.
18.
Nucleotide and amino acid variability of fragments of the Sus4 gene encoding the sucrose synthase enzyme was studied in 24 potato cultivars bred in Russia and other countries and differing in starch content in tubers. Both SNPs and indels were detected in a chosen Sus4 gene fragment including the sequence from exon 3 to exon 6 and corresponding to the main part of the sucrose synthase domain. Four types of Sus4 sequences were revealed depending on the presence of an insertion in introns 4 and 5 and of the mononucleotide octamer (T)8 in intron 5. Differentiation of these sequences was confirmed by statistical methods. Sixteen amino acid substitutions were identified in the translated sequence, of which eleven were nonsynonymous. Specific cultivar-specific nucleotide and amino acid substitutions were also revealed, which can be used in future for identifying potato cultivars/genotypes. No direct associations between the mutational changes and the starch content were found in the potato cultivars studied.  相似文献   

19.
20.
H Fu  S Y Kim    W D Park 《The Plant cell》1995,7(9):1387-1394
The 3.6 kb of 5' flanking sequence, leader intron, and 0.7 kb of 3' sequence from the potato sucrose synthase gene Sus4-16 are sufficient to direct high-level expression in developing tubers, in basal tissues of axillary buds and shoots, and in meristems and caps of roots, and to confer sucrose inducibility in leaves. By examining a series of deletion and substitution constructs in transgenic potato plants, we found that this pattern of expression requires 5' flanking sequences both upstream and downstream of position -1500 and that sequences between positions -1500 and -267 are essential for sucrose induction. Replacement of the native 3' sequence with the nopaline synthase 3' sequence resulted in the loss of sucrose inducibility and of expression in basal tissues of axillary buds. A general decrease in expression in other tissues was also observed. Removal of the 1612-bp leader intron also had a dramatic effect on both the pattern and level of expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号