首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.  相似文献   

3.
4.
p53 mutations, occurring in two-thirds of all human cancers, confer a gain of function phenotype, including the ability to form metastasis, the determining feature in the prognosis of most human cancer. This effect seems mediated at least partially by its ability to physically interact with p63, thus affecting a cell invasion pathway, and accordingly, p63 is deregulated in human cancers. In addition, p63, as an 'epithelial organizer', directly impinges on epidermal mesenchimal transition, stemness, senescence, cell death and cell cycle arrest, all determinant in cancer, and thus p63 affects chemosensitivity and chemoresistance. This demonstrates an important role for p63 in cancer development and its progression, and the aim of this review is to set this new evidence that links p63 to metastasis within the context of the long conserved other functions of p63.  相似文献   

5.
6.
7.
Stem cells are a source of differentiated cells in multiple tissues. If genetic alterations occur in stem cells, the problem persists and malignant cancers may arise. DeltaNp63alpha-a homologue of the tumor suppressor p53-is exclusively expressed in proliferating undifferentiated epithelial cells and cancer cells of epidermal origin. Here, we show that DeltaNp63alpha antagonizes DNA damage-induced apoptosis in a p53-independent manner. We found that upon cellular injury, DeltaNp63alpha must be downregulated before apoptotic program can be activated. The 5637 cell line has abundant levels of DeltaNp63alpha and mutant p53, and it is resistant to DNA damage-induced apoptosis. The knockdown of DeltaNp63alpha by RNA interference sensitized these cells to apoptosis upon genotoxic insult. This suggests that DeltaNp63alpha plays an anti-apoptotic role regardless of the p53 status. Considering the frequent mutations of p53 in tumor cells, our results provide important implications for the treatment of cancers in which p63 is amplified.  相似文献   

8.
9.
10.
p53 plays a pivotal role in the prevention of human tumor formation. p73 and p63 are new members of the p53 tumor suppressor family, which are becoming increasingly recognized as important players in human tumorigenesis. However, the roles of these proteins are not well elucidated in extrahepatic bile duct (EBD) carcinoma. We examined expressions of the p63 and p73 genes and proteins in normal biliary epithelia, biliary dysplasias, and EBD carcinomas using immunohistochemistry and RT-PCR analysis. p63 and p73 proteins were overexpressed in 26.3 and 41.0% of EBD carcinomas, respectively. p63 protein expression was more frequent in tumors with vascular invasion (P = 0.002) and distal location (P = 0.04), while p73 expression was more common in cancers with deeper tumor invasion (P = 0.04). Patients with tumors co-expressing both p63 and p73 were found to have a significantly worse overall survival rate compared to those with either p63 or p73 expression (P < 0.05) as determined in univariate and multivariate analyses. Our results strongly imply that the p53 family members have different functions in EBD carcinomas. Our data also indicate that interactions between p63 and p73 play an important role in tumorigenesis of EBD carcinoma.  相似文献   

11.
12.
p73, a p53-related gene, is essential for a development of animals, while p53 is important for tumor formation. And little is known about the target genes specifically regulated by p73. Identifying the specific targets of p73 is important to understand the physiological roles of p73. To identify the genes specifically regulated by p73, we conducted serial analysis of gene expression to quantitatively evaluate messenger RNA populations. We found that the gene for phosphatidic acid phosphatase 2a (PAP2a), an enzyme that hydrolyzes lipids to generate diacylglycerol, was specifically upregulated by ectopic production of p73beta. The promoter region of this gene contains an element that is functionally responsive to p73beta. And the quantity of PAP2a protein was upregulated by ectopic production of p73beta. These results suggest that the expression of PAP2a is directly regulated by p73.  相似文献   

13.
14.
15.
p73 induces apoptosis by different mechanisms   总被引:11,自引:0,他引:11  
p73, like its homologue, the tumor suppressor p53, is able to induce apoptosis in several cell types. This property is important for the involvement of p73 in cancer development and therapy. However, in contrast with p53, the TAp73 gene has two distinct promoters coding for two protein isoforms with opposite effects: while the transactivation proficient TAp73 shows pro-apoptotic effects, the amino-terminal-deleted DeltaNp73 has an anti-apoptotic function. Indeed, the relative expression of these two proteins is related to the prognosis of several cancers. Here we discuss recent developments in the control of p73-induced apoptosis. First, TAp73 induces ER stress via the direct transactivation of Scotin. Second, TAp73 induces the mitochondrial pathway by directly transactivating both Bax and the BH3 only protein PUMA promoters. While the first transactivation is weak, and not sufficient to trigger apoptosis (at least in the in vitro cellular models so far evaluated), the induction of PUMA is strong and lethal. Third, the promoter of the death receptor CD95 contains a p53 responsive element and preliminary experiments suggest that TAp73 also activates the death receptor pathway. In addition, TAp73 is able to transactivate its own second promoter, thus inducing the expression of the anti-apoptotic DeltaNp73 isoform. Therefore, the balance between TAp73 and DeltaNp73 finely regulates cellular sensitivity to death.  相似文献   

16.
17.
18.
19.
The tumor suppressor p53 is mutated in ~50% of all human cancer cases worldwide. It is commonly assumed that the phylogenetic history of this important tumor suppressor has been thoroughly studied; however, few detailed studies of the entire extended p53 protein family have been reported, and none comprehensively and simultaneously consider functional, molecular, and phylogenetic data. Herein we examine a diverse collection of reported p53-like protein sequences, including representatives from the arthropods, nematodes, and protists, with the goal of answering several important questions. First, what evidence supports these highly divergent proteins being true homologues to the p53 family? Second, is the inferred overall family phylogeny concordant with known structures and functions? Third, does the extended p53 family possess recognizable conserved sites outside of the within-chordate, highly-conserved DNA-binding domain? Our study shows that the biochemical and functional evidence of p53 homology for nematodes, arthropods, and protists is inconsistent with their implied phylogenetic relationship within the overall family. Although these divergent sequences are always reported as functionally similar to human p53, our results confirm and extend the hypothesis that p63 is a far more appropriate protein for comparison. Within these divergent sequences, we find minimal conservation within the DNA-binding domain, and no conservation elsewhere. Taken together, our findings suggest that these sequences are not bona fide homologues of the extended p53 family and provide baseline criteria for the future identification and characterization of distant p53-family homologues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号