首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrolein is a highly reactive, α,β-unsaturated aldehyde that is an omnipresent environmental pollutant. Humans are exposed to acrolein in food, vapors of overheated cooking oil, cigarette smoke and by combustion of organic products. Acrolein is a toxic by-product of lipid peroxidation resulting from oxidative stress, which is implicated in pulmonary, cardiac and neurodegenerative diseases. Low dose exposure to toxic compounds often leads to adaptive responses. If the adaptive response does not counteract the adverse exposure, death processes such as apoptosis will eliminate the cell. This study investigates the activation of antiapoptosis survival factors in relation to the induction of cell death by apoptosis, following exposure to low doses of acrolein, in A549 human lung cells. Exposure to acrolein (<15 μM, 30 min) activated the survival factor AKT, which led to phosphorylation of Bad and induction of antiapoptosis proteins cIAP1/2. Acrolein (10–50 μM, 30–60 min) increased reactive oxygen species and caused mitochondrial membrane hyperpolarisation. Inhibition by the antioxidants catalase, polyethylene glycol-catalase, sodium pyruvate and MnTBAP showed that acrolein-induced reactive oxygen species were responsible for mitochondrial membrane hyperpolarisation. Acrolein (3–27 μM, 30–60 min) activated early stage processes in the mitochondrial pathway of apoptosis, such as Bax translocation to mitochondria, cytochrome c release, caspase-9 activation, and translocation of apoptosis-inducing factor to the nucleus. Acrolein (10–50 μM) triggered later stage processes such as activation of caspases-3, -7 and -6, phosphatidylserine externalization and cleavage of poly(ADP)ribose polymerase after longer times (2 h). These events were inhibited by polyethylene glycol-catalase, showing that apoptosis was mediated by overproduction of reactive oxygen species by acrolein. The novel findings show that antiapoptosis processes dominate at low dose (<15 μM)/shorter exposure times to acrolein, whereas proapoptotic processes dominate at higher dose (10–50 μM)/longer exposure times. Acrolein induced apoptosis through the mitochondrial pathway that was mediated by reactive oxygen species.  相似文献   

2.
3.
The airway epithelium is critical for the normal integrity and function of the respiratory system. Excessive epithelial cell apoptosis contributes to cell damage and airway inflammation. We previously demonstrated that lymphocyte-derived microparticles (LMPs) induce apoptosis of human bronchial epithelial cells. However, the underlying mechanisms contributing to LMPs-evoked epithelial cell death are largely unknown. Here we used bronchial and lung tissue cultures to confirm the pro-apoptotic effects of LMPs. In cell culture experiments, we found that LMPs induced human airway epithelial cell apoptosis with associated increases in caspase-3 activity. In addition, LMPs treatment triggered oxidative stress in epithelial cells by enhancing production of malondialdehyde, superoxide, and reactive oxygen species (ROS), and by inhibiting production of the antioxidant glutathione. Moreover, decreasing cellular ROS with the antioxidant N-acetylcysteine rescued epithelial cell viability. Together, these results demonstrate an important role for oxidative stress in LMPs-induced cell death. In epithelial cells, LMPs treatment induced phosphorylation of p38 MAPK and arachidonic acid accumulation. Moreover, arachidonic acid was significantly cytotoxic towards LMPs-treated epithelial cells, whereas inhibition of p38 MAPK was protective against these cytotoxic effects. Similarly, inhibition of arachidonic acid production led to decreased caspase-3 activity, thus rescuing airway epithelial cells from LMPs-induced cell death. In conclusion, our results show that LMPs induce airway epithelial cell apoptosis by activating p38 MAPK signaling and stimulating production of arachidonic acid, with consequent increases in oxidative stress and caspase-3 activity. As such, LMPs may be regarded as deleterious markers of epithelial cell damage in respiratory diseases.  相似文献   

4.
Metformin (1-(diaminomethylidene)-3,3-dimethyl-guanidine), which is the most commonly prescribed oral antihyperglycaemic drug in the world, was reported to have several antioxidant properties such as the inhibition of advanced glycation end-products. In addition to its use in the treatment of diabetes, it has been suggested that metformin may be a promising anti-aging agent. The present work was aimed at assessing the possible protective effects of metformin against DNA-damage induction by oxidative stress in vitro. The effects of metformin were compared with those of N-acetylcysteine (NAC). For this purpose, peripheral blood lymphocytes from aged (n = 10) and young (n = 10) individuals were pre-incubated with various concentrations of metformin (10–50 μM), followed by incubation with 15 μM cumene hydroperoxide (CumOOH) for 48 h, under conditions of low oxidant level, which do not induce cell death. Protection against oxidative DNA damage was evaluated by use of the Comet assay and the cytokinesis-block micronucleus technique. Changes in the levels of malondialdehyde + 4-hydroxy-alkenals, an index of oxidative stress, were also measured in lymphocytes. At concentrations ranging from 10 μM to 50 μM, metformin did not protect the lymphocytes from DNA damage, while 50 μM NAC possessed an effective protective effect against CumOOH-induced DNA damage. Furthermore, NAC, but not metformin, inhibited DNA fragmentation induced by CumOOH. In contrast to the lack of protection against oxidative damage in lymphocyte cultures, metformin significantly protected the cells from lipid peroxidation in both age groups, although not as effective as NAC in preventing the peroxidative damage at the highest doses. Within the limitations of this study, the results indicate that pharmacological concentrations of metformin are unable to protect against DNA damage induced by a pro-oxidant stimulus in cultured human lymphocytes, despite its antioxidant properties.  相似文献   

5.
Eosinophilia have been implicated in a broad range of diseases, most notably allergic conditions (e.g. asthma, rhinitis and atopic dermatitis) and inflammatory diseases. These diseases are characterized by an accumulation of eosinophils in the affected tissue. Defining the mechanisms that control the recruitment of eosinophil is fundamental to understanding how these diseases progress and identifying a novel target for drug therapy. Accordingly, this study was conducted to evaluate the regulatory effect of Schizandrae Fructus (SF) on the expression of eotaxin, an eosinophil-specific chemokine released in respiratory epithelium following allergic stimulation, as well as its effects on eosinophil migration.To accomplish this, human epithelial lung cells (A549 cell) were stimulated with a combination of TNF-α (100 ng/ml) and IL-4 (100 ng/ml) for 24 h. The cells were then restimulated with TNF-α (100 ng/ml) and IL-1β (10 ng/ml) to induce the expression of chemokines and adhesion molecules involved in eosinophil chemotaxis for another 24 h. Next, the samples were treated with various concentrations of Schizandrae Fructus (SF) (1, 10, 100, 1000 μg/ml) or one of the major constituents of SF, schizandrin (0.1, 1, 10, 100 μg/ml), after which following inhibition effect assay was performed triplicates in three independence.The levels of eotaxin in secreted proteins were suppressed significantly by SF (100 and 1000 μg/ml, p<0.01) and schizandrin (10 and 100 μg/ml, p<0.01). In addition, SF (1, 10, 100 and 1000 μg/ml) decreased mRNA expression levels in A549 cells significantly (p<0.01). Eosinophil recruitment to lung epithelial cells was also reduced by SF, which indicates that eotaxin plays a role in eosinophil recruitment. Furthermore, treatment with SF suppressed the expression of another chemokine, IL-8 (0.1 and 1 μg/ml SF, p<0.01), as well as intercellular adhesion molecule-1 (10 and 100 μg/ml SF, p<0.01) and vascular cell adhesion molecule-1 (0.1 and 1 μg/ml SF, p<0.05), which are all related to eosinophil migration. Taken together, these findings indicate that SF may be a desirable medicinal plant for the treatment of allergic diseases.  相似文献   

6.
This study demonstrates cytotoxic and genotoxic potential of juglone, a chief constituent of walnut, and its underlying mechanisms against melanoma cells. MTT assay and clonogenic assay were used to study cytotoxicity, micronucleus assay to assess genotoxicity, glutathione (GSH) assay and 2′,7′-dicholorofluorescein diacetate (DCFH-DA) assay to evaluate the oxidative stress induction. Apoptosis/necrosis induction was analysed by flow cytometry. We observed a concentration-dependent decrease in cell survival with a corresponding increase in the lactate dehydrogenase levels. A dose-dependent increase in the frequency of micronucleated binucleate cells indicated the potential of juglone to induce cytogenetic damage in melanoma tumor cells. Moreover, results of the micronuclei study indicated division delay in the proliferating cell population by showing decrease in the cytokinesis blocked proliferation index. Further, juglone-induced apoptosis and necrosis could be demonstrated by oligonucleosomal ladder formation, microscopic analysis, increase in the hypodiploid fraction (sub Go peak in DNA histogram), as well as an increased percentage of AnnexinV(+)/PI(+) cells detected by flow cytometry. A significant concentration-dependent decrease in the glutathione levels and increase in dichlorofluorescein (DCF) fluorescence after juglone treatment confirmed the ability of juglone to generate intracellular reactive oxygen species. The cytotoxic effect of juglone can be attributed to mechanisms including the induction of oxidative stress, cell membrane damage, and a clastogenic action leading to cell death by both apoptosis and necrosis.  相似文献   

7.
A high throughput screen for compounds that induce TRAIL-mediated apoptosis identified ML100 as an active chemical probe, which potentiated TRAIL activity in prostate carcinoma PPC-1 and melanoma MDA-MB-435 cells. Follow-up in silico modeling and profiling in cell-based assays allowed us to identify NSC130362, pharmacophore analog of ML100 that induced 65-95% cytotoxicity in cancer cells and did not affect the viability of human primary hepatocytes. In agreement with the activation of the apoptotic pathway, both ML100 and NSC130362 synergistically with TRAIL induced caspase-3/7 activity in MDA-MB-435 cells. Subsequent affinity chromatography and inhibition studies convincingly demonstrated that glutathione reductase (GSR), a key component of the oxidative stress response, is a target of NSC130362. In accordance with the role of GSR in the TRAIL pathway, GSR gene silencing potentiated TRAIL activity in MDA-MB-435 cells but not in human hepatocytes. Inhibition of GSR activity resulted in the induction of oxidative stress, as was evidenced by an increase in intracellular reactive oxygen species (ROS) and peroxidation of mitochondrial membrane after NSC130362 treatment in MDA-MB-435 cells but not in human hepatocytes. The antioxidant reduced glutathione (GSH) fully protected MDA-MB-435 cells from cell lysis induced by NSC130362 and TRAIL, thereby further confirming the interplay between GSR and TRAIL. As a consequence of activation of oxidative stress, combined treatment of different oxidative stress inducers and NSC130362 promoted cell death in a variety of cancer cells but not in hepatocytes in cell-based assays and in in vivo, in a mouse tumor xenograft model.  相似文献   

8.
he consumption of bracken-fern (Pteridium aquilinum) as food is associated with a high incidence of cancer in humans and animals. Thus far, the carcinogenic effects of bracken-fern consumption could be related to chromosome aberrations verified in animal and in human peripheral lymphocytes. We tested the in vitro effects of vitamin C (10 and 100 μg/ml) on the reversibility of DNA damage caused by bracken-fern on human submandibular gland (HSG) cells and on oral epithelium cells (OSCC-3) previously exposed to bracken-fern extract. DNA damage (i.e. nuclei with increased levels of DNA migration) was determined by comet assay, cell morphology was evaluated by light microscopy and cellular degeneration was assessed by the acridine orange/ethidium bromide fluorescent-dyeing test. Results showed that vitamin C alone did not reduce DNA damage caused by bracken-fern in HSG and OSSC-3 cells. However, at a higher concentration (100 μg/ml), vitamin C induced DNA damage in both cell lines. Moreover, vitamin C (10 and 100 μg/ml) together with bracken-fern extract showed synergistic effects on the frequency of DNA damage in HSG cells. In addition, cells treated with bracken-fern extract or vitamin C alone, or with their association, showed apoptosis morphological features, such as chromatin condensation, cytoplasmic volume loss, changes in membrane symmetry and the appearance of vacuoles; these alterations were observed in both cell lines. These results demonstrate that bracken-fern extract was cytotoxic to HSG and OSCC-3 cells, causing cell death by apoptosis, and that vitamin was not able to revert these effects.  相似文献   

9.
Non-steroidal anti-inflammatory drugs (NSAIDs), including acetaminophen (APAP), have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP) causes liver injury in humans and animals. Hepatic glutathione (GSH) depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP—induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST) and multidrug resistance (MDR1) proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM), a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h) exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.  相似文献   

10.
The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.  相似文献   

11.
Standardized extract from the leaves of the Ginkgo biloba tree, labeled EGb761, is one of the most popular herbal supplements, taken for its multivalent properties. In this study, dosage effects of EGb761 on hydrogen peroxide (H2O2)-induced apoptosis of human neuroblastoma SH-SY5Y cells were investigated. It was found that H2O2-induced apoptotic cell death in SH-SY5Y cells, which was revealed in DNA fragmentation, mitochondrial membrane potential depolarization, and activation of Akt, c-Jun N-terminal kinases (JNK) and caspase 3. Low doses of EGb761 (50–100 μg/ml) inhibited H2O2-induced cell apoptosis via inactivation of Akt, JNK and caspase 3 while high doses of EGb761 (250–500 μg/ml) enhanced H2O2 toxicities via inactivation of Akt and enhancement of activation of JNK and caspase 3. Additional experiments revealed that H2O2 decreased intracellular GSH content, which was also inhibited by low concentrations of EGb761 but enhanced after high concentrations of EGb761 treatment. This further suggests to us that dosage effects of EGb761 on apoptotic signaling proteins may be correlated with regulation of cell redox state. Therefore, treatment dosage may be one of the vital factors that determine the specific action of EGb761 on oxidative stress-induced cell apoptosis. To understand the mechanisms of dosage effects of EGb761 may have important clinical implications.  相似文献   

12.
Atmospheric gas plasmas (AGPs) are able to selectively induce apoptosis in cancer cells, offering a promising alternative to conventional therapies that have unwanted side effects such as drug resistance and toxicity. However, the mechanism of AGP-induced cancer cell death is unknown. In this study, AGP is shown to up-regulate intracellular reactive oxygen species (ROS) levels and induce apoptosis in melanoma but not normal melanocyte cells. By screening genes involved in apoptosis, we identify tumor necrosis factor (TNF)–family members as the most differentially expressed cellular genes upon AGP treatment of melanoma cells. TNF receptor 1 (TNFR1) antagonist–neutralizing antibody specifically inhibits AGP-induced apoptosis signal, regulating apoptosis signal–regulating kinase 1 (ASK1) activity and subsequent ASK1-dependent apoptosis. Treatment of cells with intracellular ROS scavenger N-acetyl-l-cysteine also inhibits AGP-induced activation of ASK1, as well as apoptosis. Moreover, depletion of intracellular ASK1 reduces the level of AGP-induced oxidative stress and apoptosis. The evidence for TNF-signaling dependence of ASK1-mediated apoptosis suggests possible mechanisms for AGP activation and regulation of apoptosis-signaling pathways in tumor cells.  相似文献   

13.
While the build-up of oxidized proteins within cells is believed to be toxic, there is currently no evidence linking protein carbonylation and cell death. In the present study, we show that incubation of nPC12 (neuron-like PC12) cells with 50 μM DEM (diethyl maleate) leads to a partial and transient depletion of glutathione (GSH). Concomitant with GSH disappearance there is increased accumulation of PCOs (protein carbonyls) and cell death (both by necrosis and apoptosis). Immunocytochemical studies also revealed a temporal/spatial relationship between carbonylation and cellular apoptosis. In addition, the extent of all three, PCO accumulation, protein aggregation and cell death, augments if oxidized proteins are not removed by proteasomal degradation. Furthermore, the effectiveness of the carbonyl scavengers hydralazine, histidine hydrazide and methoxylamine at preventing cell death identifies PCOs as the toxic species. Experiments using well-characterized apoptosis inhibitors place protein carbonylation downstream of the mitochondrial transition pore opening and upstream of caspase activation. While the study focused mostly on nPC12 cells, experiments in primary neuronal cultures yielded the same results. The findings are also not restricted to DEM-induced cell death, since a similar relationship between carbonylation and apoptosis was found in staurosporine- and buthionine sulfoximine-treated nPC12 cells. In sum, the above results show for the first time a causal relationship between carbonylation, protein aggregation and apoptosis of neurons undergoing oxidative damage. To the best of our knowledge, this is the first study to place direct (oxidative) protein carbonylation within the apoptotic pathway.  相似文献   

14.
Dillenia suffruticosa, which is locally known as Simpoh air, has been traditionally used to treat cancerous growth. The ethyl acetate extract of D. suffruticosa (EADs) has been shown to induce apoptosis in MCF-7 breast cancer cells in our previous study. The present study aimed to elucidate the molecular mechanisms involved in EADs-induced apoptosis and to identify the major compounds in the extract. EADs was found to promote oxidative stress in MCF-7 cells that led to cell death because the pre-treatment with antioxidants α-tocopherol and ascorbic acid significantly reduced the cytotoxicity of the extract (P<0.05). DCFH-DA assay revealed that treatment with EADs attenuated the generation of intracellular ROS. Apoptosis induced by EADs was not inhibited by the use of caspase-inhibitor Z-VAD-FMK, suggesting that the cell death is caspase-independent. The use of JC-1 dye reflected that EADs caused disruption in the mitochondrial membrane potential. The related molecular pathways involved in EADs-induced apoptosis were determined by GeXP multiplex system and Western blot analysis. EADs is postulated to induce cell cycle arrest that is p53- and p21-dependent based on the upregulated expression of p53 and p21 (P<0.05). The expression of Bax was upregulated with downregulation of Bcl-2 following treatment with EADs. The elevated Bax/Bcl-2 ratio and the depolarization of mitochondrial membrane potential suggest that EADs-induced apoptosis is mitochondria-dependent. The expression of oxidative stress-related AKT, p-AKT, ERK, and p-ERK was downregulated with upregulation of JNK and p-JNK. The data indicate that induction of oxidative-stress related apoptosis by EADs was mediated by inhibition of AKT and ERK, and activation of JNK. The isolation of compounds in EADs was carried out using column chromatography and elucidated using the nuclear resonance magnetic analysis producing a total of six compounds including 3-epimaslinic acid, kaempferol, kaempferide, protocatechuic acid, gallic acid and β-sitosterol-3-O-β-D-glucopyranoside. The cytotoxicity of the isolated compounds was determined using MTT assay. Gallic acid was found to be most cytotoxic against MCF-7 cell line compared to others, with IC50 of 36 ± 1.7 μg/mL (P<0.05). In summary, EADs generated oxidative stress, induced cell cycle arrest and apoptosis in MCF-7 cells by regulating numerous genes and proteins that are involved in the apoptotic signal transduction pathway. Therefore, EADs has the potential to be developed as an anti-cancer agent against breast cancer.  相似文献   

15.
A series of cis-restricted 3,4-diaryl-5-aminoisoxazoles have been synthesized and evaluated for their biological activities. Among them, compound 11a and 13a displayed potent cytotoxic activities in vitro against five human cancer cell lines with IC50 values in the low micromolar range and two compounds inhibited tubulin polymerization with IC50 value of 1.8, and 2.1 μM, respectively, similar to that of CA-4. Compound 13a could arrest at the G2/M phase of the cell cycle at the concentration of 0.1 and 1.0 μM and induce apoptosis at 0.1–1.0 μM.  相似文献   

16.
Cardiomyocyte death caused by proinflammatory cytokines, such as Tumor necrosis factor α (TNF-α), is one of the hot topics in cardiovascular research. TNF-α can induce multiple cell processes that are dependent on the treatment time although the long-term treatment definitely leads to cell death. The ability to intervene in cell death will be invaluable to reveal the effects of short-term TNF-α treatment to cardiomyocytes. However, a real-time monitoring technique is needed to guide the intervention of cell responses. In this work, we employed the impedance-sensing technique to real-time monitor the equivalent cell–substrate distance of cardiomyocytes via electrochemical impedance spectroscopy (EIS) and electrical cell–substrate impedance sensing (ECIS). In the stabilized cardiomyocyte culture, the sustained TNF-α treatment caused strengthened cell adhesion in the first 2 h which was followed by the transition to cell detachment afterwards. Considering cell detachment was an early morphological evidence of cell death, we removed TNF-α from the cardiomyocyte culture before the transition to achieve the intervention of cell responses. The result of this intervention showed that cell adhesion was continuously strengthened before and after the removal of TNF-α, indicating the short-term treated cardiomyocytes did not undergo death processes. It was also demonstrated in TUNEL and TBE tests that the percentages of apoptosis and cell death were both lowered.  相似文献   

17.
Clinical trials with rituximab in combination with chemotherapeutic regimens have shown promising results. Data on the effects of rituximab treatment in combination with irradiation are, however, limited and inconsistent. This study aims to investigate the effects of rituximab (R) on cell death induced by X-irradiation in Raji lymphoma cells and to evaluate its mechanisms. We found the cell growth inhibition by irradiation was enhanced by additional rituximab exposure both in cells precultured with rituximab followed by irradiation (R + irradiation) or in cells treated in the reverse sequence (irradiation + R). R + irradiation combination treatment induced more apoptotic cells than irradiation and irradiation + R treatment as early as 12 h after treatment. At 24 h, both combination treatments, R + irradiation and irradiation + R, showed apoptotic cells, which were significantly different from irradiation alone. G2/M cell cycle arrest was observed after irradiation alone and the combination treatment. The combination treatment revealed an elevation in reactive oxygen species (ROS) generation in a radiation dose-dependent manner. In addition, rituximab enhanced the cell growth inhibition and apoptotic cell death induced by the oxidative agent, H2O2. We propose that rituximab mediates a significant in vitro radiosensitizing effect and induces cell cycle changes and apoptosis in Raji cells. ROS probably play an important role in these events.  相似文献   

18.
FAK (focal adhesion kinase) and IGF-1R (insulin-like growth factor receptor-1) directly interact with each other and thereby activate crucial signaling pathways that benefit cancer cells. Inhibition of FAK and IGF-1R function has been shown to significantly decrease cancer cell proliferation and increase sensitivity to chemotherapy and radiation treatment. As a novel approach in human melanoma, we evaluated the effect of a small-molecule compound that disrupts the protein interaction of FAK and IGF-1R. Previously, using virtual screening and functional testing, we identified a lead compound (INT2–31) that targets the known FAK-IGF-1R protein interaction site. We studied the ability of this compound to disrupt FAK-IGF-1R protein interactions, inhibit downstream signaling, decrease human melanoma cell proliferation, alter cell cycle progression, induce apoptosis and decrease tumor growth in vivo. INT2–31 blocked the interaction of FAK and IGF-1R in vitro and in vivo in melanoma cells and tumor xenografts through precluding the activation of IRS-1, leading to reduced phosphorylation of AKT upon IGF-1 stimulation. As a result, INT2–31 significantly inhibited cell proliferation and viability (range 0.05–10 μM). More importantly, 15 mg/kg of INT2–31 given for 21 d via intraperitoneal injection disrupted the interaction of FAK and IGF-1R and effectively decreased phosphorylation of tumor AKT, resulting in significant melanoma tumor regression in vivo. Our data suggest that the FAK-IGF-1R protein interaction is an important target, and disruption of this interaction with a novel small molecule (INT2–31) has potential anti-neoplastic therapeutic effects in human melanoma.  相似文献   

19.
α-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer’s disease patients. Moreover, a proteolytic fragment of α-synuclein, the so-called non-amyloid component of Alzheimer’s disease amyloid, was found to be an integral part of Alzheimer’s dementia related plaques. However, the role of α-synuclein in pathomechanism of Alzheimer’s disease remains elusive. In particular, the relationship between α-synuclein and amyloid beta is unknown. In the present study we showed the involvement of α-synuclein in amyloid beta secretion and in the mechanism of amyloid beta evoked mitochondria dysfunction and cell death. Rat pheochromocytoma PC12 cells transfected with amyloid beta precursor protein bearing Swedish double mutation (APPsw) and control PC12 cells transfected with empty vector were used in this study. α-Synuclein (10 μM) was found to increase by twofold amyloid beta secretion from control and APPsw PC12 cells. Moreover, α-synuclein decreased the viability of PC12 cells by about 50% and potentiated amyloid beta toxicity leading to mitochondrial dysfunction and caspase-dependent programmed cell death. Inhibitor of caspase-3 (Z-DEVD-FMK, 100 μM), and a mitochondrial permeability transition pore blocker, cyclosporine A (2 μM) protected PC12 cells against α-synuclein or amyloid beta evoked cell death. In contrast Z-DEVD-FMK and cyclosporine A were ineffective in APPsw cells containing elevated amount of amyloid beta treated with α-synuclein. It was found that the inhibition of neuronal and inducible nitric oxide synthase reversed the toxic effect of α-synuclein in control but not in APPsw cells. Our results indicate that α-synuclein enhances the release and toxicity of amyloid beta leading to nitric oxide mediated irreversible mitochondria dysfunction and caspase-dependent programmed cell death.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号