首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vascular dementia, being the most severe form of vascular cognitive impairment (VCI), is caused by cerebrovascular disease. Whether organophosphorus causes VCI remains unknown. Isocarbophos (0.5 mg/kg per 2 days) was intragastrically administrated to rats for 16 weeks. The structure and function of cerebral arteries were assayed. The learning and memory were evaluated by serial tests of step‐down, step‐through and morris water maze. Long‐term administration of isocarbophos reduced the hippocampal acetylcholinesterase (AChE) activity and acetylcholine (ACh) content but did not alter the plasma AChE activity, and significantly damaged the functions of learning and memory. Moreover, isocarbophos remarkably induced endothelial dysfunction in the middle cerebral artery and the expressions of ICAM‐1 and VCAM‐1 in the posterior cerebral artery. Morphological analysis by light microscopy and electron microscopy indicated disruptions of the hippocampus and vascular wall in the cerebral arteries from isocarbophos‐treated rats. Treatment of isocarbophos injured primary neuronal and astroglial cells isolated from rats. Correlation analysis demonstrated that there was a high correlation between vascular function of cerebral artery and hippocampal AChE activity or ACh content in rats. In conclusion, chronic administration of isocarbophos induces impairments of memory and learning, which is possibly related to cerebral vascular dysfunction.  相似文献   

2.
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medullapons or the cerebellum. Since G4 forms have been proposed to be present presynaptically, their age-related loss in those brain areas where acetylcholine plays an important role in neurotransmission may indicate an impairment of presynaptic mechanisms.  相似文献   

3.
The effect of transient cerebral ischemia on acetylcholinesterase (AChE) synthesis was studied in rats by a modified pharmacohistochemical method. The procedure involved in vivo irreversible inhibition of AChE by administration of the inhibitor diisopropyl fluorophosphate (DFP; 1.2 mg/kg b.w., i.m.) 1 h before 30 min forebrain ischemia (the four-vessel occlusion model). At the onset of ischemia, 70-75% of AChE was inhibited in the brain. Recirculation was followed by histochemical and biochemical investigations of newly synthesized AChE in the striatum, septum, cortex and hippocampus. Control sham-operated animals were treated with the same dose of DFP. For correlation, rats not treated with DFP were subjected to the same ischemic procedures and investigated simultaneously. In these rats, significant decrease in AChE activity was found in the striatum, septum and hippocampus during 24 h recirculation. In DFP treated rats, ischemia markedly depressed resynthesis of AChE; after 4 h recirculation, AChE activity was decreased by 45-60% in all investigated areas in comparison with controls and the AChE histochemistry showed only slightly stained neurons in the striatum and septum. Twenty-four hours after ischemia, these neurons were densely stained and the increase in AChE activity indicated a partial recovery of the enzyme synthesis. These results suggest that the depression of AChE synthesis after forebrain ischemia is probably transient, not accompanied by cholinergic neuron degeneration.  相似文献   

4.
The role of acetylcholinesterase (AChE) in the termination of the cholinergic response through acetylcholine (ACh) hydrolysis and the involvement of plasma butyrylcholinesterase (BuChE), mainly of hepatic origin, in the metabolism of xenobiotics with ester bonds is well known. Besides, BuChE has a crucial role in ACh hydrolysis, especially when selective anticholinesterases inhibit AChE. Herein, we analyzed the gender-related differences and the circadian changes of rat plasma cholinesterases. Plasma and liver cholinesterase activities were evaluated in control or 2–30-day castrated adult male and female rats. Plasma and liver AChE activities did not differ between genders and were not influenced by sex hormone deprivation. BuChE plasma activity was 7 times greater in female, reflecting gender differences in liver enzyme expression. Castration increased liver and plasma BuChE activity in male, while reduced it in female, abolishing gender differences in enzyme activity. Interestingly, female AChE and BuChE plasma activities varied throughout the day, reaching values 27% and 42% lower, respectively, between 2 p.m. and 6 p.m. when compared to the morning peaks at 8 a.m. Castration attenuated daily female BuChE oscillation. On the other hand, male plasma enzymes remained constant throughout the day. In summary, our results show that liver and plasma BuChE, but not AChE, expression is influenced by sex hormones, leading to high levels of blood BuChE in females. The fluctuation of female plasma BuChE during the day should be taken into account to adjust the bioavailability and the therapeutic effects of cholinesterase inhibitors used in cholinergic-based conditions such Alzheimer's disease.  相似文献   

5.
In the present study we investigated the effect of chronic hypermethioninemia on rat performance in the Morris water maze task, as well as on acetylcholinesterase (AChE) activity in rat cerebral cortex. For chronic treatment, rats received subcutaneous injections of methionine (1.34–2.68 μmol/g of body weight), twice a day, from the 6th to the 28th day of age; control rats received the same volume of saline solution. Groups of rats were killed 3 h, 12 h or 30 days after the last injection of methionine to AChE assay and another group was left to recover until the 60th day of life to assess the effect of early methionine administration on reference and working spatial memory of rats. AChE activity was also determined after behavioral task. Results showed that chronic treatment with methionine did not alter reference memory when compared to saline-treated animals. In the working memory task, we observed a significant days effect with significant differences between control and methionine-treated animals. Chronic hypermethioninemia significantly increased AChE activity at 3 h, 12 h or 30 days after the last injection of methionine, as well as before or after behavioral test. The effect of acute hypermethioninemia on AChE was also evaluated. For acute treatment, 29-day-old rats received one single injection of methionine (2.68 μmol/g of body weight) or saline and were killed 1, 3 or 12 h later. Results showed that acute administration of methionine did not alter cerebral cortex AChE activity. Our findings suggest that chronic experimental hypermethioninemia caused cognitive dysfunction and an increase of AChE activity that might be related, at least in part, to the neurological problems presented by hypermethioninemic patients.  相似文献   

6.
Abstract: Investigating the possibility that acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are regulated in a coordinated manner, we have examined the natural variation in activity of these two enzymes in several tissues of adult male Sprague-Dawley, Fischer-344, and Wistar-Furth rats. Both enzymes varied greatly in mean activity among brain, diaphragm, atria, serum, superior cervical ganglia, and liver. In Sprague-Dawley rats there were also large individual variations with up to a fivefold range of AChE activities and up to a 100-fold range of BuChE activities in a given tissue. Individual variations in cholinesterase activities appeared to be smaller in the inbred Fischer-344 or Wistar-Furth rats. Experiments with internal standards of partially purified AChE and BuChE indicated that the individual variations probably reflected differences in the intrinsic content or specific activity of the tissue enzymes. Comparison of the AChE activities in different tissues of a given group of rats failed to reveal statistically significant correlations in any strain (i.e., the relative activity of any one tissue was no guide to the relative activity of any other tissue in the same rat). This result indicates that the regulation of AChE is tissue-specific. By contrast, BuChE activity showed highly significant correlations among the majority of the tissues examined in the Sprague-Dawley rats, implying that widely dispersed factors can affect the regulation of this enzyme. Body-wide regulation is not necessarily the rule, however, since only a single tissue pair in the inbred Fischer rats and none of the pairs in the Wistar-Furth rats showed significant correlations of BuChE activity. In general, AChE and BuChE activities were not correlated with each other to a statistically significant degree. We conclude that the control of these enzymes normally involves different mechanisms and is strongly affected by the genetic background of the sample population.  相似文献   

7.

Background

Many studies have been conducted in an extensive effort to identify alterations in blood cholinesterase levels as a consequence of disease, including the analysis of acetylcholinesterase (AChE) in plasma. Conventional assays using selective cholinesterase inhibitors have not been particularly successful as excess amounts of butyrylcholinesterase (BuChE) pose a major problem.

Principal Findings

Here we have estimated the levels of AChE activity in human plasma by first immunoprecipitating BuChE and measuring AChE activity in the immunodepleted plasma. Human plasma AChE activity levels were ∼20 nmol/min/mL, about 160 times lower than BuChE. The majority of AChE species are the light G1+G2 forms and not G4 tetramers. The levels and pattern of the molecular forms are similar to that observed in individuals with silent BuChE. We have also compared plasma AChE with the enzyme pattern obtained from human liver, red blood cells, cerebrospinal fluid (CSF) and brain, by sedimentation analysis, Western blotting and lectin-binding analysis. Finally, a selective increase of AChE activity was detected in plasma from Alzheimer''s disease (AD) patients compared to age and gender-matched controls. This increase correlates with an increase in the G1+G2 forms, the subset of AChE species which are increased in Alzheimer''s brain. Western blot analysis demonstrated that a 78 kDa immunoreactive AChE protein band was also increased in Alzheimer''s plasma, attributed in part to AChE-T subunits common in brain and CSF.

Conclusion

Plasma AChE might have potential as an indicator of disease progress and prognosis in AD and warrants further investigation.  相似文献   

8.
Sorrenti  V.  Giacomo  C. Di  Campisi  A.  Perez-Polo  J. R.  Vanella  A. 《Neurochemical research》1999,24(7):861-866
Nitric Oxide (NO) mediates a series of physiological processes including regulation of vascular tone, macrophage-mediated cytotoxicity, platelet aggregation, learning and long-term potentiation, neuronal transmission. Although NO mediates several physiological functions, overproduction of NO can be detrimental and play multiple roles in the pathophysiology of focal cerebral ischemia. In the present study NOS activities were evaluated in cerebellum and cerebral cortex of ischemic and post-ischemic reperfused rats using an experimental model of partial cerebral ischemia; moreover, the effects of L-NGNitroarginine (NA, nonselective NOS inhibitor) or 7-Nitroindazole (7-NI, selective neuronal NOS inhibitor) administration were assayed on percentage survival of ischemic rats. An increase of NOS activity in the cerebellum and in cerebral cortex of ischemic and post-ischemic reperfused rats was observed. NA administration failed to induce neuroprotective effects, by increasing percentage of mortality of treated ischemic rats with respect to control group. In contrast, the treatment with the selective neuronal NOS inhibitor, 7-NI, induced a significant neuroprotective effect.  相似文献   

9.
Das A  Dikshit M  Nath C 《Life sciences》2001,68(13):1545-1555
Inhibition of acetylcholinesterase (AChE)-metabolizing enzyme of acetylcholine, is presently the most important therapeutic target for development of cognitive enhancers. However, AChE activity in brain has not been properly evaluated on the basis of age and sex. In the present study, AChE activity was investigated in different brain areas in male and female Sprague-Dawley rats of adult (3 months) and old (18-22 months) age. AChE was assayed spectrophotometrically by modified Ellman's method. Specific activity (micromoles/min/mg of protein) of AChE was assayed in salt soluble (SS) and detergent soluble (DS) fractions of various brain areas, which consists of predominantly G1 and G4 molecular isoforms of AChE respectively. The old male rats showed a decrease (40-55%) in AChE activity in frontal cortex, striatum, hypothalamus and pons in DS fraction and there was no change in SS fraction in comparison to adult rats. In the old female rats the activity was decreased (25-40%) in frontal cortex, cerebral cortex, striatum, thalamus, cerebellum and medulla in DS fraction whereas in SS fraction the activity was decreased only in hypothalamus as compared to adult. On comparing with old male rats, old female rats showed increase in AChE activity in cerebral cortex, hippocampus and hypothalamus of DS fraction and decrease in hypothalamus of SS fraction. There was a significant increase in AChE activity in DS fraction of cerebral cortex, hippocampus, hypothalamus, thalamus and cerebellum in female as compared to male adult rats. However, no significant change in AChE activity was found in the SS fraction, except hypothalamus between these groups. Thus it appears that age alters AChE activity in different brain regions predominantly in DS fraction (G4 isoform) that may vary in male and female. These observations have significant relevance to age related cognitive deficits and its pharmacotherapy.  相似文献   

10.
目的 研究绿茶多酚(Green tea polyphenols,GTPs)对脑缺血大鼠血脑屏障(Blood-brain barrier,BBB)及学习记忆功能的影响.方法 双侧颈总动脉结扎法制备脑缺血大鼠模型,大鼠随机分为假手术组、模型组和GTPs治疗组,每组8只,观察GTPs的保护作用.应用Morris水迷宫测试大鼠学习记忆能力,甲苯胺蓝染色法观察大鼠海马CA1区神经元形态变化,透射电镜观察BBB的变化以及海马CA1区神经元超微结构改变.结果模型组与假手术组相比BBB破坏,海马CA1区结构紊乱,学习记忆能力明显下降(P<o.05),GTPs治疗组与模型组相比,缺血性脑损伤明显减轻,学习记忆能力明显改善(P<0.05).结论 GTPs能够减轻缺血性脑损伤,从而发挥改善脑缺血SD大鼠学习记忆能力的作用.  相似文献   

11.

Background

Little is known of vitamin D concentration in cerebrospinal fluid (CSF) in Alzheimer´s disease (AD) and its relation with CSF acetylcholinesterase (AChE) activity, a marker of cholinergic function.

Methods

A cross-sectional study of 52 consecutive patients under primary evaluation of cognitive impairment and 17 healthy controls. The patients had AD dementia or mild cognitive impairment (MCI) diagnosed with AD dementia upon follow-up (n = 28), other dementias (n = 12), and stable MCI (SMCI, n = 12). We determined serum and CSF concentrations of calcium, parathyroid hormone (PTH), 25-hydroxyvitamin D (25OHD), and CSF activities of AChE and butyrylcholinesterase (BuChE).

Findings

CSF 25OHD level was reduced in AD patients (P < 0.05), and CSF AChE activity was decreased both in patients with AD (P < 0.05) and other dementias (P < 0.01) compared to healthy controls. None of the measured variables differed between BuChE K-variant genotypes whereas the participants that were homozygous in terms of the apolipoprotein E (APOE) ε4 allele had decreased CSF AChE activity compared to subjects lacking the APOE ε4 allele (P = 0.01). In AD patients (n=28), CSF AChE activity correlated positively with CSF levels of total tau (T-tau) (r = 0.44, P < 0.05) and phosphorylated tau protein (P-tau) (r = 0.50, P < 0.01), but CSF activities of AChE or BuChE did not correlate with serum or CSF levels of 25OHD.

Conclusions

In this pilot study, both CSF 25OHD level and CSF AChE activity were reduced in AD patients. However, the lack of correlations between 25OHD levels and CSF activities of AChE or BuChE might suggest different mechanisms of action, which could have implications for treatment trials.  相似文献   

12.
Summary. We observed here that acute proline (Pro) administration provoked a decrease (32%) of acetylcholinesterase (AChE) activity in cerebral cortex and an increase (22%) of butyrylcholinesterase (BuChE) activity in the serum of 29-day-old rats. In contrast, chronic administration of Pro did not alter AChE or BuChE activities. Furthermore, pretreatment of rats with vitamins E and C combined or alone, N-nitro-L-arginine methyl ester or melatonin prevented the reduction of AChE activity caused by acute Pro administration, suggesting the participation of oxidative stress in such effects.  相似文献   

13.
Cardiopulmonary arrest is a leading cause of death and disability in the United States that usually occurs in the aged population. Cardiac arrest (CA) induces global ischemia, disrupting global cerebral circulation that results in ischemic brain injury and leads to cognitive impairments in survivors. Ischemia-induced neuronal damage in the hippocampus following CA can result in the impairment of cognitive function including spatial memory. In the present study, we used a model of asphyxial CA (ACA) in nine month old male Fischer 344 rats to investigate cognitive and synaptic deficits following mild global cerebral ischemia. These experiments were performed with the goals of 1) establishing a model of CA in nine month old middle-aged rats; and 2) to test the hypothesis that learning and memory deficits develop following mild global cerebral ischemia in middle-aged rats. To test this hypothesis, spatial memory assays (Barnes circular platform maze and contextual fear conditioning) and field recordings (long-term potentiation and paired-pulse facilitation) were performed. We show that following ACA in nine month old middle-aged rats, there is significant impairment in spatial memory formation, paired-pulse facilitation n dysfunction, and a reduction in the number of non-compromised hippocampal Cornu Ammonis 1 and subiculum neurons. In conclusion, nine month old animals undergoing cardiac arrest have impaired survival, deficits in spatial memory formation, and synaptic dysfunction.  相似文献   

14.
Diabetes is associated with long‐term complications in the brain and reduced cognitive ability. Vitamin D3 (VD3) appears to be involved in the amelioration of hyperglycaemia in streptozotocin (STZ)‐induced diabetic rats. Our aim was to analyse the potential of VD3 in avoiding brain damage through evaluation of acetylcholinesterase (AChE), Na+K+‐adenosine triphosphatase (ATPase) and delta aminolevulinate dehydratase (δ‐ALA‐D) activities and thiobarbituric acid reactive substance (TBARS) levels from cerebral cortex, as well as memory in STZ‐induced diabetic rats. Animals were divided into eight groups (n = 5): control/saline, control/metformin (Metf), control/VD3, control/Metf + VD3, diabetic/saline, diabetic/Metf, diabetic/VD3 and diabetic/Metf + VD3. Thirty days after treatment, animals were submitted to contextual fear‐conditioning and open‐field behavioural tests, after which they were sacrificed and the cerebral cortex was dissected. Our results demonstrate a significant memory deficit, an increase in AChE activity and TBARS levels and a decrease in δ‐ALA‐D and Na+K+‐ATPase activities in diabetic rats when compared with the controls. Treatment of diabetic rats with Metf and VD3 prevented the increase in AChE activity when compared with the diabetic/saline group. In treated diabetic rats, the decrease in Na+K+‐ATPase was reverted when compared with non‐treated rats, but the increase in δ‐ALA‐D activity was not. VD3 prevented diabetes‐induced TBARS level and improved memory. Our results show that VD3 can avoid cognitive deficit through prevention of changes in important enzymes such as Na+K+‐ATPase and AChE in cerebral cortex in type 1 diabetic rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Although chronic 17β-estradiol (E2) has been shown to be a cognition-preserving and neuroprotective agent in animal brain injury models, concern regarding its safety was raised by the failed translation of this phenomenon to the clinic. Previously, we demonstrated that a single bolus of E2 48 hr prior to ischemia protected the hippocampus from damage in ovariectomized rats via phosphorylation of cyclic-AMP response element binding protein, which requires activation of estrogen receptor subtype beta (ER-β). The current study tests the hypothesis that long-term periodic E2-treatment improves cognition and reduces post-ischemic hippocampal injury by means of ER-β activation. Ovariectomized rats were given ten injections of E2 at 48 hr intervals for 21 days. Hippocampal-dependent learning, memory and ischemic neuronal loss were monitored. Results demonstrated that periodic E2 treatments improved spatial learning, memory and ischemic neuronal survival in ovariectomized rats. Additionally, periodic ER-β agonist treatments every 48 hr improved post-ischemic cognition. Silencing of hippocampal ER-β attenuated E2-mediated ischemic protection suggesting that ER-β plays a key role in mediating the beneficial effects of periodic E2 treatments. This study emphasizes the need to investigate a periodic estrogen replacement regimen to reduce cognitive decline and cerebral ischemia incidents/impact in post-menopausal women.  相似文献   

16.
Organophosphate (OP) nerve agents are known as the most toxic chemical warfare agents that act by inhibiting the enzyme acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Because BuChE is present at a level of about 3,900 times higher than AChE in plasma, most OP agents first react with BuChE in plasma, suggesting that OP-inactivated BuChE (OP-iBuChE) may act as a biomarker of OP exposure. In this study, we generated an anti-BuChE monoclonal antibody (mAb) that has reduced binding activity to VX-inactivated BuChE compared to native BuChE by phage display. We performed subtractive biopanning of a synthetic human Fab library against native BuChE and soman-iBuChE or VX-iBuChE. As the results, we isolated four Fab clones that showed differential binding activities to VX-iBuChE and native BuChE in ELISAs. To confirm the antigen-binding specificity of the selected clones, the Fabs were converted to IgG1s, and the IgG antibodies were expressed in HEK293F cells and purified. One of them (A2) showed approximately 30% reduced binding activity to VX-iBuChE compared to BuChE in a dose-dependent manner, whereas the other three antibodies showed almost the same binding activities to VX-iBuChE and BuChE. In addition, the A2 antibody did not show reduced binding activity to sarin-iBuChE or soman-iBuChE compared to native BuChE. The results indicate that A2 antibody shows reduced binding activity only to VX-iBuChE. A2 antibody may be applied to specific diagnosis of VX exposure.  相似文献   

17.
Enzyme-linked immunosorbent assays for acetylcholinesterase (AChE) and for butyrylcholinesterase (BuChE) were markedly more specific than conventional assays using selective enzyme inhibitors. The new assays were used with blood and brain samples containing traces of one enzyme dominated by large amounts of the other. The results showed that human plasma does contain AChE (8 ng/ml), even though its major cholinesterase is BuChE (3,300 ng/ml). BuChE immunoreactivity was not detected in human red blood cells but occurred in all brain regions. The cerebellum was the richest region tested (540 ng of BuChE/g of tissue), whereas the cerebral cortex was the poorest (240 ng of BuChE/g). However, because of the small local AChE content (99 ng/g), BuChE was the major cortical cholinesterase. The picture was reversed in the putamen, where BuChE immunoreactivity (340 ng/g) was far outweighed by that of AChE (6,100 ng/g).  相似文献   

18.
Cholinesterases: New Roles in Brain Function and in Alzheimer's Disease   总被引:15,自引:0,他引:15  
The most important therapeutic effect of cholinesterase inhibitors (ChEI) on approximately 50% of Alzheimer's disease (AD) patients is to stabilize cognitive function at a steady level during a 1-year period of treatment as compared to placebo. Recent studies show that in a certain percentage (approximately 20%) of patients this cognitive stabilizing effect can be prolonged up to 24 months. This long-lasting effect suggests a mechanism of action other than symptomatic and cholinergic. In vitro and in vivo studies have consistently demonstrated a link between cholinergic activation and APP metabolism. Lesions of cholinergic nuclei cause a rapid increase in cortical APP and CSF. The effect of such lesions can be reversed by ChEI treatment. Reduction in cholinergic neurotransmission–experimental or pathological, such as in AD–leads to amyloidogenic metabolism and contributes to the neuropathology and cognitive dysfunction. To explain the long-term effect of ChEI, mechanisms based on -amyloid metabolism are postulated. Recent data show that this mechanism may not necessarily be related to cholinesterase inhibition. A second important aspect of brain cholinesterase function is related to enzymatic differences. The brain of mammals contains two major forms of cholinesterases: acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The two forms differ genetically, structurally, and for their kinetics. Butyrylcholine is not a physiological substrate in mammalian brain, which makes the function of BuChE of difficult interpretation. In human brain, BuChE is found in neurons and glial cells, as well as in neuritic plaques and tangles in AD patients. Whereas, AChE activity decreases progressively in the brain of AD patients, BuChE activity shows some increase. To study the function of BuChE, we perfused intracortically the rat brain with a selective BuChE inhibitor and found that extracellular acetylcholine increased 15-fold from 5 nM to 75 nM concentrations with little cholinergic side effect in the animal. Based on these data and on clinical data showing a relation between cerebrospinal fluid (CSF) BuChE inhibition and cognitive function in AD patients, we postulated that two pools of cholinesterases may be present in brain, the first mainly neuronal and AChE dependent and the second mainly glial and BuChE dependent. The two pools show different kinetic properties with regard to regulation of ACh concentration in brain and can be separated with selective inhibitors. Within particular conditions, such as in mice nullizygote for AChE or in AD patients at advanced stages of the disease, BuChE may replace AChE in hydrolizing brain acetylcholine.  相似文献   

19.
This study investigated whether physical exercise would reverse proline-induced performance deficits in water maze tasks, as well as its effects on brain-derived neurotrophic factor (BDNF) immunocontent and brain acetylcholinesterase (AChE) activity in Wistar rats. Proline administration followed partial time (6th–29th day of life) or full time (6th–60th day of life) protocols. Treadmill exercise was performed from 30th to 60th day of life, when behavioral testing was started. After that, animals were sacrificed for BDNF and AChE determination. Results show that proline impairs cognitive performance, decreases BDNF in cerebral cortex and hippocampus and increases AChE activity in hippocampus. All reported effects were prevented by exercise. These results suggest that cognitive, spatial learning/memory, deficits caused by hyperprolinemia may be associated, at least in part, to the decrease in BDNF levels and to the increase in AChE activity, as well as support the role of physical exercise as a potential neuroprotective strategy.  相似文献   

20.
Das A  Rai D  Dikshit M  Palit G  Nath C 《Life sciences》2005,77(18):2299-2311
Effect of acute, chronic-predictable and chronic-unpredictable stress on memory and acetylcholinesterase (AChE) was investigated in rats. The animals were subjected to 3 type of stressors--(1) acute immobilization stress, (2) chronic-predictable stress i.e., immobilization daily for 5 consecutive days and (3) chronic-unpredictable stress that included reversal of light/dark cycle, over-night fasting, forced-swimming, immobilization and forced exercise in random unpredictable manner daily for 5 consecutive days. Learning and memory function was studied by single trial Passive avoidance test. AChE activity was assayed spectrophotometrically in the detergent (DS) and salt (SS) soluble fractions in different brain regions. Learning was obtained in acute and chronic-predictable stress groups but not in chronic-unpredictable group. Acute, chronic-predictable and chronic-unpredictable stress caused significant decrease in AChE activity in the DS fraction of cortex, hippocampus and hypothalamus as compared to control. Results indicate that AChE in DS fraction is predominantly affected in stressed and stressed-trained group but cognition is affected only by chronic-unpredictable stress. In acute and chronic-predictable groups the decreased AChE activity in the hippocampal DS fraction during learning may be responsible to maintain cognitive function by enhancing the cholinergic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号