首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Joshi S  Katiyar S  Lennarz WJ 《FEBS letters》2005,579(3):823-826
Peptide:N-glycanase (PNGase) is a deglycosylating enzyme that catalyzes the hydrolysis of the beta-aspartylglycosylamine bond of aspargine-linked glycopeptides and glycoproteins. Earlier studies from our laboratory indicated that PNGase catalyzed de-N-glycosylation was limited to glycopeptide substrates, but recent reports have demonstrated that it also acts upon full-length misfolded glycoproteins. In this study, we utilized two glycoprotein substrates, yeast carboxypeptidase and chicken egg albumin (ovalbumin), to study the deglycosylation activity of yeast PNGase and its mutants. Our results provide further evidence that PNGase acts upon full-length glycoprotein substrates and clearly establish that PNGase acts only on misfolded or denatured glycoproteins.  相似文献   

2.
The endoplasmic reticulum-associated degradation (ERAD) of misfolded (glyco)proteins ensures that only functional, correctly folded proteins exit from the ER and that misfolded ones are degraded by the ubiquitin-proteasome system. During the degradation of misfolded glycoproteins, some of them are subjected to deglycosylation by the cytoplasmic peptide:N-glycanase (PNGase). The cytosolic PNGase is widely distributed throughout eukaryotes. Here we show that the nematode Caenorhabditis elegans PNG-1, the cytoplasmic PNGase orthologue in this organism, exhibits dual enzyme functions, not only as PNGase but also as an oxidoreductase (thioredoxin). Using an in vitro assay as well as an in vivo assay system in budding yeast, the N-terminal thioredoxin domain and the central transglutaminase domain were found to be essential for oxidoreductase activity and PNGase activity, respectively. Occurrence of a C. elegans mutation affecting a catalytic residue in the PNGase domain strongly suggests the functional importance of this protein in higher eukaryotes.  相似文献   

3.
N-Glycosylation is an important post-translational modification of proteins, which mainly occurs in the endoplasmic reticulum (ER). Glycoproteins that are unable to fold properly are exported to the cytosol for degradation by a cellular system called ER-associated degradation (ERAD). Once misfolded glycoproteins are exported to the cytosol, they are subjected to deglycosylation by peptide:N-glycanase (PNGase) to facilitate the efficient degradation of misfolded proteins by the proteasome. Interestingly, the ortholog of PNGase in some filamentous fungi was found to be an inactive deglycosylating enzyme. On the other hand, it has been shown that in filamentous fungi genomes, usually two different fungi-specific endo-β-N-acetylglucosamidases (ENGases) can be found; one is predicted to be localized in the cytosol and the other to have a signal sequence, while the functional importance of these enzymes remains to be clarified. In this study the ENGases of the filamentous fungus Trichoderma atroviride was characterized. By heterologous expression of the ENGases Eng18A and Eng18B in Saccharomyces cerevisiae, it was found that both ENGases are active deglycosylating enzymes. Interestingly, only Eng18B was able to enhance the efficient degradation of the RTL protein, a PNGase-dependent ERAD substrate, implying the involvement of this enzyme in the ERAD process. These results indicate that T. atroviride Eng18B may deglycosylate misfolded glycoproteins, substituting the function of the cytoplasmic PNGase in the ERAD process.  相似文献   

4.
The deglycosylating enzyme, peptide:N-glycanase, acts on misfolded N-linked glycoproteins dislocated from the endoplasmic reticulum (ER) to the cytosol. Deglycosylation has been demonstrated to occur at the ER membrane and in the cytosol. However, the mechanism of PNGase association with the ER membrane was unclear, because PNGase lacked the necessary signal to facilitate its incorporation in the ER membrane, nor was it known to bind to an integral ER protein. Using HeLa cells, we have identified a membrane protein that associates with PNGase, thereby bringing it in close proximity to the ER and providing accessibility to dislocating glycoproteins. This protein, Derlin-1, has recently been shown to mediate retrotranslocation of misfolded glycoproteins. In this study we demonstrate that Derlin-1 interacts with the N-terminal domain of PNGase via its cytosolic C-terminus. Moreover, we find PNGase distributed in two populations; ER-associated and free in the cytosol, which suggests the deglycosylation process can proceed at either site depending on the glycoprotein substrate.  相似文献   

5.
Peptide:N-glycanase catalyzes the detachment of N-linked glycan chains from glycopeptides or glycoproteins by hydrolyzing the β-aspartylglucosaminyl bond. Peptide:N-glycanase in yeast binds to Rad23p through its N-terminus. In this study, the complex formed between Peptide:N-glycanase and Rad23p was found to exhibit enhanced deglycosylation activity, which suggests an important role for this enzyme in the misfolded glycoprotein degradation pathway in vivo. To investigate the role of this enzyme in this pathway, we made stepwise deletions of the N-terminal helices of peptide:N-glycanase. Enzymatic analysis of the deletion mutants showed that deletion of the N-terminal H1 helix (Png1p-ΔH1) enhanced the deglycosylation activity of N-glycanase towards denatured glycoproteins. In addition, this mutant exhibited high deglycosylation activity towards native glycoproteins. Dynamic simulations of the wild type and N-terminal H1 deletion mutant implied that Png1p-ΔH1 is more flexible than wild type Png1p. The efficient deglycosylation of Png1p-ΔH1 towards native and non-native glycoproteins offers a potential biotechnological application.  相似文献   

6.
Yeast peptide: N-glycanase (PNGase) is involved in the proteasomal degradation of misfolded glycoproteins where it interacts with the DNA repair protein Rad23 as first detected in a yeast two-hybrid assay and subsequently confirmed by biochemical in vivo analyses. Limited proteolysis of PNGase with trypsin led to the removal of both an N-terminal and a C-terminal stretch. Based on these truncations the N-terminal region of yeast PNGase was identified as being responsible for binding to Rad23. Secondary structure predictions of this region suggest that it is composed of a single, solvent-exposed alpha-helix. The interaction between PNGase and Rad23 was studied using surface plasmon resonance revealing an equilibrium binding constant of approximately 2.5 microM. The oligomeric nature of Rad23 was also investigated using sedimentation equilibrium analysis. Although Rad23 exists as a dimer in solution, the monomeric form of Rad23 associates with a PNGase monomer in a 1:1 stoichiometric ratio.  相似文献   

7.
The process of endoplasmic reticulum-associated degradation (ERAD) involved in the degradation of misfolded N-linked glycoproteins utilizes Cdc48p which extracts misfolded glycoproteins from the lumen to the cytosol to present them for deglycosylation and degradation. Pkc1p has been identified as a component of the ERAD pathway, because deletion of the pkc1 gene impairs ERAD and causes accumulation of CPY* in the lumen of the ER, most probably because of the mislocalization of Cdc48p. In addition, we show that Cdc48p interacts in the cytosol with the deglycosylation enzyme, PNGase, only when Cdc48p is associated with a misfolded glycoprotein.  相似文献   

8.
A novel strategy is proposed, using cost-saving chemical reactions to generate intact free reducing N-glycans and their fluorescent derivatives from glycoproteins for subsequent analysis. N-Glycans without core α-1,3-linked fucose are released in reducing form by selective hydrolysis of the N-type carbohydrate–peptide bond of glycoproteins under a set of optimized mild alkaline conditions and are comparable to those released by commonly used peptide-N-glycosidase (PNGase) F in terms of yield without any detectable side reaction (peeling or deacetylation). The obtained reducing glycans can be routinely derivatized with 2-aminobenzoic acid (2-AA), 1-phenyl-3-methyl-5-pyrazolone (PMP), and potentially some other fluorescent reagents for comprehensive analysis. Alternatively, the core α-1,3-fucosylated N-glycans are released in mild alkaline medium and derivatized with PMP in situ, and their yields are comparable to those obtained using commonly used PNGase A without conspicuous peeling reaction or any detectable deacetylation. Using this new technique, the N-glycans of a series of purified glycoproteins and complex biological samples were successfully released and analyzed by electrospray ionization mass spectrometry (ESI–MS) and tandem mass spectrometry (MS/MS), demonstrating its general applicability to glycomic studies.  相似文献   

9.
Peptide:N-glycanase (PNGase) releases N-glycans from glycoproteins/glycopeptides. Cytoplasmic PNGase is widely recognized as a component of machinery for ER-associated degradation (ERAD), i.e. proteasomal degradation of misfolded, newly synthesized (glyco)proteins that have been exported from the ER. The enzyme belongs to the “transglutaminase superfamily” that contains a putative catalytic triad of cysteine, histidine, and aspartic acid. The mammalian orthologues of PNGase contain the N-terminal PUB domain that serves as the protein–protein interaction domain. The C-terminus of PNGase was recently found to be a novel carbohydrate-binding domain. Taken together, these observations indicate that C-terminus of mammalian PNGase is important for recognition of the substrates while N-terminus of this enzyme is involved in assembly of a degradation complex.  相似文献   

10.
Development of convenient strategies for identification of plant N-glycan profiles has been driven by the emergence of plants as an expression system for therapeutic proteins. In this article, we reinvestigated qualitative and quantitative aspects of plant N-glycan profiling. The extraction of plant proteins through a phenol/ammonium acetate procedure followed by deglycosylation with peptide N-glycosidase A (PNGase A) and coupling to 2-aminobenzamide provides an oligosaccharide preparation containing reduced amounts of contaminants from plant cell wall polysaccharides. Such a preparation was also suitable for accurate qualitative and quantitative evaluation of the N-glycan content by mass spectrometry. Combining these approaches allows the profiling to be carried out from as low as 500 mg of fresh leaf material. We also demonstrated that collision-induced dissociation (CID) mass spectrometry in negative mode of N-glycans harboring α(1,3)- or α(1,6)-fucose residue on the proximal GlcNAc leads to specific fragmentation patterns, thereby allowing the discrimination of plant N-glycans from those arising from mammalian contamination.  相似文献   

11.
In eukaryotic cells, the endoplasmic reticulum-associated degradation (ERAD) pathway is essential for the disposal of misfolded proteins. Recently, we demonstrated the existence of a higher order complex consisting of the ER bound E3 ligase gp78, p97, PNGase, and HR23B in mammals. This complex may serve to facilitate the routing of misfolded glycoproteins out of the ER to the cytosol where they are degraded by the proteasome. In this complex, p97 functions as an organizer to mediate the interactions with gp78 and the deglycosylating enzyme PNGase. A novel protein-binding motif of mouse p97 was identified that consists of its last 10 amino acid residues; this motif is sufficient to mediate the interaction of p97 with PNGase and Ufd3. Phosphorylation of p97’s highly conserved penultimate tyrosine residue, completely blocks binding of both PNGase and Ufd3 to mp97. We have found that c-Src kinase directly and selectively phosphorylated the penultimate tyrosine of p97 in vitro, and that overexpression of c-Src significantly increased the phosphorylation level of p97 in cells and caused accumulation of the ERAD substrate TCRα-GFP, as well as ubiquitin-conjugated substrates. These results suggest a role for p97 phosphorylation in the degradation of misfolded glycoproteins.  相似文献   

12.
Peptide-N4-(N-acetyl-β-glucosaminyl) asparagine amidases [PNGases (peptide N-glycosidases), N-glycanases, EC 3.5.1.52] are essential tools in the release of N-glycans from glycoproteins. We hereby report the discovery and characterization of a novel bacterial N-glycanase from Terriglobus roseus with an extremely low pH optimum of 2.6, and annotated it therefore as PNGase H+. The gene of PNGase H+ was cloned and the recombinant protein was successfully expressed in Escherichia coli. The recombinant PNGase H+ could liberate high mannose-, hybrid- and complex-type N-glycans including core α1,3-fucosylated oligosaccharides from both glycoproteins and glycopeptides. In addition, PNGase H+ exhibited better release efficiency over N-glycans without core α1,3-fucose compared with PNGase A. The facile expression, non-glycosylated nature, unusual pH optimum and broad substrate specificity of this novel type of N-glycanase makes recombinant PNGase H+ a versatile tool in N-glycan analysis.  相似文献   

13.
There is growing evidence that asparagine (N)-linked glycans play pivotal roles in protein folding and intra- or intercellular trafficking of N-glycosylated proteins. During the N-glycosylation of proteins, significant amounts of free oligosaccharides (fOSs) and phosphorylated oligosaccharides (POSs) are generated at the endoplasmic reticulum (ER) membrane by unclarified mechanisms. fOSs are also formed in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins destined for proteasomal degradation. This article summarizes the current knowledge of the molecular and regulatory mechanisms underlying the formation of fOSs and POSs in mammalian cells and Saccharomyces cerevisiae.  相似文献   

14.
A cytoplasmic peptide: N-glycanase (PNGase) has been implicated in the proteasomal degradation of aberrant glycoproteins synthesized in the endoplasmic reticulum. The reaction is believed to be important for subsequent proteolysis by the proteasome since bulky N-glycan chains on misfolded glycoproteins may impair their efficient entry into the interior of the cylinder-shaped 20S proteasome, where its active site resides. This cytoplasmic enzyme was first detected in 1993 by a simple, sensitive assay method using 14C-labeled glycopeptide as a substrate. The deglycosylation reaction by PNGase brings about two major changes on substrate the peptide; one is removal of the N-glycan chain and the other is the introduction of a negative charge into the core peptide by converting the glycosylated asparagine residue(s) into an aspartic acid residue(s). The assay method we developed monitors these major changes in the core peptide, and the respective changes were detected by distinct analytical methods: i.e., paper chromatography and paper electrophoresis. This chapter will describe the simple, sensitive in vitro assay method for PNGase.  相似文献   

15.
Fbs1 is a cytosolic lectin putatively operating as a chaperone as well as a substrate-recognition subunit of the SCF(Fbs1) ubiquitin ligase complex. To provide structural and functional basis of preferential binding of Fbs1 to unfolded glycoproteins, we herein characterize the interaction of Fbs1 with a heptapeptide carrying Man3GlcNAc2 by nuclear magnetic resonance (NMR) spectroscopy and other biochemical methods. Inspection of the NMR data obtained by use of the isotopically labeled glycopeptide indicated that Fbs1 interacts with sugar-peptide junctions, which are shielded in native glycoprotein, in many cases, but become accessible to Fbs1 in unfolded glycoproteins. Furthermore, Fbs1 was shown to inhibit deglycosylation of denatured ribonuclease B by a cytosolic peptide:N-glycanase (PNGase). On the basis of these data, we suggest that Fbs1 captures malfolded glycoproteins, protecting them from the attack of PNGase, during the chaperoning or ubiquitinating operation in the cytosol.  相似文献   

16.

Background

The cytoplasmic peptide:N-glycanase (PNGase) is a deglycosylating enzyme involved in the ER-associated degradation (ERAD) process, while ERAD-independent activities are also reported. Previous biochemical analyses indicated that the cytoplasmic PNGase orthologue in Arabidopsis thaliana (AtPNG1) can function as not only PNGase but also transglutaminase, while its in vivo function remained unclarified.

Methods

AtPNG1 was expressed in Saccharomyces cerevisiae and its in vivo role on PNGase-dependent ERAD pathway was examined.

Results

AtPNG1 could facilitate the ERAD through its deglycosylation activity. Moreover, a catalytic mutant of AtPNG1 (AtPNG1(C251A)) was found to significantly impair the ERAD process. This result was found to be N-glycan-dependent, as the AtPNG(C251A) did not affect the stability of the non-glycosylated RTA? (ricin A chain non-toxic mutant). Tight interaction between AtPNG1(C251A) and the RTA? was confirmed by co-immunoprecipitation analysis.

Conclusion

The plant PNGase facilitates ERAD through its deglycosylation activity, while the catalytic mutant of AtPNG1 impair glycoprotein ERAD by binding to N-glycans on the ERAD substrates.

General significance

Our studies underscore the functional importance of a plant PNGase orthologue as a deglycosylating enzyme involved in the ERAD.  相似文献   

17.
Peptide:N-glycanase (PNGase) is the enzyme responsible for de-N-glycosylation of misfolded glycoproteins in the cytosol. Here, we report the molecular identification and characterization of PNGase (png-1, F56G4.5) from Caenorhabditis elegans. This enzyme released both high mannose- and complex-type N-glycans from glycopeptides and denatured glycoproteins. Deglycosylation activity was inhibited by Zn(2+) and z-VAD-fmk, but not by EDTA. PNG-1 has a thioredoxin-like domain in addition to a transglutaminase domain, the core domain of PNGases, and exhibited protein disulphide reductase activity in vitro. Our biochemical studies revealed that PNG-1 is a unique bifunctional protein possessing two enzyme activities.  相似文献   

18.
Peptide:N-glycanase (PNGase) releases N-glycans from glycoproteins/glycopeptides. Cytoplasmic PNGase is widely recognized as a component of machinery for ER-associated degradation (ERAD), i.e. proteasomal degradation of misfolded, newly synthesized (glyco)proteins that have been exported from the ER. The enzyme belongs to the "transglutaminase superfamily" that contains a putative catalytic triad of cysteine, histidine, and aspartic acid. The mammalian orthologues of PNGase contain the N-terminal PUB domain that serves as the protein-protein interaction domain. The C-terminus of PNGase was recently found to be a novel carbohydrate-binding domain. Taken together, these observations indicate that C-terminus of mammalian PNGase is important for recognition of the substrates while N-terminus of this enzyme is involved in assembly of a degradation complex.  相似文献   

19.
Cytoplasmic peptide:N-glycanase (PNGase) is an enzyme that removes N-glycans from misfolded glycoproteins. The function of cytoplasmic PNGase plays a significant role in the degradation of misfolded glycoproteins, which is critical for cell viability. Recently, we reported that haloacetoamidyl derivatives of high-mannose-type oligosaccharides selectively modify the catalytic cysteine of cytoplasmic PNGase and serve as its specific inhibitor. Interestingly, a drastically simplified chloroacetamidyl chitobiose derivative [(GlcNAc)(2)-ClAc] was also reactive to PNGase. In our work, it was conjugated to a hydrophobic fluorophore in order to render (GlcNAc)(2)-ClAc cells permeable. We demonstrated that this compound [BODIPY-(GlcNAc)(2)-ClAc] specifically binds to cytoplasmic PNGase from budding yeast (Png1). To date, only Z-VAD-fmk is known as an inhibitor of PNGase. BODIPY-(GlcNAc)(2)-ClAc and Z-VAD-fmk share the same binding site on Png1, while BODIPY-(GlcNAc)(2)-ClAc has markedly stronger inhibitory activity. The functional analysis of PNGase using Z-VAD-fmk should be carefully interpreted because of its intrinsic property as a caspase inhibitor. In sharp contrast, chloroacetamidyl chitobiose was not reactive to caspase. In addition, BODIPY-(GlcNAc)(2)-ClAc did not bind either chitobiose-binding lectins or PNGase from other sources. Moreover, fluorescent microscopy clearly showed that BODIPY-(GlcNAc)(2)-ClAc was efficiently introduced into cells. These results suggest that this compound could be an in vivo inhibitor of cytoplasmic PNGase.  相似文献   

20.
High-throughput quantitative analytical method for plant N-glycan has been developed. All steps, including peptide N-glycosidase (PNGase) A treatment, glycan preparation, and exoglycosidase digestion, were optimized for high-throughput applications using 96-well format procedures and automatic analysis on a DNA sequencer. The glycans of horseradish peroxidase with plant-specific core α(1,3)-fucose can be distinguished by the comparison of the glycan profiles obtained via PNGase A and F treatments. The peaks of the glycans with (91%) and without (1.2%) α(1,3)-fucose could be readily quantified and shown to harbor bisecting β(1,2)-xylose via simultaneous treatment with α(1,3)-mannosidase and β(1,2)-xylosidase. This optimized method was successfully applied to analyze N-glycans of plant-expressed recombinant antibody, which was engineered to contain a minor amount of glycan harboring β(1,2)-xylose. These results indicate that our DNA sequencer-based method provides quantitative information for plant-specific N-glycan analysis in a high-throughput manner, which has not previously been achieved by glycan profiling based on mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号