首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different (iso)guanosine-based self-assembled ionophores give distinctly different results in extraction experiments with alkali(ne earth) cations. A lipophilic guanosine derivative gives good extraction results for K+, Rb+, Ca2+, Sr2+, and Ba2+ and in competition experiments it clearly favors the divalent Sr2+ (and Ba2+) cations. 1,3-Alternate calix[4]arene tetraguanosine hardly shows any improvement in the extraction percentages compared to its reference compound 1,3-alternate calix[4]arene tetraamide. This indicates that one G-quartet does not provide efficient cation complexation under these conditions. In the case of the lipophilic isoguanosine derivative there is a cation size dependent affinity for the monovalent cations (Cs+ ? Rb+ ? K+), but not for the divalent cations (Ca2+ > Ba2+ > Sr2+ > Mg2+). In competition experiments the isoguanosine derivative, unlike guanosine, does not discriminate between monovalent and divalent cations, giving an almost equal extraction of Cs+ and Ba2+.  相似文献   

2.
In our study, we showed that at a relatively low concentration, H2O2 can irreversibly inactivate the human brain type of creatine kinase (HBCK) and that HBCK is inactivated in an H2O2 concentration-dependent manner. HBCK is completely inactivated when incubated with 2 mM H2O2 for 1 h (pH 8.0, 25 °C). Inactivation of HBCK is a two-stage process with a fast stage (k1 = 0.050 ± 0.002 min−1) and a slow (k2 = 0.022 ± 0.003 min−1) stage. HBCK inactivation by H2O2 was affected by pH and therefore we determined the pH profile of HBCK inactivation by H2O2. H2O2-induced inactivation could not be recovered by reducing agents such as dl-dithiothreitol, N-acetyl-l-cysteine, and l-glutathione reduced. When HBCK was treated with DTNB, an enzyme substrate that reacts specifically with active site cysteines, the enzyme became resistant to H2O2. HBCK binding to Mg2+ATP and creatine can also prevent H2O2 inactivation. Intrinsic and 1-anilinonaphthalene-8-sulfonate-binding fluorescence data showed no tertiary structure changes after H2O2 treatment. The thiol group content of H2O2-treated HBCK was reduced by 13% (approximately 1 thiol group per HBCK dimer, theoretically). For further insight, we performed a simulation of HBCK and H2O2 docking that suggested the CYS283 residue could interact with H2O2. Considering these results and the asymmetrical structure of HBCK, we propose that H2O2 specifically targets the active site cysteine of HBCK to inactivate HBCK, but that substrate-bound HBCK is resistant to H2O2. Our findings suggest the existence of a previously unknown negative form of regulation of HBCK via reactive oxygen species.  相似文献   

3.
The crystal structure of Na[Co(NC6H6O6)] · H2O is reported. The structure is compared to similar transition-metal nitrilotriacetate complexes containing different alkali cations and transition metals (Cu2+ and Zn2+). Inner-sphere coordination of the metals is similar, but the arrangement of counter-ions and water molecules in the unit cells vary with the size of the alkali cation.  相似文献   

4.
The reaction of the octahedral mononuclear complex, trans(N)-[Co(l-pen-N,O,S)2] (pen = penicillaminate), with [PtCl2(bpy)] (bpy = 2,2′-bipyridine) stereoselectively gave an optically active S-bridged dinuclear complex, [Pt(bpy){Co(l-pen)2}]Cl · 3H2O (2Cl · 3H2O), whose structure is enantiomeric to the previously reported [Pt(bpy){Co(d-pen)2}]Cl · 3H2O (1Cl · 3H2O). The mixture of equimolar amounts of 1Cl · 3H2O and 2Cl · 3H2O in H2O crystallizes as [Pt(bpy){Co(d-pen)2}]0.5[Pt(bpy){Co(l-pen)2}]0.5Cl · 7H2O (3Cl · 7H2O), in which the enantiomeric complex cations 1 and 2 are included in the ratio of 1:1. The crystal structures of 2Cl · 3H2O and 3Cl · 7H2O were determined by X-ray crystallography, and compared with that of 1Cl · 3H2O. The structural feature for 2 is essentially consistent with that for 1, except for the absolute configurations around the octahedral Co(III) center. The optically active complex cation 2 exists as a monomer, accompanied by no intermolecular interactions in the π-electronic systems of bpy moieties. In the crystals of 3Cl · 7H2O, on the other hand, the enantiomeric complex cations, [Pt(bpy){Co(d-pen)2}]+ and [Pt(bpy){Co(l-pen)2}]+, are arranged alternately while overlapping the bpy planes along a axis, and the π electronic system of the bpy framework in [Pt(bpy){Co(d-pen)2}]+ interacts with those in [Pt(bpy){Co(l-pen)2}]+. Differences between the crystal structures of 2Cl · 3H2O and3Cl · 7H2O significantly reflect their diffuse reflectance spectra. In aqueous solution, each cation in both 2Cl · 3H2O and 3Cl · 7H2O is comparatively put on a free environment without such intermolecular interactions.  相似文献   

5.
Two new nickel(II) complexes of the composition [Ni(cyclam)(Hdipic)2] · 2H2O (1) and [Ni(cyclam)(H2O)2][Ni(dipic)2] · 2.5H2O (2) (cyclam = 1,4,8,11-tetraazacyclotetradecane) have been prepared and structurally characterized by a combination of analytical, spectroscopic, thermogravimetric, and crystallographic methods. The structure of 1 shows that the central nickel(II) ion is coordinated axially by two monodentate Hdipic ligands. The discrete neutral complex 1 further extends its structure by hydrogen bonding interactions to form a one-dimensional supramolecule. The structure of 2 consists of two independent nickel(II) centers. Water molecules instead of dipic ligands prefer to coordinate to the Ni1 ion forming a divalent cation [Ni(cyclam)(H2O)2]2+. Two dipic ligands coordinate to the second Ni2 ion forming a divalent anion [Ni(dipic)2]2−. The divalent cations and anions are charge-balanced, resulting in a molecular salt. The divalent cations and anions are interconnected by multiple types of hydrogen bonding interactions.  相似文献   

6.
To analyze the mechanism of assembly of the fertilization membrane of the sea urchin Strongylocentrotus purpuratus, we inhibited the ovoperoxidase that catalyzes dityrosine formation to isolate an uncrosslinked, soft fertilization membrane (SFM). The SFM intermediates were stabilized by divalent cation-dependent interactions: in the absence of divalent cations, the SFM became amorphous and less refractile and released proteins into the surrounding medium. We term the remaining structures “wraiths.” The rate of this disaggregation was increased in solutions of low ionic strength, but 510 mM divalent cations (Ca2+, Mg2+, Mn2+ or Ba2+) prevented disaggregation. Wraiths could be reassembled into structures that resembled SFM by readdition of divalent cations. The SFM contained active ovoperoxidase and could be hardened in vitro by washing away the ovoperoxidase inhibitor and adding H2O2. After hardening, certain proteins of over 100 kd were excluded from SDS-polyacrylamide gels, suggesting that these proteins contain the substrates for crosslinking. We propose that the SFM is a divalent cation-dependent intermediate on the pathway of fertilization membrane assembly containing tyrosyl residues that are appropriately juxtaposed for crosslinking.  相似文献   

7.
The physicochemical properties and biological activities of rough mutant lipopolysaccharides Re (LPS Re) as preformed divalent cation (Mg2+, Ca2+, Ba2+) salt form or as natural or triethylamine (Ten+)-salt form under the influence of externally added divalent cations were investigated using complementary methods: Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopic (FT-IR) measurements for the β ↔ α gel to liquid crystalline phase behaviour of the acyl chains of LPS, synchrotron radiation X-ray diffraction studies for their aggregate structures, electron density calculations of the LPS bilayer systems, and LPS-induced cytokine (interleukin-6) production in human mononuclear cells. The divalent cation salt forms of LPS exhibit considerable changes in physicochemical parameters such as acyl chain mobility and aggregate structures as compared to the natural or monovalent cation salt forms. Concomitantly, the biological activity was much lower in particular for the Ca2+- and Ba2+-salt forms. This decrease in activity results mainly from the conversion of the unilamellar/cubic aggregate structure of LPS into a multilamellar one. The reduced activity also clearly correlates with the higher order - lower mobility - of the lipid A acyl chains. Both effects can be understood by an impediment of the interactions of LPS with binding proteins such as lipopolysaccharide-binding protein (LBP) and CD14 due to the action of the divalent cations.  相似文献   

8.
The cation exchange properties of cell walls isolated from collard (Bassica oleracea var acephala D.C.) leaves were investigated. Cation sorption on cell walls was described by mass-action expressions of ion exchange, rather than by the traditional Donnan equilibrium. The mass-action expressions enable the selectivity of the wall for one cation over another to be determined unambiguously from ion exchange isotherms. We found that: (a) the cation composition of the wall varied as a function of the solution cation concentration, solution cation composition, and pH in a way predicted by mass action; (b) the affinity of the wall for divalent cations increased as the equivalent fraction of divalent cation on the wall increased, and as the concentration of divalent cations in solution increased; (c) the selectivity of the wall for any metal cation pair was not altered by the concentration of H+ in solution or on the wall; (d) H+ sorption on the wall may be treated as a cation exchange reaction making it possible to calculate the relative affinity of the wall for metal cation pairs from H+-metal (Me) titration curves; and (e) the relative affinity of the wall for the cations we studied was: H+ (K+ ≥ Ca2+) > Mg2+. A cation-exchange model including surface complexes is consistent with observed cation selectivity. We conclude that metal cations interact with the wall to minimize or eliminate long-range electrostatic interactions and suggest that this may be due to the formation of site-specific cation-wall surface complexes.  相似文献   

9.
10.
Human blood neutrophil leucocytes and monocytes incubated in the absence of Ca2+ and Mg2+ showed reduced, but still substantial migration into micropore filters towards chemotactic agents, compared with cells migrating in a divalent cation-rich medium. This reduction in migration could be reversed by adding low doses of divalent cation ionophores (X537A or A23187) to the Ca2+- and Mg2+-free medium which suggests that migrating leucocytes in media depleted of extracellular divalent cations can make use of intracellular divalent cations and that the intracellular cation exchange necessary for locomotion is facilitated by the ionophores. At higher doses, the ionophores inhibited locomotion, as did procaine which reduces membrane permeability to cations. Little effect of K+ depletion or of ouabain on leucocyte locomotion was noted.  相似文献   

11.
The synthesis of a series of lanthanide tetracyanoplatinates containing the auxiliary ligands 1,10′-phenanthroline (phen) or 2,2′-bipyridine (bpy) have been carried out by reaction of Ln3+ nitrate salts with phen or bpy and potassium tetracyanoplatinate in solvent systems containing dimethylsulfoxide and dimethylformamide. The use of these solvents has lead to the isolation of [{Ln(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4](Pt(CN)4)2·2C12H8N2·4H2O (Ln = Eu (Eu-1), Tb (Tb-1), Yb(Yb-1)), [Ln(DMF)3(C12H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-2), Eu (Eu-2), Tb (Tb-2)), and [Ln(DMF)3(C10H8N2)(H2O)2NO3]Pt(CN)4 (Ln = La (La-3), Sm (Sm-3), Eu (Eu-3), Tb (Tb-3)) in the form of single crystals. Single-crystal X-ray diffraction has been used to investigate their structural features. The use of DMSO versus DMF as the solvent results in markedly different structural features. Eu-1 contains [{Eu(DMSO)2(C12H8N2)(H2O)3}2Pt(CN)4]2+ complex cations where the two Eu3+ centers are linked by a trans-bridging Pt(CN)42− anion to form a dimeric lanthanide complex cation. An additional uncoordinated Pt(CN)42− anion balances charge. Eu-2 and Eu-3 consist of zero-dimensional salts with [Eu(DMF)3(C12H8N2)(H2O)2(NO3)]2+ or [Eu(DMF)3(C10H8N2)(H2O)2(NO3)]2+ complex cations, respectively, and only non-coordinated Pt(CN)42− anions. Photoluminescence measurements illustrate that the Eu3+ and Tb3+ compounds for all three structure types display enhanced emission due to intramolecular energy transfer from the coordinated cyclic amines.  相似文献   

12.
Oxidative stress remodels Ca2+ signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca2+/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca2+ signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca2+ current (ICa,L) in rat cardiomyocytes. A 5-min exposure of 1 mM H2O2 induced an increase in ICa,L, and this increase was sustained for ~ 1 h. The CaMKII inhibitor KN-93 fully reversed H2O2-induced LTF of ICa,L, indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca2+ release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H2O2 via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.  相似文献   

13.
Abstract

Circular dichroism spectroscopy, absorption spectroscopy, measurements of Tm values, sedimentation analysis and electron microscopy were used to study properties of calf thymus DNA in methanol-water mixtures as a function of monovalent cation (Na+ or Cs+) concentration and also in the presence of divalent cations Ca2+, Mg2+, and Mn2+. In the absence of divalent cations only slight conformational changes occured and no condensation and/or aggregation could be detected. The Tm values depend on the amount of methanol and on the nature and concentration of cations. In methanol-water mixtures higher thermal stability was observed in solutions containing Cs+ ions. Up to 40% (v/v) methanol the addition of divalent ions leads to DNA stabilization. At methanol concentration higher than 50% the presence of divalent cations causes DNA condensation and denaturation even at room temperature. The denaturation is reversible with respect to EDTA addition indicating that no separation of complementary strands occured and the resulting form of DNA is probably similar to the P form. DNA destacking appears to be a direct consequence of stronger cation binding by the condensed DNA in methanol-water mixtures.  相似文献   

14.
Leung KW  Leung FP  Huang Y  Mak NK  Wong RN 《FEBS letters》2007,581(13):2423-2428
We demonstrated that ginsenoside-Re (Re), a pharmacological active component of ginseng, is a functional ligand of glucocorticoid receptor (GR) using competitive ligand-binding assay (IC50 = 156.6 nM; Kd = 49.7 nM) and reporter gene assay. Treatment with Re (1 μM) raises intracellular Ca2+ ([Ca2+]i) and nitric oxide (NO) levels in human umbilical vein endothelial cells as measured using fura-2 and 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, respectively. Western blot analysis shows that Re increased phosphorylation of endothelial nitric oxide synthase. These effects were abolished by GR antagonist RU486, siRNA targeting GR, non-selective cation channel blocker 2-aminoethyldiphenylborate, or in the absence of extracellular Ca2+, indicating Re is indeed an agonistic ligand for the GR and the activated GR induces rapid Ca2+ influx and NO production in endothelial cells.  相似文献   

15.
[1+1] macrocyclic and [1+2] macroacyclic compartmental ligands (H2L), containing one N2O2, N3O2, N2O3, N4O2 or O2N2O2 Schiff base site and one O2On (n=3, 4) crown-ether like site, have been prepared by self-condensation of the appropriate formyl- and amine precursors. The template procedure in the presence of sodium ion afforded Na2(L) or Na(HL) · nH2O. When reacted with the appropriate transition metal acetate hydrate, H2L form M(L) · nH2O, M(HL)(CH3COO) · nH2O, M(H2L)(X)2 · nH2O (M=Cu2+, Co2+, Ni2+; X=CH3COO, Cl) or Mn(L)(CH3COO) · nH2O according to the experimental conditions used. The same complexes have been prepared by condensation of the appropriate precursors in the presence of the desired metal ion. The Schiff bases H2L have been reduced by NaBH4 to the related polyamine derivatives H2R, which form, when reacted with the appropriate metal ions, M(H2R)(X)2 (M= Co2+, Ni2+; X=CH3COO, Cl), Cu(R) · nH2O and Mn(R)(CH3COO) · nH2O. The prepared ligands and related complexes have been characterized by IR, NMR and mass spectrometry. The [1+1] cyclic nature of the macrocyclic polyamine systems and the site occupancy of sodium ion have been ascertained, at least for the sodium (I) complex with the macrocyclic ligand containing one N3O2 Schiff base and one O2O3 crown-ether like coordination chamber, by an X-ray structural determination. In this complex the asymmetric unit consists of one cyclic molecule of the ligand coordinated to a sodium ion by the five oxygen atoms of the ligand. The coordination geometry of the sodium ion can be described as a pentagonal pyramid with the metal ion occupying the vertex. In the mononuclear complexes with H2L or H2R the transition metal ion invariantly occupies the Schiff base site; the sodium ion, on the contrary, prefers the crown-ether like site. Accordingly, the heterodinuclear complexes [MNa(L)(CH3COO)x] (M=Cu2+, Co2+, Ni2, x=1; M=Mn3+, x=2) have been synthesised by reacting the appropriate formyl and amine precursors in the presence of M(CH3COO)n · nH2O and NaOH in a 1:1:1:2 molar ratio. The reaction of the mononuclear transition metal complexes with Na(CH3COO) · nH2O gives rise to the same heterodinuclear complexes. Similarly [MNa(R)(CH3COO)x] have been prepared by reaction of the appropriate polyamine ligand H2R with the desired metal acetate hydrate and NaOH in 1:1:2 molar ratio.  相似文献   

16.
Channelrhodopsins are light-gated ion channels that mediate vision in phototactic green algae like Chlamydomonas. In neurosciences, channelrhodopsins are widely used to light-trigger action potentials in transfected cells. All known channelrhodopsins preferentially conduct H+. Previous studies have indicated the existence of an early and a late conducting state within the channelrhodopsin photocycle. Here, we show that for channelrhodopsin-2 expressed in Xenopus oocytes and HEK cells, the two open states have different ion selectivities that cause changes in the channelrhodopsin-2 reversal voltage during a light pulse. An enzyme kinetic algorithm was applied to convert the reversal voltages in various ionic conditions to conductance ratios for H+ and divalent cations (Ca2+ and/or Mg2+), as compared to monovalent cations (Na+ and/or K+). Compared to monovalent cation conductance, the H+ conductance, α, is ∼3 × 106 and the divalent cation conductance, β, is ∼0.01 in the early conducting state. In the stationary mixture of the early and late states, α is larger and β smaller, both by a factor of ∼2. The results suggest that the ionic basis of light perception in Chlamydomonas is relatively nonspecific in the beginning of a light pulse but becomes more selective for protons during longer light exposures.  相似文献   

17.
Tripositive-pyrophosphate [M(III)-PPi] complexes were used to investigate the role of free divalent cations on the membrane-bound pyrophosphatase. Divalent cations remain free and the M(III)-PPi complexes were employed as substrates. Formation of a La-PPi complex was studied by fluorescence, and the fact that Zn2+ and Mg2+ remain free in the solution was validated. Hydrolysis of La-PPi is stimulated by the presence of fixed concentrations of free Mg2+ or Zn2+ and this stimulation depends on the concentration of the cations when the La-PPi complex is fixed. The divalent cation stimulation order is Zn2+ > Co2+ > Mg2+ > Mn2+ > Ca2+ (at 0.5 mm of free cation). With different M(III)-PPi complexes, Zn2+ produces the same K m, for all the complexes and Mg2+ stimulates with a different K m. The results suggest that both Mg2+ and Zn2+ activate the membrane-bound pyrophosphatase but through different mechanisms.  相似文献   

18.
The heterotrimetallic complex, [{LCuMn(H2O)}{Cr(phen)(C2O4)2}](ClO4) · H2O (1), has been obtained by assembling heterobinuclear cations, [LCuMn]2+, with [Cr(phen)(C2O4)2] ions (H2L is the compartmental Schiff-base resulting from the stepwise condensation of 2,6-diformyl-p-cresol with ethylenediamine and diethylenetriamine). The copper(II) and manganese(II) ions are hosted into the compartments of the macrocyclic ligand. [Cr(phen)(C2O4)2] acts as a ligand, being coordinated through one oxalato oxygen atom to the apical position of the square pyramidal copper(II) ion. The cryomagnetic investigation of 1 reveals an antiferromagnetic interaction between CuII and MnII within the compartmental ligand (J = −39 cm−1). The interaction between CuII and CrIII across the oxalato bridge is negligible. The crystal structure of [LCuPb](ClO4)2 · H2O, a useful precursor in obtaining 3d-3d′ complexes, is also reported.  相似文献   

19.
In the E1 state of the Na,K-ATPase all cations present in the cytoplasm compete for the ion binding sites. The mutual effects of mono-, di- and trivalent cations were investigated by experiments with the electrochromic fluorescent dye RH421. Three sites with significantly different properties could be identified. The most unspecific binding site is able to bind all cations, independent of their valence and size. The large organic cation Br2-Titu3+ is bound with the highest affinity (<μm), among the tested divalent cations Ca2+ binds the strongest, and Na+ binds with about the same equilibrium dissociation constant as Mg2+ (∼0.8 mm). For alkali ions it exhibits binding affinities following the order of Rb+≃ K+ > Na+ > Cs+ > Li+. The second type of binding site is specific for monovalent cations, its binding affinity is higher than that of the first type, for Na+ ions the equilibrium dissociation constant is < 0.01 mm. Since binding to that site is not electrogenic it has to be close to the cytoplasmic surface. The third site is specific for Na+, no other ions were found to bind, the binding is electrogenic and the equilibrium dissociation constant is 0.2 mm. Received: 7 August 2000/Revised: 14 November 2000  相似文献   

20.
Calcium channels in the plasma membrane of root cells fulfill both nutritional and signaling roles. The permeability of these channels to different cations determines the magnitude of their cation conductances, their effects on cell membrane potential and their contribution to cation toxicities. The selectivity of the rca channel, a Ca2+-permeable channel from the plasma membrane of wheat (Triticum aestivum L.) roots, was studied following its incorporation into planar lipid bilayers. The permeation of K+, Na+, Ca2+ and Mg2+ through the pore of the rca channel was modeled. It was assumed that cations permeated in single file through a pore with three energy barriers and two ion-binding sites. Differences in permeation between divalent and monovalent cations were attributed largely to the affinity of the ion binding sites. The model suggested that significant negative surface charge was present in the vestibules to the pore and that the pore could accommodate two cations simultaneously, which repelled each other strongly. The pore structure of the rca channel appeared to differ from that of L-type calcium channels from animal cell membranes since its ion binding sites had a lower affinity for divalent cations. The model adequately accounted for the diverse permeation phenomena observed for the rca channel. It described the apparent submillimolar K m for the relationship between unitary conductance and Ca2+ activity, the differences in selectivity sequences obtained from measurements of conductance and permeability ratios, the changes in relative cation permeabilities with solution ionic composition, and the complex effects of Ca2+ on K+ and Na+ currents through the channel. Having established the adequacy of the model, it was used to predict the unitary currents that would be observed under the ionic conditions employed in patch-clamp experiments and to demonstrate the high selectivity of the rca channel for Ca2+ influx under physiological conditions. Received: 23 August 1999/Revised: 12 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号