首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.  相似文献   

2.
3.
4.
LL-37 is a human cationic host defense peptide (antimicrobial peptide) belonging to the cathelicidin family of peptides. In this study, LL-37 was shown to kill stimulated CD8+ T cells (Cytotoxic T lymphocytes; CTLs) via apoptosis, while having no cytotoxic effect on non-stimulated CD8+ or CD4+ T cells or stimulated CD4+ T cells. Of interest, the CD8+ cells were much more sensitive to LL-37 than many other cell types. LL-37 exposure resulted in DNA fragmentation, chromatin condensation, and the release of both granzyme A and granzyme B from intracellular granules. The importance of granzyme family members in the apoptosis of CTLs following LL-37 treatment was analyzed by using C57BL/6 lymphocytes obtained from mice that were homozygous for null mutations in the granzyme B gene, the granzyme A gene, or both granzymes A and B. Granzymes A and B were both shown to play an important role in LL-37-induced apoptosis of CTLs. Further analysis revealed that apoptosis occurred primarily through granzyme A-mediated caspase-independent apoptosis. However, caspase-dependent cell death was also observed. This suggests that LL-37 induces apoptosis in CTLs via multiple different mechanisms, initiated by the LL-37-induced leakage of granzymes from cytolytic granules. Our results imply the existence of a novel mechanism of crosstalk between the inflammatory and adaptive immune systems. Cells such as neutrophils, at the site of a tumor for example, could influence the effector, activity of CTL through the secretion of LL-37.  相似文献   

5.
6.
In human tuberculosis (TB), CD8+ T cells contribute to host defense by the release of Th1 cytokines and the direct killing of Mycobacterium tuberculosis (Mtb)-infected macrophages via granule exocytosis pathway or the engagement of receptors on target cells. Previously we demonstrated that strain M, the most prevalent multidrug-resistant (MDR) Mtb strain in Argentine, is a weak inducer of IFN-γ and elicits a remarkably low CD8-dependent cytotoxic T cell activity (CTL). In contrast, the closely related strain 410, which caused a unique case of MDR-TB, elicits a CTL response similar to H37Rv. In this work we extend our previous study investigating some parameters that can account for this discrepancy. We evaluated the expressions of the lytic molecules perforin, granzyme B and granulysin and the chemokine CCL5 in CD8+ T cells as well as activation markers CD69 and CD25 and IL-2 expression in CD4+ and CD8+ T cells stimulated with strains H37Rv, M and 410. Our results demonstrate that M-stimulated CD8+ T cells from purified protein derivative positive healthy donors show low intracellular expression of perforin, granzyme B, granulysin and CCL5 together with an impaired ability to form conjugates with autologous M-pulsed macrophages. Besides, M induces low CD69 and IL-2 expression in CD4+ and CD8+ T cells, being CD69 and IL-2 expression closely associated. Furthermore, IL-2 addition enhanced perforin and granulysin expression as well as the degranulation marker CD107 in M-stimulated CD8+ T cells, making no differences with cells stimulated with strains H37Rv or 410. Thus, our results highlight the role of IL-2 in M-induced CTL activity that drives the proper activation of CD8+ T cells as well as CD4+ T cells collaboration.  相似文献   

7.
8.
9.
10.
11.
The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation.  相似文献   

12.
The human CSP-B/CGL-1 gene is the homologue of the mouse granzyme B/CCPI gene and encodes a cytotoxic T-lymphocyte-specific serine protease. We have used regulatory sequences upstream from the CSP-B gene to drive human growth hormone gene expression in transgenic mice. Eleven founder mice were screened for transgene expression in activated T-cells. Expression was detected in 10 mice; levels of expression were integration site-dependent. The transgene was not expressed in resting lymphocytes but could be activated by treatment with concanavalin A or interleukin-2, indicating that CSP-B regulatory sequences are responsive to signals originating at either the T-cell receptor or the interleukin-2 receptor. Transgene expression was detected at the whole organ level only in lymph nodes and small intestine, where endogenous mouse CCPI mRNA was also present. The time course of transgene activation in T-lymphocytes was similar to that of the mouse CCPI gene. No differences in levels of expression of the transgene were observed in activated lymphocyte populations that had been depleted of either CD4+ or CD8+ cells; in contrast, the mouse CCPI gene was expressed primarily in CD8+ cells. Six CD4+ T-cell clones with Th0, Th1, or Th2 phenotypes were generated from a transgenic animal. All clones expressed moderate to high levels of the transgene, but only three clones expressed mouse CCPI, indicating that the transgene is disregulated in CD4+ T-cell subsets. The CSP-B regulatory unit represents a novel reagent for targeting gene expression to activated T-lymphocytes.  相似文献   

13.
14.
15.
Cyclophilin B (CyPB) induces migration and adhesion of T lymphocytes via a mechanism that requires interaction with 3-O-sulfated heparan sulfate (HS). HS biosynthesis is a complex process with many sulfotransferases involved. N-Deacetylases/N-sulfotransferases are responsible for N-sulfation, which is essential for subsequent modification steps, whereas 3-O-sulfotransferases (3-OSTs) catalyze the least abundant modification. These enzymes are represented by several isoforms, which differ in term of distribution pattern, suggesting their involvement in making tissue-specific HS. To elucidate how the specificity of CyPB binding is determined, we explored the relationships between the expression of these sulfotransferases and the generation of HS motifs with CyPB-binding properties. We demonstrated that high N-sulfate density and the presence of 2-O- and 3-O-sulfates determine binding of CyPB, as evidenced by competitive experiments with heparin derivatives, soluble HS, and anti-HS antibodies. We then showed that target cells, i.e. CD4+ lymphocyte subsets, monocytes/macrophages, and related cell lines, specifically expressed high levels of NDST2 and 3-OST3 isoforms. Silencing the expression of NDST1, NDST2, 2-OST, and 3-OST3 by RNA interference efficiently decreased binding and activity of CyPB, thus confirming their involvement in the biosynthesis of binding sequences for CyPB. Moreover, we demonstrated that NDST1 was able to partially sulfate exogenous substrate in the absence of NDST2 but not vice versa, suggesting that both isoenzymes do not have redundant activities but do have rather complementary activities in making N-sulfated sequences with CyPB-binding properties. Altogether, these results suggest a regulatory mechanism in which cell type-specific expression of certain HS sulfotransferases determines the specific binding of CyPB to target cells.  相似文献   

16.
17.
18.
19.
Junctophilin-2 (JP2), a membrane-binding protein that provides a structural bridge between the plasmalemma and sarcoplasmic reticulum, is essential for precise Ca2+-induced Ca2+ release during excitation-contraction coupling in cardiomyocytes. In animal and human failing hearts, expression of JP2 is decreased markedly, but the molecular mechanisms underlying JP2 down-regulation remain incompletely defined. In mouse hearts, ischemia/reperfusion injury resulted in acute JP2 down-regulation, which was attenuated by pretreatment with the calpain inhibitor MDL-28170 or by transgenic overexpression of calpastatin, an endogenous calpain inhibitor. Using a combination of computational analysis to predict calpain cleavage sites and in vitro calpain proteolysis reactions, we identified four putative calpain cleavage sites within JP2 with three N-terminal and one C-terminal cleavage sites. Mutagenesis defined the C-terminal region of JP2 as the predominant calpain cleavage site. Exogenous expression of putative JP2 cleavage fragments was not sufficient to rescue Ca2+ handling in JP2-deficient cardiomyocytes, indicating that cleaved JP2 is non-functional for normal Ca2+-induced Ca2+ release. These data provide new molecular insights into the posttranslational regulatory mechanisms of JP2 in cardiac diseases.  相似文献   

20.
Type I natural killer T (NKT) cells are attractive candidates for cancer immunotherapy. In this study, we examined the characteristics of type I NKT cells in patients with adult B-cell acute lymphoblastic leukemia (ALL). We first identified type I NKT cells as Vα24-Jα18 and Vβ11 double-positive CD3+ lymphocytes. Using this method, we found that the adult B-cell ALL patients presented significantly lower level of type I NKT cells than the age- and sex-matching control subjects. The expression of IL-21 by type I NKT cells was then examined using intracellular flow cytometry, which showed that with α-GalCer stimulation, the adult B-cell ALL patients presented significantly lower level of IL-21+ type I NKT cells than control subjects. By both flow cytometry and ELISA, we found that the vast majority of IL-21-expressing type I NKT cells expressed IL-21R, which was also reduced in adult B-cell ALL patients. Using an in vitro co-culture system, we demonstrated that IL-21R+, but not IL-21R-, type I NKT cells could promote the IFN-γ, granzyme B, and perforin expression by CD8 T cells in an IL-21-dependent fashion. This type I NKT cell-mediated stimulatory effect was reduced in adult B-cell ALL patients than in control subjects. In addition, we observed a positive correlation between the frequency of IL-21R+ type I NKT cells and the frequencies of IFN-γ-, granzyme B-, and perforin-expressing circulating CD8 T cells in adult B-cell ALL patients directly ex vivo. Overall, this study identified an IL-21-related impairment in type I NKT cells from adult B-cell ALL patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号