首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hsp105α and Hsp105β are major heat shock proteins in mammalian cells and belong to the HSP105/110 family. Hsp105α is expressed constitutively in the cytoplasm of cells, while Hsp105β, an alternatively spliced form of Hsp105α, is expressed specifically in the nucleus of cells during mild heat shock. Here, we show that not only Hsp105β but also Hsp105α accumulated in the nucleus of cells following the expression of enhanced green fluorescent protein with a pathological length polyQ tract (EGFP-polyQ97) and suppressed the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Mutants of Hsp105α and Hsp105β with changes in the nuclear localization signal sequences, which localized exclusively in the cytoplasm with or without the expression of EGFP-polyQ97, did not suppress the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. Furthermore, Hsp70 was induced by the co-expression of Hsp105α and EGFP-polyQ97, and the knockdown of Hsp70 reduced the inhibitory effect of Hsp105α and Hsp105β on the intranuclear aggregation of polyQ proteins and apoptosis induced by EGFP-polyQ97. These observations suggested that Hsp105α and Hsp105β suppressed the expanded polyQ tract-induced protein aggregation and apoptosis through the induction of Hsp70.  相似文献   

2.
3.
4.
While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-?SBD and Hsp70-?NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD.  相似文献   

5.

Background

Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive.

Results

In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol.

Conclusion

Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α.

General significance

To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.  相似文献   

6.
Chen H  Wu Y  Zhang Y  Jin L  Luo L  Xue B  Lu C  Zhang X  Yin Z 《FEBS letters》2006,580(13):3145-3152
Inducible heat shock protein 70 (Hsp70) is one of the most important HSPs for maintenance of cell integrity during normal cellular growth as well as pathophysiological conditions. Tumor necrosis factor receptor-associated factor 6 (TRAF6) is a crucial signaling transducer that regulates a diverse array of physiological and pathological processes and is essential for activating NF-kappaB signaling pathway in response to bacterial lipopolysaccharide (LPS). Here we report a novel mechanism of Hsp70 for preventing LPS-induced NF-kappaB activation in RAW264.7 macrophage-like cells. Our results show that Hsp70 can associate with TRAF6 physically in the TRAF-C domain and prevent TRAF6 ubiquitination. The stimulation of LPS dissociates the binding of Hsp70 and TRAF6 in a time-dependent manner. Hsp70 inhibits LPS-induced NF-kappaB signaling cascade activation in heat-shock treated as well as Hsp70 stable transfected RAW264.7 cells and subsequently decreases iNOS and COX-2 expression. Two Hsp70 mutants, Hsp70DeltaC(1-428aa) with N-terminal ATPase domain and Hsp70C(428-642aa) with C-terminal domain, lack the ability to influence TRAF6 ubiquitination and TRAF6-triggered NF-kappaB activation. Taken together, these findings indicate that Hsp70 inhibits LPS-induced NF-kappaB activation by binding TRAF6 and preventing its ubiquitination, and results in inhibition of inflammatory mediator production, which provides a new insight for analyzing the effects of Hsp70 on LPS-triggered inflammatory signal transduction pathways.  相似文献   

7.
Hsp70 is a highly conserved protein that refolds misfolded proteins and has numerous housekeeping functions which regulate apoptosis and other cell activities. Hsp70 consists of a nucleotide binding domain which binds ATP and a substrate binding domain that binds misfolded proteins. The substrate binding domain contains a peptide binding pocket which is covered by a helical lid. In humans, there are three major cytosolic Hsp70 isotypes, Hsp70-8, Hsp70-1 and Hsp70-2. Leukemic and numerous other cancer cells have a greater amount of Hsp70-1 and -2, which help the cancer cells inhibit apoptosis in response to stress. This review summarizes the structure and role of Hsp70 proteins in cancer survival.  相似文献   

8.
Full-length Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) both stimulate the cytolytic activity of naive natural killer (NK) cells against Hsp70-positive tumor target cells. Here, we describe the characterization of Hsp70-NK cell interaction with binding studies using the human NK cell line YT. Binding of recombinant Hsp70 protein (Hsp70) and the C-terminal domain of Hsp70 (Hsp70C) to YT cells is demonstrated by immunofluorescence studies. A phenotypic characterization revealed that none of the recently described HSP-receptors (alpha2-macroglobulin receptor CD91, Toll-like receptors 2, 4, 9, CD14) are expressed on YT cells. Only the C-type lectin receptor CD94 is commonly expressed by YT cells and Hsp70 reactive NK cells. A correlation of the cell density-dependent, variable CD94 expression and the binding capacity of Hsp70 was detected. Furthermore, Hsp70 binding could be completely abrogated by preincubation of YT cells with a CD94-specific antibody. Competition assays using either unlabeled Hsp70 protein or an unrelated protein (GST) in 20-fold excess and binding studies with escalating doses of Hsp70 protein provide evidence for a specific and concentration-dependent interaction of Hsp70 with YT cells. In addition to Hsp70 and Hsp70C, a 14-mer Hsp70 peptide termed TKD is known to exhibit comparable stimulatory properties on NK cells. Similar to full-length Hsp70 protein (10 microg/ml-50 microg/ml), a specific binding of this peptide to YT cells was observed at 4 degrees C, at equivalent concentrations (2.0 microg/ml-8.0 microg/ml). Following a 30 min incubation period at 37 degrees C, membrane-bound Hsp70 protein and Hsp70 peptide TKD were completely taken up into the cytoplasm.  相似文献   

9.
This study investigated the expression of heat shock protein 90 alpha (Hsp90α) in acute leukemia cells. The expression of Hsp90α was investigated in leukemia cell lines and human bone marrow mononuclear cells derived from acute leukemia patients and from healthy individuals using polymerase chain reaction, Western blot, and enzyme-linked immunosorbent assay. Compared with cells from healthy individuals, the expression of Hsp90α in the untreated patients was higher. Similarly high levels were observed in remission patients. Significantly higher expression levels were observed in all the tested cell lines, and in cells from refractory and relapsed patients. No obvious relationship was observed between the occurrence of graft versus host disease and the expression of Hsp90α. The untreated patients showing higher expression levels of Hsp90α had lower complete remission rates. During remission of untreated patients, the expression of Hsp90α decreased and reached the lowest level after transplantation, but the expression increased again before relapse. Hsp90α was highly expressed in leukemia cells. The expression level of Hsp90α was associated with leukemia prognosis. However, no obvious relationship was observed between the occurrence of graft versus host disease and the expression of Hsp90α.  相似文献   

10.
Sims JD  McCready J  Jay DG 《PloS one》2011,6(4):e18848
Breast cancer is second only to lung cancer in cancer-related deaths in women, and the majority of these deaths are caused by metastases. Obtaining a better understanding of migration and invasion, two early steps in metastasis, is critical for the development of treatments that inhibit breast cancer metastasis. In a functional proteomic screen for proteins required for invasion, extracellular heat shock protein 90 alpha (Hsp90α) was identified and shown to activate matrix metalloproteinase 2 (MMP-2). The mechanism of MMP-2 activation by Hsp90α is unknown. Intracellular Hsp90α commonly functions with a complex of co-chaperones, leading to our hypothesis that Hsp90α functions similarly outside of the cell. In this study, we show that a complex of co-chaperones outside of breast cancer cells assists Hsp90α mediated activation of MMP-2. We demonstrate that the co-chaperones Hsp70, Hop, Hsp40, and p23 are present outside of breast cancer cells and co-immunoprecipitate with Hsp90α in vitro and in breast cancer conditioned media. These co-chaperones also increase the association of Hsp90α and MMP-2 in vitro. This co-chaperone complex enhances Hsp90α-mediated activation of MMP-2 in vitro, while inhibition of Hsp70 in conditioned media reduces this activation and decreases cancer cell migration and invasion. Together, these findings support a model in which MMP-2 activation by an extracellular co-chaperone complex mediated by Hsp90α increases breast cancer cell migration and invasion. Our studies provide insight into a novel pathway for MMP-2 activation and suggest Hsp70 as an additional extracellular target for anti-metastatic drug development.  相似文献   

11.
Kim SA  Chang S  Yoon JH  Ahn SG 《FEBS letters》2008,582(5):734-740
Heat shock protein 40 (Hsp40) functions as a co-chaperone of mammalian Heat shock protein 70 (Hsp70) and facilitates the ATPase activity of Hsp70, and also promotes the cellular protein folding and renaturation of misfolded proteins. In an effort to assess the effects of Hsp40, we generated TAT-fused Hsp40 (TAT-Hsp40). The cells were transduced with TAT-Hsp40 and exposed to H(2)O(2). We demonstrated that the TAT-Hsp40-transduced cells were more resistant to cellular cytotoxicity and cell death. In particular, the degradation of Hsp70 was significantly reduced in TAT-Hsp40-containing cells as a consequence of reduced ubiquitin-proteasome activity after oxidative injury. These data support the notion that Hsp40 may confer resistance to oxidative stress via the prevention of proteasome activity.  相似文献   

12.
Lamin A is a nuclear lamina constituent implicated in a number of human disorders including Emery-Dreifuss muscular dystrophy. Since increasing evidence suggests a role of the lamin A precursor in nuclear functions, we investigated the processing of prelamin A during differentiation of C2C12 mouse myoblasts. We show that both protein levels and cellular localization of prelamin A are modulated during myoblast activation. Similar changes of lamin A-binding proteins emerin and LAP2α were observed. Furthermore, prelamin A was found in a complex with LAP2α in differentiating myoblasts. Prelamin A accumulation in cycling myoblasts by expressing unprocessable mutants affected LAP2α and PCNA amount and increased caveolin 3 mRNA and protein levels, while accumulation of prelamin A in differentiated muscle cells following treatment with a farnesyl transferase inhibitor appeared to inhibit caveolin 3 expression. Our data provide evidence for a critical role of the lamin A precursor in the early steps of muscle cell differentiation.  相似文献   

13.
Hsp70s are a family of ATP-dependent chaperones of relative molecular mass around 70 kDa. Immunization of mice with Hsp70 isolated from tumor tissues has been proved to elicit specific protective immunity against the original tumor challenge. In this work, we investigated whether Hsp70 can be used as vehicle to elicit immune response to its covalence-accompanying antigen. A recombinant protein expression vector was constructed that permitted the production of recombinant protein fusing tumor-associated antigen (eg, Mela) to the C terminus of Hsp70. We found that the Hsp70-Mela fusion protein can elicit strong cellular immune responses against murine tumor B16, which expresses protein Mela. The Hsp70 peptide-binding domain deletion mutant of the fusion protein was sufficient for inducing Mela-specific cytotoxic T lymphocyte but was not sufficient for engendering potent anti-tumor immunity against B16. We also found that host natural killer (NK) cells were stimulated in vivo by C-terminal domain of Hsp70. We thus presume that Hsp70 fusion proteins suppress tumor growth via at least 2 distinct pathways: one is covalence-accompanying antigen dependent; another is antigen independent. The C-terminal domain of Hsp70 seemed to be the crucial part in eliciting antigen-independent responses, including NK cell stimulation, against tumor challenges. Furthermore, we found that immunization with multiple Hsp70 fusion proteins resulted in a better anti-tumor effect.  相似文献   

14.
Heat shock protein 90α (Hsp90α) is a ubiquitously expressed molecular chaperone that is essential for eukaryotic homeostasis. Hsp90α can also be secreted extracellularly, where it has been shown to be involved in tumor metastasis. Extracellular Hsp90α interacts with and promotes the proteolytic activity of matrix metalloproteinase-2 (MMP-2). However, the regulatory mechanism of Hsp90α on MMP-2 activity is still unknown. Here we show that Hsp90α stabilizes MMP-2 and protects it from degradation in tumor cells. Further investigation reveals that this stabilization effect is isoform-specific, ATP-independent, and mediated by the interaction between the Hsp90α middle domain and the MMP-2 C-terminal hemopexin domain. Moreover, this mechanism also applies to endothelial cells that secrete more Hsp90α in their proliferating status. Furthermore, endothelial cell transmigration, Matrigel plug, and tumor angiogenesis assays demonstrate that extracellular Hsp90α promotes angiogenesis in an MMP-2-dependent manner. In sum, this study provides new insights into the molecular mechanism of how Hsp90α regulates its extracellular client proteins and also reveals for the first time the function of extracellular Hsp90α in promoting tumor angiogenesis.  相似文献   

15.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   

16.
17.
Extracellular Hsp70 (eHsp70) can act as damage-associated molecular pattern (DAMP) via Toll-like receptors TLR2 and TLR4, and stimulate immune and inflammatory responses leading to sterile inflammation and propagation of already existing inflammation. It was found elevated in the blood of patients with chronic obstructive pulmonary disease (COPD), who might suffer occasional bacterial colonizations and infections. We used a monocytic THP-1 cell line as a cellular model of systemic compartment of COPD to assess inflammatory effects of eHsp70 when present alone or together with bacterial products lypopolysaccharide (LPS) and lypoteichoic acid (LTA). THP-1 cells were differentiated into macrophage-like cells and treated with various concentrations of recombinant human Hsp70 protein (rhHsp70), LPS (TLR4 agonist), LTA (TLR2 agonist), and their combinations for 4, 12, 24, and 48 h. Concentrations of IL-1α, IL-6, IL-8, and TNF-α were determined by ELISA. Cell viability was assessed by MTS assay, and mode of cell death by luminometric measurements of caspases-3/7, -8, and -9 activities. rhHsp70 showed cell protecting effect by suppressing caspases-3/7 activation, while LPS provoked cytotoxicity through caspases-8 and -3/7 pathway. Regarding inflammatory processes, rhHsp70 alone induced secretion of IL-1α and IL-8, but had modulatory effects on release of all four cytokines when applied together with LPS or LTA. Combined effect with LPS was mainly synergistic, and with LTA mainly antagonistic, although it was cytokine- and time-dependent. Our results confirmed pro-inflammatory function of extracellular Hsp70, and suggest its possible implication in COPD exacerbations caused by bacterial infection through desensitization or inappropriate activation of TLR2 and TLR4 receptors.  相似文献   

18.
Dynamic interdomain interactions within the Hsp70 protein is the basis for the allosteric and functional properties of Hsp70s. While Hsp70s are generally conserved in terms of structure, allosteric behavior, and some overlapping functions, Hsp70s also contain variable sequence regions which are related to distinct functions. In the Hsp70 sequence, the part with the greatest sequence variation is the C-terminal α-helical lid subdomain of substrate-binding domain (SBDα) together with the intrinsically disordered region. Dynamic interactions between the SBDα and β-sandwich substrate-binding subdomain (SBDβ) contribute to the chaperone functions of Hsp70s by tuning kinetics of substrate binding. To investigate how the C-terminal region of Hsp70 has evolved from prokaryotic to eukaryotic organisms, we tested whether this region can be exchanged among different Hsp70 members to support basic chaperone functions. We found that this region from eukaryotic Hsp70 members cannot substitute for the same region in Escherichia coli DnaK to facilitate normal chaperone activity of DnaK. In contrast, this region from E. coli DnaK and Saccharomyces cerevisiae Hsp70 (Ssa1 and Ssa4) can partially support some roles of human stress inducible Hsp70 (hHsp70) and human cognate Hsp70 (hHsc70). Our results indicate that the C-terminal region from eukaryotic Hsp70 members cannot properly support SBDα–SBDβ interactions in DnaK, but this region from DnaK/Ssa1/Ssa4 can still form some SBDα–SBDβ interactions in hHsp70 or hHsc70, which suggests that the mode for SBDα–SBDβ interactions is different in prokaryotic and eukaryotic Hsp70 members. This study provides new insight in the divergency among different Hsp70 homologs and the evolution of Hsp70s.  相似文献   

19.
Tumor and viral antigens elicit a potent immune response by heat shock protein-dependent uptake of antigenic peptide with subsequent presentation by MHC I. Receptors on antigen-presenting cells that specifically bind and internalize a heat shock protein-peptide complex have not yet been identified. Here, we show that cells expressing CD40, a cell surface protein crucial for B cell function and autoimmunity, specifically bind and internalize human Hsp70 with bound peptide. Binding of Hsp70-peptide complex to the exoplasmic domain of CD40 is mediated by the NH(2)-terminal nucleotide-binding domain of Hsp70 in its ADP state. The Hsp70 cochaperone Hip, but not the bacterial Hsp70 homologue DnaK, competes formation of the Hsp70-CD40 complex. Binding of Hsp70-ADP to CD40 is strongly increased in the presence of Hsp70 peptide substrate, and induces signaling via p38. We suggest that CD40 is a cochaperone-like receptor mediating the uptake of exogenous Hsp70-peptide complexes by macrophages and dendritic cells.  相似文献   

20.
IRE1α is an endoplasmic reticulum (ER) localized signaling molecule critical for unfolded protein response. During ER stress, IRE1α activation is induced by oligomerization and autophosphorylation in its cytosolic domain, a process triggered by dissociation of an ER luminal chaperone, binding immunoglobulin-protein (BiP), from IRE1α. In addition, inhibition of a cytosolic chaperone protein Hsp90 also induces IRE1α oligomerization and activation in the absence of an ER stressor. Here, we report that the Hsp90 cochaperone Cdc37 directly interacts with IRE1α through a highly conserved cytosolic motif of IRE1α. Cdc37 knockdown or disruption of Cdc37 interaction with IRE1α significantly increased basal IRE1α activity. In INS-1 cells, Hsp90 inhibition and disruption of IRE1α-Cdc37 interaction both induced an ER stress response and impaired insulin synthesis and secretion. These data suggest that Cdc37-mediated direct interaction between Hsp90/Cdc37 and an IRE1α cytosolic motif is important to maintain basal IRE1α activity and contributes to normal protein homeostasis and unfolded protein response under physiological stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号