首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chloride intracellular channel 2 (CLIC2), a newly discovered small protein distantly related to the glutathione transferase (GST) structural family, is highly expressed in cardiac and skeletal muscle, although its physiological function in these tissues has not been established. In the present study, [3H]ryanodine binding, Ca2+ efflux from skeletal sarcoplasmic reticulum (SR) vesicles, single channel recording, and cryo-electron microscopy were employed to investigate whether CLIC2 can interact with skeletal ryanodine receptor (RyR1) and modulate its channel activity. We found that: (1) CLIC2 facilitated [3H]ryanodine binding to skeletal SR and purified RyR1, by increasing the binding affinity of ryanodine for its receptor without significantly changing the apparent maximal binding capacity; (2) CLIC2 reduced the maximal Ca2+ efflux rate from skeletal SR vesicles; (3) CLIC2 decreased the open probability of RyR1 channel, through increasing the mean closed time of the channel; (4) CLIC2 bound to a region between domains 5 and 6 in the clamp-shaped region of RyR1; (5) and in the same clamp region, domains 9 and 10 became separated after CLIC2 binding, indicating CLIC2 induced a conformational change of RyR1. These data suggest that CLIC2 can interact with RyR1 and modulate its channel activity. We propose that CLIC2 functions as an intrinsic stabilizer of the closed state of RyR channels.  相似文献   

2.
Chloride intracellular channel (CLIC) proteins possess the remarkable property of being able to convert from a water-soluble state to a membrane channel state. We determined the three-dimensional structure of human CLIC2 in its water-soluble form by X-ray crystallography at 1.8-Å resolution from two crystal forms. In contrast to the previously characterized CLIC1 protein, which forms a possibly functionally important disulfide-induced dimer under oxidizing conditions, we show that CLIC2 possesses an intramolecular disulfide and that the protein remains monomeric irrespective of redox conditions. Site-directed mutagenesis studies show that removal of the intramolecular disulfide or introduction of cysteine residues in CLIC2, equivalent to those that form the intramolecular disulfide in CLIC1, does not cause dimer formation under oxidizing conditions. We also show that CLIC2 forms pH-dependent chloride channels in vitro with higher channel activity at low pH levels and that the channels are subject to redox regulation. In both crystal forms, we observed an extended loop region from the C-terminal domain, called the foot loop, inserting itself into an interdomain crevice of a neighboring molecule. The equivalent region in the structurally related glutathione transferase superfamily corresponds to the active site. This so-called foot-in-mouth interaction suggests that CLIC2 might recognize other proteins such as the ryanodine receptor through a similar interaction.  相似文献   

3.
Nuclear translocation of chloride intracellular channel protein CLIC4 is essential for its role in Ca2+-induced differentiation, stress-induced apoptosis, and modulating TGF-β signaling in mouse epidermal keratinocytes. However, post-translational modifications on CLIC4 that govern nuclear translocation and thus these activities remain to be elucidated. The structure of CLIC4 is dependent on the redox environment, in vitro, and translocation may depend on reactive oxygen and nitrogen species in the cell. Here we show that NO directly induces nuclear translocation of CLIC4 that is independent of the NO-cGMP pathway. Indeed, CLIC4 is directly modified by NO through S-nitrosylation of a cysteine residue, as measured by the biotin switch assay. NO enhances association of CLIC4 with the nuclear import proteins importin α and Ran. This is likely a result of the conformational change induced by S-nitrosylated CLIC4 that leads to unfolding of the protein, as exhibited by CD spectra analysis and trypsinolysis of the modified protein. Cysteine mutants of CLIC4 exhibit altered nitrosylation, nuclear residence, and stability, compared with the wild type protein likely as a consequence of altered tertiary structure. Moreover, tumor necrosis factor α-induced nuclear translocation of CLIC4 is dependent on nitric-oxide synthase activity. Inhibition of nitric-oxide synthase activity inhibits tumor necrosis factor α-induced nitrosylation and association with importin α and Ran and ablates CLIC4 nuclear translocation. These results suggest that S-nitrosylation governs CLIC4 structure, its association with protein partners, and thus its intracellular distribution.  相似文献   

4.
Reaction of 5-enolpyruvylshikimate-3-phosphate synthase of Escherichia coli with the thiol reagent 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) leads to a modification of only 2 of the 6 cysteines of the enzyme, with a significant loss of its enzymatic activity. Under denaturing conditions, however, all 6 cysteines of 5-enolpyruvylshikimate-3-phosphate synthase react with DTNB, indicating the absence of disulfide bridges in the native protein. In the presence of shikimate 3-phosphate and glyphosate, only 1 of the 2 cysteines reacts with the reagent, with no loss of activity, suggesting that only 1 of these cysteines is at or near the active site of the enzyme. Cyanolysis of the DTNB-inactivated enzyme with KCN leads to elimination of 5-thio-2-nitrobenzoate, with formation of the thiocyano-enzyme. The thiocyano-enzyme is fully active; it exhibits a small increase in its I50 for glyphosate (6-fold) and apparent Km for phosphoenolpyruvate (4-fold) compared to the unmodified enzyme. Its apparent Km for shikimate 3-phosphate is, however, unaltered. These results clearly establish the nonessentiality of the active site-reactive cysteine of E. coli 5-enolpyruvylshikimate-3-phosphate synthase for either catalysis or substrate binding. Perturbations in the kinetic constants for phosphoenolpyruvate and glyphosate suggest that the cysteine thiol is proximal to the binding site for these ligands. By N-[14C]ethylmaleimide labeling, tryptic mapping, and N-terminal sequencing, the 2 reactive cysteines have been identified as Cys408 and Cys288. The cysteine residue protected by glyphosate and shikimate 3-phosphate from its reaction with DTNB was found to be Cys408.  相似文献   

5.
The reduced expression of human selenium binding protein-1 (SELENBP1) has been reported for some human cancers. In this work we have estimated a reduced SELENBP1 expression by immunohistochemistry for the first time also in liver tissues of patients with hepatocarcinoma (HCC). Since the structure-function relationships of SELENBP1 are unknown, we have performed computational and experimental studies to have insight on the structural features of this protein focusing our attention on the properties of cysteines to assess their ability to interact with selenium. We have performed CD studies on the purified protein, modeled its three-dimensional structure, studied the energetic stability of the protein by molecular dynamics simulations, and titrated the cysteines by DTNB (5,5'-dithiobis (2-nitrobenzoic acid). The secondary structure content evaluated by CD has been found similar to that of 3D model. Our studies demonstrate that (i) SELENBP1 is an alpha-beta protein with some loop regions characterized by the presence of intrinsically unordered segments, (ii) only one cysteine (Cys57) is enough exposed to solvent, located on a loop and surrounded by charged and hydrophobic residues, and can be the cysteine able to bind the selenium. Furthermore, during the molecular dynamics simulation at neutral pH the loop containing Cys57 opens and exposes this residue to solvent, confirming that it is the best candidate to bind the selenium. Experimentally we found that only one cysteine is titratable by DTNB. This supports the hypothesis that Cys57 is a residue functionally important and this may open new pharmacological perspectives.  相似文献   

6.
You JS  Wang M  Lee SH 《Biochemistry》2000,39(42):12953-12958
The 70-kDa subunit of eukaryotic replication protein A (RPA) contains a conserved four cysteine-type zinc-finger motif that has been implicated in regulation of DNA replication and repair. Unlike other zinc-finger proteins, RPA zinc-finger motif is not a DNA-binding component, and deletion of the zinc-finger had very little effect on its ssDNA binding activity. Recently, we described a novel function for the zinc-finger motif in regulation of RPA's ssDNA binding activity through reduction-oxidation (redox). In this study, we carried out a detailed analysis of wild-type RPA and zinc-finger mutants in redox regulation of their ssDNA binding activity. Any mutation at a zinc-finger cysteine abolished its redox role in regulation of RPA-ssDNA interaction, suggesting that all four zinc-finger cysteines are required for redox regulation. Reactivity of cysteine residues to 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) indicated that wild-type RPA contained 8.2 reactive thiols/molecule including all four cysteines in the zinc-finger motif. Zinc-finger cysteines slowly reacted to DTNB as compared to others. Zn(II) was not only essential but also uniquely qualified for redox regulation of RPA-ssDNA interaction, suggesting that Zn(II)-cysteine coordination is crucial for the zinc-finger function. Redox status significantly affected initial interaction of RPA with ssDNA but had no effect after RPA formed a stable complex with DNA. Together, our results suggest that the zinc-finger motif mediates the transition of RPA-ssDNA interaction to a stable RPA-ssDNA complex in a redox-dependent manner.  相似文献   

7.
 The synthetic peptide fragment containing residues 49–61 of rabbit liver metallothionein II (MT-II) (Ac-Ile-Cys-Lys-Gly-Ala-Ser-Asp-Lys-Cys-Ser-Cys-Cys-Ala-COOH), which includes the only sequential four cysteines bound to the same metal ion in Cd7MT, forms a stable, monomeric Cd-peptide complex with 1 : 1 stoichiometry (Cd:peptide) via Cd-thiolate interactions. This represents the first synthesis of a single metal-binding site of MT independent of the domains. The 111Cd NMR chemical shift at 716 ppm indicates that the 111Cd2+ in the metal site is terminally coordinated to four side-chain thiolates of the cysteine residues. The pH of half dissociation for this Cd-peptide derivative, ∼3.3, demonstrates an affinity similar to that for Cd7MT. Molecular mechanics calculations show that the thermodynamically most stable folding for this isolated Cd2+ center has the same counterclockwise chirality (Λ or S) observed in the native holo-protein. These properties are consistent with its proposed role as a nucleation center for cadmium-induced protein folding. However, the kinetic reactivity of the CdS4 structure toward 5,5′-dithiobis(5-nitrobenzoate) (DTNB) and EDTA is greatly increased compared to the complete cluster (α-domain or holo-protein). The rate law for the reaction with DTNB is rate=(k uf +k 1,f +k 2,f [DTNB])[peptide], where k uf=0.15 s–1, k 1,f=2.59×10–3 s–1, and k 2,f=0.88 M–1 s–1. The ultrafast step (uf), observable only by stopped-flow measurement, is unprecedented for mammalian (M7MT) and crustacean (M6MT) holo-proteins or the isolated domains. The accommodation of other metal ions by the peptide indicates a rich coordination chemistry, including stoichiometries of M-peptide for Hg2+, Cd2+, and Zn2+, M2-peptide for Hg2+ and Au+, and (Et3PAu)2-peptide. Received: 9 December 1998 / Accepted: 20 May 1999  相似文献   

8.
The rate constant of modification of a specific thiol group, SH2, with N-ethylmaleimide (NEM) has been used to estimate the conformational change in the local area containing SH2 (SH2 region) of skeletal myosin as a structural probe. The rate of Mg2+-ATP-induced SH2 modification of subfragment-1 (S-l) isozymes was regulated by Ca2+ in the pCa range below 6.4 and was not regulated in the pCa range above 6.4. No substantial difference between S-1 containing alkali light chain, A1, (S-1(A1)) and S-1 containing alkali light chain, A2, (S-1(A2)) was observed in the Ca2+-dependent rate of SH2 modification. Due to the presence of this Ca2+ regulation in myosin (absence in S-1 isozymes) in the pCa range above 6.4, absence of 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) light chain in S-1 isozymes, and high affinity of Ca2+ for DTNB light chain, this Ca2+ regulation in the pCa range above 6.4 is possibly related to the Ca2+ binding to DTNB light chain. F-Actin, which is entirely free from tropomyosin and troponin, enhanced the rate of Mg2+-ATP-induced SH2 modification of S-1 isozymes equally and of myosin, and reduced the Ca2+ sensitivity with an increase in F-actin concentration.  相似文献   

9.
CLIC5 (chloride intracellular channel 5) is a CLIC (chloride intracellular channel) with various functions. Its high expression in skeletal muscle and association with actin‐based cytoskeleton suggests that it may play an important role in muscle tissue. This study was conducted to examine whether CLIC5 regulates the proliferation and differentiation of C2C12 myoblasts into myotubes. Differentiation of C2C12 myoblasts induced by switching to a differentiation culture medium was accompanied by a significant increase of CLIC5 protein expression level. Constitutive overexpression of CLIC5 was associated with reduced cell proliferation and more cells from G2/M phase into G0/G1 phase, followed by increased number and size of myotubes and up‐regulation of muscle‐specific proteins of myosin heavy chain, myogenin and desmin. These results demonstrate that CLIC5 is involved in C2C12 proliferation and myogenic differentiation in vitro.  相似文献   

10.
A 43 kDa α-amylase was purified from Tinospora cordifolia by glycogen precipitation, ammonium sulfate precipitation, gel filtration chromatography, and HPGPLC. The enzyme was optimally active in pH 6.0 at 60 °C and had specific activity of 546.2 U/mg of protein. Activity was stable in the pH range of 4-7 and at temperatures up to 60 °C. PCMB, iodoacetic acid, iodoacetamide, DTNB, and heavy metal ions Hg2+ > Ag+ > Cd2+ inhibited enzyme activity while Ca2+ improved both activity and thermostability. The enzyme was a thiol amylase (3 SH group/mole) and DTNB inhibition of activity was released by cysteine. N-terminal sequence of the enzyme had poor similarity (12-24%) with those of plant and microbial amylases. The enzyme was equally active on soluble starch and amylopectin and released maltose as the major end product.  相似文献   

11.
NADH specific glutamate dehydrogenase (GDH) activity was examined in roots and shoots of maize seedlings grown in half-strength Hoagland’s solution containing NH4NO3 as sole nitrogen source under irradiance of 60 W m−2 and temperature of 25±2°C. When 5,5′-dithio-bis (2-nitrobenzoic acid) (DTNB) was supplied to the assay mixture, it inhibited NADH-GDH activity in both roots and shoots, irrespective of whether the enzymes were extracted from light- or dark-treated roots and shoots. In each case the inhibition increased with the increase in DTNB concentration. At the maximum concentration of DTNB used (20 μM) the inhibition of shoot NADH-GDH was more pronounced than inhibition of root enzyme. This indicated differences in shoot and root NADH-GDH.  相似文献   

12.
The protomeric form of the cyclic AMP receptor protein (CRP) of Escherichia coli is composed of two identical subunits of molecular weight 22,500 and contains two buried and two available cysteine residues. Titration of the two available cysteines with DTNB4 eliminates cyclic AMP-dependent DNA binding activity which is regenerated by incubating the modified protein with β-mercaptoethanol. In the absence of cAMP, the formation of the TNB anion from DTNB and the incorporation of [14C]TNB into CRP are approximately stoichiometric. In the presence of cAMP, there is an increase in the rate of formation of the TNB anion while the incorporation of [14C]TNB into CRP is markedly inhibited. These observations are reconciled by the observation that cAMP induces DTNB-mediated disulfide crosslinking of the two available sulfhydryls to produce a species migrating as a 45,000 molecular weight subunit on SDS-polyacrylamide gels. A mechanism is suggested by which an intersubunit, intraprotomer disulfide bond is produced by secondary disulfide interchange after the incorporation of the initial TNB group. Based on the observation of cAMP-mediated disulfide crosslinking, the available cysteines of the DNA binding region are proposed to reside in close proximity as part of an antiparallel β-sheet structure formed by the two carboxyl proximal polypeptides when CRP is in the DNA binding conformation.  相似文献   

13.
Agonist binding to G protein-coupled receptors is believed to promote a conformational change that leads to the formation of the active receptor state. However, the character of this conformational change which provides the important link between agonist binding and G protein coupling is not known. Here we report evidence that agonist binding to the beta2 adrenoceptor induces a conformational change around 125Cys in transmembrane domain (TM) III and around 285Cys in TM VI. A series of mutant beta2 adrenoceptors with a limited number of cysteines available for chemical derivatization were purified, site-selectively labeled with the conformationally sensitive, cysteine-reactive fluorophore IANBD and analyzed by fluorescence spectroscopy. Like the wild-type receptor, mutant receptors containing 125Cys and/or 285Cys showed an agonist-induced decrease in fluorescence, while no agonist-induced response was observed in a receptor where these two cysteines were mutated. These data suggest that IANBD bound to 125Cys and 285Cys are exposed to a more polar environment upon agonist binding, and indicate that movements of transmembrane segments III and VI are involved in activation of G protein-coupled receptors.  相似文献   

14.
Despite being synthesized in the cytosol without a leader sequence, the soluble 253-residue mammalian protein CLIC4 (Chloride Intracellular Channel 4, or p64H1), a structural homologue of Omega-type glutathione-S-transferase, autoinserts into membranes to form an integral membrane protein with ion channel activity. A predicted transmembrane domain (TMD) near the N-terminus of CLIC4 could mediate membrane insertion, and contribute to oligomeric pores, with minimal reorganization of the soluble protein structure. We tested this idea by reconstituting recombinant CLIC4 in planar bilayers containing phosphatidyethanolamine, phosphatidylserine and cholesterol, recording ion channels with a maximum conductance of approximately 15 pS in KCl under both oxidizing and reducing conditions. The channels discriminated poorly between anions and cations, incompatible with the current "CLIC" nomenclature, and their conductance was modified by the trans (external or luminal) redox potential, as previously observed for CLIC1. We then reconstituted a truncated version of the protein, limited to the first 61 residues containing the predicted TMD. This included a single trans cysteine residue in the putative pore-forming subunits, at the external entrance to the pore. The truncated protein formed non-selective channels with a reduced conductance, but they retained their trans-redox sensitivity, and could still be blocked or inactivated by trans (not cis) thiol-reative dithiobisnitrobenzoic acid. We suggest that oligomers containing the putative TMD are essential components of the CLIC4 pore. However, the pore is inherently non-selective, and any ionic selectivity in CLIC4 (and other membrane CLICs) may be attributable to other regions of the protein, including the channel vestibules.  相似文献   

15.
Spreading depolarizations (SDs) are coordinated depolarizations of brain tissue that have been well-characterized in animal models and more recently implicated in the progression of stroke injury. We previously showed that extracellular Zn2+ accumulation can inhibit the propagation of SD events. In that prior work, Zn2+ was tested in normoxic conditions, where SD was generated by localized KCl pulses in oxygenated tissue. The current study examined the extent to which Zn2+ effects are modified by hypoxia, to assess potential implications for stroke studies. The present studies examined SD generated in brain slices acutely prepared from mice, and recordings were made from the hippocampal CA1 region. SDs were generated by either local potassium injection (K-SD), exposure to the Na+/K+-ATPase inhibitor ouabain (ouabain-SD) or superfusion with modified ACSF with reduced oxygen and glucose concentrations (oxygen glucose deprivation: OGD-SD). Extracellular Zn2+ exposures (100 µM ZnCl2) effectively decreased SD propagation rates and significantly increased the initiation threshold for K-SD generated in oxygenated ACSF (95% O2). In contrast, ZnCl2 did not inhibit propagation of OGD-SD or ouabain-SD generated in hypoxic conditions. Zn2+ sensitivity in 0% O2 was restored by exposure to the protein oxidizer DTNB, suggesting that redox modulation may contribute to resistance to Zn2+ in hypoxic conditions. DTNB pretreatment also significantly potentiated the inhibitory effects of competitive (D-AP5) or allosteric (Ro25-6981) NMDA receptor antagonists on OGD-SD. Finally, Zn2+ inhibition of isolated NMDAR currents was potentiated by DTNB. Together, these results suggest that hypoxia-induced redox modulation can influence the sensitivity of SD to Zn2+ as well as to other NMDAR antagonists. Such a mechanism may limit inhibitory effects of endogenous Zn2+ accumulation in hypoxic regions close to ischemic infarcts.  相似文献   

16.
In the interface of homodimeric triosephosphate isomerase from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), one cysteine of each monomer forms part of the intersubunit contacts. The relatively slow derivatization of these cysteines by sulfhydryl reagents induces progressive structural alterations and abolition of catalysis [Garza-Ramos et al. (1998) Eur. J. Biochem. 253, 684-691]. Derivatization of the interface cysteine by 5, 5-dithiobis(2-nitrobenzoate) (DTNB) and methylmethane thiosulfonate (MMTS) was used to probe if events at the catalytic site are transmitted to the dimer interface. It was found that enzymes in the active catalytic state are significantly less sensitive to the thiol reagents than in the resting state. Maximal protection against derivatization of the interface cysteine by thiol reagents was obtained at near-saturating substrate concentrations. Continuous recording of derivatization by DTNB showed that catalysis hinders the reaction of sulfhydryl reagents with the interface cysteine. Therefore, in addition to intrinsic structural barriers, catalysis imposes additional impediments to the action of thiol reagents on the interface cysteine. In TcTIM, the substrate analogue phosphoglycolate protected strongly against DTNB action, and to a lesser extent against MMTS action; in TbTIM, phosphoglycolate protected against the effect of DTNB, but not against the action of MMTS. This indicates that barriers of different magnitude to the reaction of thiol reagents with the interface cysteine are induced by the events at the catalytic site. Studies with a Cys14Ser mutant of TbTIM confirmed that all the described effects of sulfhydryl reagents on the trypanosomal enzymes are a consequence of derivatization of the interface cysteine.  相似文献   

17.
This study explored the effects involved in silencing CLIC4 on apoptosis and proliferation of mouse liver cancer Hca‐F and Hca‐P cells. A CLIC4‐target small interfering RNA (siRNA) was designed to compound into two individual complementary oligonucleotide chains. A process of annealing and connection to a pSilencer vector was followed by transfection with Hca‐F and Hca‐P cells. Quantitative real‐time polymerase chain reaction and Western blotting techniques were used to determine CLIC4 mRNA and protein expressions. CCK8 assay and flow cytometry were employed for analysis of the survival and apoptosis rate as well as the cell cycle in an octreotide‐induced apoptosis model. Expressions of caspase 3, caspase 9, and cleaved PARP were measured using Western blotting. The CLIC4 mRNA and protein expressions in Hca‐F and Hca‐P cells transfected by pSilencer‐CLIC4 siRNA plasmid in the blank group displayed remarkably decreased levels of expression, when compared with both the control and negative control (NC) groups. Decreased survival rates and cleaved PARP expression, increased cell apoptosis rate,expressions of caspase 3 and caspase 9 in Hca‐F and Hca‐P cells were detected in groups that had been cultured in a medium containing octreotide. The pSilencer‐CLIC4 siRNA‐2 group when compared with the control and NC groups exhibited decreased survival rates, cleaved PARP expression, increased cell apoptosis rates, and increased expressions of caspase 3 and caspase 9 of Hca‐F and Hca‐P cells. The results demonstrated that siRNA‐induced down‐regulation of CLIC4 could proliferation, while in turn promoting apoptosis of mouse liver cancer Hca‐F and Hca‐P cells. J. Cell. Biochem. 119: 659–668, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Jacob MH  Amir D  Ratner V  Gussakowsky E  Haas E 《Biochemistry》2005,44(42):13664-13672
A variety of biophysical methods used to study proteins requires protein modification using conjugated molecular probes. Cysteine is the main residue that can be modified without the risk of altering other residues in the protein chain. It is possible to label several cysteines in a protein using highly selective labeling reactions, if the cysteines react at very different rates. The reactivity of a cysteine residue introduced into an exposed surface site depends on the fraction of cysteine in the deprotonated state. Here, it is shown that cysteine reactivity differences can be effectively predicted by an electrostatic model that yields site-specifically the fractions of cysteinate. The model accounts for electrostatic interactions between the cysteinyl anion and side chains, the local protein backbone, and water. The energies of interaction with side chains and the main chain are calculated by using the two different dielectric constants, 40 and 22, respectively. Twenty-six mutants of Escherichia coli adenylate kinase were produced, each containing a single cysteine at the protein surface, and the rates of the reaction with 5,5'-dithiobis(2-nitrobenzoic acid) (Ellman's reagent) were measured. Cysteine residues were chosen on the basis of locations that were expected to allow modification of the protein with minimal risk of perturbing its structure. The reaction rates spanned a range of 6 orders of magnitude. The correlation between predicted fractions of cysteinate and measured reaction rates was strong (R = 92%) and especially high (R = 97%) for cysteines at the helix termini. The approach developed here allows reasonably fast, automated screening of protein surfaces to identify sites that permit efficient preparations of double- or triple-labeled protein.  相似文献   

19.
Methionine and cysteine residues in proteins are the major targets of reactive oxygen species (ROS). The present work was designed to characterize the impact of methionine and cysteine oxidation upon [Ca2+]i in hippocampal neurons. We investigated the effects of H2O2 and chloramine T(Ch-T) agents known to oxidize both cysteine and methionine residues, and 5, 5′-dithio-bis (2-nitrobenzoic acid) (DTNB)—a cysteine-specific oxidant, on the intracellular calcium in hippocampal neurons. The results showed that these three oxidants, 1 mM H2O2, 1 mM Ch-T, and 500 μM DTNB, induced an sustained elevation of [Ca2+]i by 76.1 ± 3.9%, 86.5 ± 5.0%, and 24.4 ± 3.2% over the basal level, respectively. The elevation induced by H2O2 and Ch-T was significantly higher than DTNB. Pretreatment with reductant DTT at 1 mM for 10 min completely prevented the action of DTNB on [Ca2+]i, but only partially reduced the effects of H2O2 and Ch-T on [Ca2+]i, the reductions were 44.6 ± 4.2% and 29.6 ± 6.1% over baseline, respectively. The elevation of [Ca2+]i induced by H2O2 and Ch-T after pretreatment with DTT were statistically higher than that induced by single administration of DTNB. Further investigation showed that the elevation of [Ca2+]i mainly resulted from internal calcium stores. From our data, we propose that methionine oxidation plays an important role in the regulation of intracellular calcium and this regulation may mainly be due to internal calcium stores.  相似文献   

20.
The genome of Entamoeba histolytica encodes approximately 50 Cysteine Proteases (CPs) whose activity is regulated by two Inhibitors of Cysteine Proteases (ICPs), EhICP1 and EhICP2. The main difference between both EhICPs is the acquisition of a 17 N-terminal targeting signal in EhICP2 and three exposed cysteine residues in EhICP1. The three exposed cysteines in EhICP1 potentiate the formation of cross-linking species that drive heterogeneity. Here we solved the NMR structure of EhICP1 using a mutant protein without accessible cysteines. Our structural data shows that EhICP1 adopts an immunoglobulin fold composed of seven β-strands, and three solvent exposed loops that resemble the structures of EhICP2 and chagasin. EhICP1 and EhICP2 are able to inhibit the archetypical cysteine protease papain by intercalating their BC loops into the protease active site independently of the character of the residue (serine or threonine) responsible to interact with the active site of papain. EhICP1 and EhICP2 present signals of functional divergence as they clustered in different clades. Two of the three exposed cysteines in EhICP1 are located at the DE loop that intercalates into the CP substrate-binding cleft. We propose that the solvent exposed cysteines of EhICP1 play a role in regulating its inhibitory activity and that in oxidative conditions, the cysteines of EhICP1 react to form intra and intermolecular disulfide bonds that render an inactive inhibitor. EhICP2 is not subject to redox regulation, as this inhibitor does not contain a single cysteine residue. This proposed redox regulation may be related to the differential cellular localization between EhICP1 and EhICP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号