首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatic peroxisome proliferation, increases in the numerical and volume density of peroxisomes, is believed to be closely related to peroxisome proliferator-activated receptor alpha (PPARalpha) activation; however, it remains unknown whether peroxisome proliferation depends absolutely on this activation. To verify occurrence of PPARalpha-independent peroxisome proliferation, fenofibrate treatment was used, which was expected to significantly enhance PPARalpha dependence in the assay system. Surprisingly, a novel type of PPARalpha-independent peroxisome proliferation and enlargement was uncovered in PPARalpha-null mice. The increased expression of dynamin-like protein 1, but not peroxisome biogenesis factor 11alpha, might be associated with the PPARalpha-independent peroxisome proliferation at least in part.  相似文献   

2.
3.
Abstract

Peroxisome proliferator-activated receptorγ (PPARγ) can regulate the process of cell apoptosis and is related to the progression of renal disorders. Retinoic acid receptor alpha (RARα) is one of the nuclear receptors involved in a variety of kidney diseases. Renal interstitial fibrosis (RIF) is a common denominator of chronic kidney disease (CKD). This study investigated whether a potential signaling pathway existed between PPARγ and RARα in RIF rats with unilateral ureteral obstruction (UUO). The rats were randomly divided into four groups: a model group subjected to UUO (GU), and three other groups treated with rosiglitazone sodium (GRS), GW9662 and dimethyl sulfoxide (DMSO), n?=?40, respectively. Renal tissues were collected two and four weeks after post-surgery. The relevant indicators were detected. In comparison with the GU group, the expressions of PPARγ and RARα (protein and mRNA) were increased in the GRS group, and decreased in the GW9662 group (all p?<?0.01). The RIF index, mRNA and protein expression of transforming growth factor-β1 (TGF-β1), and the protein expressions of collagen-IV (Col-IV) and fibronectin (FN) in the GRS group were more markedly reduced than those in the GU group; their levels in the GW9662 group were elevated (all p?<?0.01). PPARγ or RARα was negatively correlated to the RIF index, TGF-β1, Col-IV and FN. PPARγ was positively correlated with RARα (all p?<?0.01). In conclusion, PPARγ agonist can elevate the expression of PPARγ or RARα in RIF rats. There might be a potential signaling pathway between PPARγ and RARα in RIF disease.  相似文献   

4.

Background

Excessive oxidative stress and lipid peroxidation have been demonstrated to play important roles in the production of liver damage. L-carnitine is a natural substance and acts as a carrier for fatty acids across the inner mitochondrial membrane for subsequent beta-oxidation. It is also an antioxidant that reduces metabolic stress in the cells. Recent years L-carnitine has been proposed for treatment of various kinds of disease, including liver injury. This study was conducted to evaluate the protective effect of L-carnitine against hydrogen peroxide (H2O2)-induced cytotoxicity in a normal human hepatocyte cell line, HL7702.

Methods

We analyzed cytotoxicity using MTT assay and lactate dehydrogenase (LDH) release. Antioxidant activity and lipid peroxidation were estimated by reactive oxygen species (ROS) levels, activities and protein expressions of superoxide dismutase (SOD) and catalase (CAT), and malondialdehyde (MDA) formation. Expressions of peroxisome proliferator-activated receptor (PPAR)-alpha and its target genes were evaluated by RT-PCR or western blotting. The role of PPAR-alpha in L-carnitine-enhanced expression of SOD and CAT was also explored. Statistical analysis was performed by a one-way analysis of variance, and its significance was assessed by Dennett''s post-hoc test.

Results

The results showed that L-carnitine protected HL7702 cells against cytotoxity induced by H2O2. This protection was related to the scavenging of ROS, the promotion of SOD and CAT activity and expression, and the prevention of lipid peroxidation in cultured HL7702 cells. The decreased expressions of PPAR-alpha, carnitine palmitoyl transferase 1 (CPT1) and acyl-CoA oxidase (ACOX) induced by H2O2 can be attenuated by L-carnitine. Besides, we also found that the promotion of SOD and CAT protein expression induced by L-carnitine was blocked by PPAR-alpha inhibitor MK886.

Conclusions

Taken together, our findings suggest that L-carnitine could protect HL7702 cells against oxidative stress through the antioxidative effect and the regulation of PPAR-alpha also play an important part in the protective effect.  相似文献   

5.
alpha1-Acid glycoprotein (alpha1-AGP) is an acute phase protein that can potentiate cytokine secretion by mononuclear cells and may induce thrombosis by stabilizing the inhibitory activity of plasminogen activator inhibitor-1. Thus, alpha1-AGP may promote pathobiologies associated with type 2 diabetes mellitus (T2DM) including insulin resistance and cardiovascular disease. Here, we demonstrate that antidiabetic peroxisome proliferator-activated receptor gamma (PPARgamma) agonists inhibited expression of 3T3-L1 adipocyte alpha1-AGP in a concentration- and time-dependent manner via an apparent PPARgamma-mediated mechanism. As a result, synthesis and secretion of the glycoprotein was reduced. While PPARgamma agonist regulation of genes with functional peroxisome proliferator response elements in their promoter such as phosphoenolpyruvate carboxykinase were unaffected when cellular protein synthesis was inhibited, downregulation of alpha1-AGP mRNA was ablated thereby supporting the proposition that PPARgamma activation inhibits alpha1-AGP expression indirectly. These results suggest a potential novel adipocytic mechanism by which PPARgamma agonists may ameliorate T2DM-associated insulin resistance and cardiovascular disease.  相似文献   

6.
7.
5-[2,4-Dioxothiazolidin-5-yl)methyl]-2-methoxy-N-[[(4-trifluoromethyl)-phenyl]methyl]benzamide (I, MK-0767 or KRP-297, Fig. 1), is a dual alpha/gamma peroxisome proliferator-activated receptor (PPAR) agonist. A LC-MS/MS method for the determination of I in human plasma has been successfully developed, validated and applied to clinical programs. The analyte and internal standard (II) are extracted from 0.05 mL plasma via solid phase extraction (SPE). HPLC is used for the separation of I and II from possible co-extracted endogenous and other compounds. Detection is by MS/MS in multiple reaction monitoring (MRM) mode using a TurboIonSpray probe. The whole sample preparation is automated by using a Packard Multiprobe liquid handling system. The linear range is 4-2000 ng/mL in plasma. Recoveries were 71.1% and 69.4% for I and II, respectively. The method exhibited good linearity, reproducibility and sensitivity, selectivity and robustness when used for the analysis of clinical samples.  相似文献   

8.
There is growing evidence to show that hepatic oval cells contribute to liver regeneration, dysplastic nodule formation, and hepato-carcinogenesis. Peroxisome proliferator-activated receptors (PPARs) and their ligands play an important role in cell growth, inflammatory responses, and liver pathogenesis including fibrosis and cancer. However, little is known about the role of PPARgamma/its ligands in the growth and differentiation of hepatic oval cells. In this study, we found that OC15-5, a rat hepatic oval cell line, expressed PPARgamma at mRNA and protein levels, and a natural ligand for PPARgamma, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), and a synthetic ligand, ciglitazone, inhibited growth of OC15-5 cells by arresting at G1-S in a dose-dependent manner. Apoptosis was also induced in OC15-5 cells by 15d-PGJ2 treatment. In OC15-5 cells treated with 15d-PGJ2, the expression of CDK inhibitor, p27(Kip1), was up-regulated, while that of p21(WAF1/Cip1), p18(INK4C) CDK2, CDK4, and cyclin E was unchanged. In addition, delayed up-regulation of AFP expression was observed in OC15-5 cells after 15d-PGJ2 or ciglitazone treatment. This is the first report to show that the PPARgamma ligand was involved in the growth, cell cycle, and differentiation of hepatic oval cells, raising the possibility that the PPARgamma ligands may regulate liver regeneration and hepato-carcinogenesis.  相似文献   

9.
10.

Background

Non-alcoholic fatty liver disease (NAFLD) refers to the accumulation of hepatic steatosis in the absence of excess alcohol consumption. The pathogenesis of fatty liver disease and steatohepatitis (NASH) is not fully elucidated, but the common association with visceral obesity, hyperlipidemia, hypertension and type 2 diabetes mellitus (T2DM) suggests that it is the hepatic manifestation of metabolic syndrome. Peroxisome proliferator-activated receptor PPARα and PPARγ are members of a family of nuclear receptors involved in the metabolism of lipids and carbohydrates, adipogenesis and sensitivity to insulin. The objective of this study was to analyze the polymorphisms Leu162Val of PPARα and Pro12Ala of PPARγ as genetic risk factors for the development and progression of NAFLD.

Methods

One hundred and three NAFLD patients (89 NASH, 14 pure steatosis) and 103 healthy volunteers were included. Single nucleotide polymorphisms (SNPs) Leu162Val and Pro12Ala were analyzed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP).

Results

NASH patients presented higher BMI, AST and prevalence of T2DM than patients with pure steatosis. A higher prevalence of 12Ala allele was observed in the NASH Subgroup when compared to Control Group. When we grouped NASH and Steatosis Subgroups (NAFLD), we found lower serum glucose and more advanced fibrosis in the Leu162Val SNP. On the other hand, there was no statistical difference in clinical, laboratorial and histological parameters according to the Pro12Ala SNP.

Conclusions

We documented a lower prevalence of 12Ala allele of gene PPARγ in the NASH Subgroup when compared to Control Group. In NAFLD patients, there were no associations among the occurrence of Pro12Ala SNP with clinical, laboratorial and histological parameters. We also documented more advanced fibrosis in the Leu162Val SNP. The obtained data suggest that Pro12Ala SNP may result in protection against liver injury and that Leu162Val SNP may be involved in the progression of NAFLD.  相似文献   

11.
Peroxisome proliferator-activated receptor-gamma (PPARgamma) plays a critical role in peripheral glucose homeostasis and energy metabolism, and inhibits cardiac hypertrophy in non-diabetic animal models. The functional role of PPARgamma in the diabetic heart, however, is not fully understood. Therefore, we analyzed cardiac gene expression, metabolic control, and cardiac glucose uptake in male Zucker diabetic fatty rats (ZDF fa/fa) and lean ZDF rats (+/+) treated with the high affinity PPARgamma agonist pioglitazone or placebo from 12 to 24 weeks of age. Hyperglycemia, hyperinsulinemia, and hypertriglyceridemia as well as lower cardiac PPARgamma, glucose transporter-4 and alpha-myosin heavy chain expression levels were detected in diabetic ZDF rats compared to lean animals. Pioglitazone increased body weight and improved metabolic control, cardiac PPARgamma, glut-4, and alpha-MHC expression levels in diabetic ZDF rats. Cardiac [(18)F]fluorodeoxyglucose uptake was not detectable by micro-PET studies in untreated and pioglitazone treated ZDF fa/fa rats but was observed after administration of insulin to pioglitazone treated ZDF fa/fa rats. PPARgamma agonists favorably affect cardiac gene expression in type-2 diabetic rats via activation and up-regulation of cardiac PPARgamma expression whereas improvement of impaired cardiac glucose uptake in advanced type-2 diabetes requires co-administration of insulin.  相似文献   

12.
13.
The peroxisome proliferator-activated receptors (PPARs) are fatty acid and eicosanoid inducible nuclear receptors, which occur in three different isotypes. Upon activator binding, they modulate the expression of various target genes implicated in several important physiological pathways. During the past few years, the identification of both PPAR ligands, natural and synthetic, and PPAR targets and their associated functions has been one of the most important achievements in the field. It underscores the potential therapeutic application of PPAR-specific compounds on the one side, and the crucial biological roles of endogenous PPAR ligands on the other.  相似文献   

14.
Pancreatic stellate cells (PSCs) play a key role in the development of pancreatic fibrosis, a constant feature of chronic pancreatitis and pancreatic cancer. In response to pro-fibrogenic mediators, PSCs undergo an activation process that involves proliferation, enhanced production of extracellular matrix proteins and a phenotypic transition towards myofibroblasts. Ligands of the peroxisome proliferator-activated receptor gamma (PPARgamma), such as thiazolidinediones, are potent inhibitors of stellate cell activation and fibrogenesis in pancreas and liver. The effects of PPARgamma ligands, however, are at least in part mediated through PPARgamma-independent pathways. Here, we have chosen a different approach to study regulatory functions of PPARgamma in PSCs. Using immortalised rat PSCs, we have established a model of tetracycline (tet)-regulated PPARgamma overexpression. Induction of PPARgamma expression strongly inhibited proliferation and enhanced the rate of apoptotic cell death. Furthermore, PPARgamma-overexpressing cells synthesised less collagen than controls. To monitor effects of PPARgamma on PSC gene expression, we employed Affymetrix microarray technology. Using stringent selection criteria, we identified 21 up- and 19 down-regulated genes in PPARgamma-overexpressing cells. Most of the corresponding gene products are either involved in lipid metabolism, play a role in signal transduction, or are secreted molecules that regulate cell growth and differentiation. In conclusion, our data suggest an active role of PPARgamma in the induction of a quiescent PSC phenotype. PPARgamma-regulated genes in PSCs may serve as novel targets for the development of antifibrotic therapies.  相似文献   

15.
Delta6 desaturase (D6D), the rate-limiting enzyme for highly unsaturated fatty acid (HUFA) synthesis, is induced by essential fatty acid-deficient diets. Sterol regulatory element-binding protein-1c (SREBP-1c) in part mediates this induction. Paradoxically, D6D is also induced by ligands of peroxisome proliferator-activated receptor alpha (PPARalpha). Here, we report a novel physiological role of PPARalpha in the induction of genes specific for HUFA synthesis by essential fatty acid-deficient diets. D6D mRNA induction by essential fatty acid-deficient diets in wild-type mice was diminished in PPARalpha-null mice. This impaired D6D induction in PPARalpha-null mice was not attributable to feedback suppression by tissue HUFAs because PPARalpha-null mice had lower HUFAs in liver phospholipids than did wild-type mice. Furthermore, PPARalpha-responsive genes were induced in wild-type mice under essential fatty acid deficiency, suggesting the generation of endogenous PPARalpha ligand(s). Contrary to genes for HUFA synthesis, the induction of other lipogenic genes under essential fatty acid deficiency was higher in PPARalpha-null mice than in wild-type mice even though mature SREBP-1c protein did not differ between the genotypes. The expression of PPARgamma was markedly increased in PPARalpha-null mice and might have contributed to the induction of genes for de novo lipogenesis. Our study suggests that PPARalpha, together with SREBP-1c, senses HUFA status and confers pathway-specific induction of HUFA synthesis by essential fatty acid-deficient diets.  相似文献   

16.
17.
18.
Peroxisome proliferator-activated receptor alpha (PPARalpha) is the nuclear receptor responsible for regulating genes that control lipid homeostasis. Because of this role, PPARalpha has become a target of interest for the development of drugs to treat diseases such as dyslipidemia, obesity, and atherosclerosis. Assays currently employed to determine potency and efficacy of potential drug candidates typically utilize a truncated form of the native receptor, one which lacks the entire N-terminal region of the protein. The amino terminus, containing the regions that encode the ligand-independent activation function AF-1 and DNA binding domains, is highly structured and contributes significantly to the overall tertiary structure of the native protein. We report that differences in PPARalpha full-length and ligand binding domain constructs result in differences in binding affinity for coactivator peptides but have little effect on potency of agonists in both cell-free and cell-based nuclear receptor assays.  相似文献   

19.
20.
Glucuronidation, a major metabolic pathway for a large variety of endobiotics and xenobiotics, is catalyzed by enzymes belonging to the UDP-glucuronosyltransferase (UGT) family. Among UGT enzymes, UGT2B4 conjugates a large variety of endogenous and exogenous molecules and is considered to be the major bile acid conjugating UGT enzyme in human liver. In the present study, we identify UGT2B4 as a novel target gene of the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR alpha), which mediates the hypolipidemic action of fibrates. Incubation of human hepatocytes or hepatoblastoma HepG2 and Huh7 cells with synthetic PPAR alpha agonists, fenofibric acid, or Wy 14643 resulted in an increase of UGT2B4 mRNA levels. Furthermore, treatment of HepG2 cells with Wy 14643 induced the glucuronidation of hyodeoxycholic acid, a specific bile acid UGT2B4 substrate. Analysis of UGT2B mRNA and protein levels in PPAR alpha wild type and null mice revealed that PPAR alpha regulates both basal and fibrate-induced expression of these enzymes in rodents also. Finally, a PPAR response element was identified in the UGT2B4 promoter by site-directed mutagenesis and electromobility shift assays. These results demonstrate that PPAR alpha agonists may control the catabolism of cytotoxic bile acids and reinforce recent data indicating that PPAR alpha, which has been largely implicated in the control of lipid and cholesterol metabolism, is also an important modulator of the metabolism of endobiotics and xenobiotics in human hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号