首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The integrity of microvascular endothelium is an important regulator of myocardial contractility. Microvascular barrier integrity could be altered by increased reactive oxygen species (ROS) stress seen within minutes after cardiac arrest resuscitation. Akt and its downstream target nitric oxide (NO) synthase (NOS)3 can protect barrier integrity during ROS stress, but little work has studied these oxidant stress responses in human cardiac microvascular endothelial cells (HCMVEC). We, therefore, studied how ROS affects barrier function and NO generation via Akt and its downstream target NOS3 in HCMVEC. HCMVEC exposed to 500 microM H2O2 had increased Akt phosphorylation within 10 min at both Ser-473 and Thr-308 sites, an effect blocked by the phosphatidylinositol 3-kinase inhibitor LY-294002. H2O2 also induced NO generation that was associated with NOS3 Ser-1177 site phosphorylation and Thr-495 dephosphorylation, with Ser-1177 effects attenuated by LY-294002 and an Akt inhibitor, Akt/PKB signaling inhibitor-2 (API-2). H2O2 induced significant barrier disruption in HCMVEC within minutes, but recovery started within 30 min and normalized over hours. The NOS inhibitor Nomega-nitro-L-arginine methyl ester (200 microM) blocked NO generation but had no effect on H2O2-induced barrier permeability or the recovery of barrier integrity. By contrast, the Akt inhibitor API-2 abrogated HCMVEC barrier restoration. These results suggest that oxidant stress in HCMVEC activates NOS3 via Akt. NOS3/NO are not involved in the regulation of H2O2-affected barrier function in HCMVEC. Independent of NOS3 regulation, Akt proves to be critical for the restoration of barrier integrity in HCMVEC.  相似文献   

2.
人皮肤成纤维细胞在紫外线B照射后的TGF—β和HSP70表达   总被引:3,自引:0,他引:3  
目的和方法:采用人体皮肤成纤维细胞,观察了紫外线照射后细胞TGF-β表达与HSP70表达水平的相关性。结果:①经不同剂量的紫外线B照射后,TGF-βmRNA表达与HSP70表达水平呈正相关(r=0.906);②应用抗TGF-βⅡ型受体抗体后,在紫外线B照射后细胞培养上清液中的TGF-β含量与细胞HSP70表达水平呈负相关(r=-0.995)。结论:在紫外线B照射诱导人皮肤成纤维细胞表达HSP70的反应过程另TGF-β参与其信号转导。  相似文献   

3.
Sugano N  Ito K  Murai S 《FEBS letters》1999,447(2-3):274-276
Several clinical studies have shown that cyclosporin A (CsA) is effective for treating a variety of chronic inflammatory and autoimmune diseases. Because reactive oxygen species are believed to play a key role in the development of these diseases, causing cell apoptosis, we investigated whether CsA inhibits H2O2-induced apoptosis. Preincubation of human fibroblasts with CsA dose-dependently decreased H2O2-induced apoptosis. Apoptosis suppression by CsA was correlated with the prevention of mitochondrial dysfunction and caspase activation. Thus, our results suggest that the inhibition of apoptosis by CsA may at least partly contribute to the anti-inflammatory effect of CsA.  相似文献   

4.
5.
Exposure of WI38 human diploid fibroblasts (HDFs) to hydrogen peroxide (H2O2) induced premature senescence. The senescent HDFs were permanently arrested and exhibited a senescent phenotype including enlarged and flattened cell morphology and increased senescence-associated beta-galactosidase (SA-beta-gal) activity. The induction of HDF senescence was associated with an activation of p53, increased expression of p21Cip1/WAF1, and hypophosphorylation of retinoblastoma protein (Rb), while no changes in the expression of p16Ink4a, p27Kip1, and p14Arf were observed. Exposure of WI38 cells to H2O2 also selectively activated phosphatidylinostol 3-kinase (PI3 kinase) and mitogen-activated protein kinase (MAPK) kinase (MEK), while no changes in p38 MAPK and Jun kinase (JNK) activities were observed. Selective inhibition of PI3 kinase activity with LY294002 abrogated H2O2-induced cell enlargement and flattened morphology and significantly attenuated the increase in SA-beta-gal activity, but did not affect H2O2-induced cell cycle arrest. In contrast, selective inhibition of MEK and p38 MAPK with PD98059 and SB203580, respectively, produced no significant effect on H2O2-induced senescent phenotype and cell cycle arrest. These findings demonstrate that expression of the senescent phenotype can be uncoupled from cell cycle arrest in prematurely senescent cells induced by H2O2 and does not contribute to the maintenance of permanent cell cycle arrest.  相似文献   

6.
Preeclampsia, a hypertensive pregnancy-specific disorder, has long been analyzed for its association with cellular stress. It still remains one of the most serious complications of pregnancy. It is a multi-system disorder that affects maternal vascular function and fetal growth. The physiopathology of preeclampsia is still unclear, but an imbalance between reactive oxygen species (ROS) and antioxidants, appears to be an important contributing factor. Oxidative stress has been increasingly postulated as a major contributor to endothelial dysfunction in preeclampsia (PE). The ROS promotes lipid oxidation and are known to induce stress proteins, such as hemeoxygenase 1 (HO-1) and heat-shock protein 70 (HSP70). Embryonic and placental cells are highly sensitive to oxidative stress due to their proliferate nature. Endothelial cell dysfunction is suggested to be a part of wider maternal inflammatory reaction responsible for the clinical syndrome of preeclampsia. Part of the dysfunction in endothelial cell and trophoblast is attributed to oxidative stress developed during pregnancy. The disequilibrium in compensatory antioxidant control is proposed as a causative mechanism in the pathophysiology of preeclampsia. HSP70 acts as the secondary line of defense in systems with compromised antioxidant function. This article reviews the differential expression of HSP70 and the effect of mint-tea therapy to modulate preeclamptic oxidative damage.  相似文献   

7.
Summary Na+ transport was characterized in normal human fibroblasts and neoplastic H.Ep. 2 cells in order to investigate the role of the endogenous peptidic factor inhibitin that is secreted by a variety of neoplastic cells (including H.Ep. 2) and inhibits Na+/Na+ exchange in human erythrocytes. Although active (Na+, K+-ATPase mediated) Na+ fluxes were similar in the two cell types, H.Ep. 2 cells maintained higher intracellular Na[su+] concentration (26mm) compared to fibroblasts (12mm). An analysis of passive Na+ fluxes showed a difference in the handling of Na+ via ouabain and bumetanide-insensitive transport between the two cell types: H.Ep. 2 cells achieved net Na+ influx via an amiloride-sensitive pathway that was only demonstrated in fibroblasts when 10% fetal calf serum (FCS) was present. Kinetic studies were undertaken to investigate the interaction between Na+ flux via Na+/H+ and Na+/Na+ exchanges. for this purpose, an outwardly directed Na+ gradient was created by loading the cells with Na+ (Na i >100mm) to activate the reverse functioning of Na+/H+ exchange (i.e., Na out + H in + ). The rates of ouabain-and bumetanide-insensitive Na+ efflux were measured over a range of extracellular Na+ concentrations (Na o + 14–140mm). In the presence of 10% FCS, the two cell types showed different responses: in fibroblasts the Na+ efflux rate showed an inverse correlation with extracellular Na+ concentration, while H.Ep. 2 cells significantly increased their rate of Na+ efflux as extracellular Na+ concentration increased. So although the thermodynamic force would direct net Na+ efflux when Na i + >Na o + , H.Ep.2 cells were under kinetic control to perform Na+/Na+ exchange.When exogenous inhibitin was tested on fibroblasts, the steady-state intracellular Na+ concentration increased from 14 to 19mm (p<0.01). In Na+-loaded fibroblasts, serum-stimulated Na+ efflux was partially inhibitin sensitive and the maximal inhibitory effect was seen when extracellular Na+ concentration was 14mm and presumably the Na+/H+ exchanger operating in the reverse mode. This study demonstrated that, in contrast to fibroblasts, H.Ep.2 cells have a modified Na+/H+ exchange system whereby it acts in the Na in + H out + mode without exogenous growth factor activation and resists functioning in the reversed mode. It is proposed that inhibitin, is the endogenous modifier of this transport system in H.Ep.2 cells with the result that H.Ep.2 cells maintain a higher concentration of intracellular Na+ compared to fibroblasts.  相似文献   

8.
Normal human fibroblasts synthesized heat shock protein (HSP) 72 constitutively and its expression was augmented 6 hours after UV irradiation. Maximum induction of HSP72 was obtained at 12 hours and HSP72 showed a punctuated distribution in nucleus. While unscheduled DNA synthesis was almost completed 12 hours after UV irradiation, the S phase fraction decreased immediately and recovered after 6 hours. Thus, HSP72 augmentation was occurred coincidentally with the recovery of S phase, and suggested that HSP72 had some function during the recovery of DNA replication inhibited after UV irradiation.  相似文献   

9.
During autoxidation of the pentachlorophenol (PCP) metabolite tetrachlorohydroquinone (TCHQ) the semiquinone is formed as well as reactive oxygen species (ROS). It was examined if *OH or the semiquinone are the cause of TCHQ-induced genotoxicity by direct comparison of TCHQ- and H(2)O(2)-induced DNA damage in human cells. All endpoints tested (DNA damage, DNA repair, and mutagenicity) revealed a greater genotoxic potential for TCHQ than for H(2)O(2). In the comet assay, TCHQ induced DNA damage at lower concentrations than H(2)O(2). The damaging rate by TCHQ (tail moment (tm)/concentration) was 10-fold greater than by H(2)O(2). DNA repair was lower for TCHQ than for H(2)O(2) treatment. This was shown by measuring DNA repair in the unscheduled DNA synthesis (UDS) assay and the persistence of the DNA damage in the comet assay. In contrast to H(2)O(2), TCHQ in non-toxic concentrations was mutagenic in the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus of V79 cells. Finally, there were also differences observed in cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay) of TCHQ and H(2)O(2). Whereas the TCHQ cytotoxicity was enhanced during a 21h recovery phase, the H(2)O(2) cytotoxicity did not change. The results demonstrated that the pronounced genotoxic properties of TCHQ in human cells were not caused by *OH radicals but more likely by the tetrachlorosemiquinone (TCSQ) radical.  相似文献   

10.
Hydrogen-peroxide-resistant Chinese hamster fibroblasts, derived from the HA-1 cell line, were isolated following continuous culturing in the presence of progressively increasing concentrations of hydrogen peroxide. The hydrogen-peroxide-resistant phenotype has been stable for over 360 days following removal from H2O2 stress. These H2O2-resistant cell lines demonstrate increased resistance to hyperthermic cell killing mediated by continuous heating at 43 degrees C but not 45 degrees C. The relationship between mammalian cellular adaptation to oxidative stress mediated by H2O2 and resistance to 43 degrees C hyperthermia is discussed.  相似文献   

11.
We hypothesized that activation of heat shock protein 70 (HSP70) by preconditioning, which is known to confer delayed cardioprotection, attenuates the impaired handling of Ca2+ at multiple sites. To test the hypothesis, we determined how the ryanodine receptor (RyR), sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), and Na+/Ca2+ exchanger (NCX) handled Ca2+ in rat ventricular myocytes preconditioned with a -opioid receptor agonist, U50488H (UP), followed by blockade of HSP70 with a selective antisense oligonucleotide and subsequently subjected to simulated ischemia. We determined the following: 1) the Ca2+ transients induced by electrical stimulation and caffeine, which provide the overall picture of Ca2+ homeostasis; 2) expression of RyR, SERCA, and NCX; and 3) Ca2+ fluxes via NCX by the use of 45Ca2+ in the rat ventricular myocyte. We found that UP increased the activity of RyR, SERCA, and NCX and the expression of RyR and SERCA. These effects led to increases in the release of Ca2+ from the sarcoplasmic reticulum via RyR and in the removal of Ca2+ from the cytoplasm by reuptake of Ca2+ to the SR via SERCA and by extrusion of Ca2+ out of the cell via NCX. UP also reduced mitochondrial Ca2+ accumulation. All of the effects of UP were either abolished or significantly attenuated by blockade of HSP70 synthesis with a selective antisense oligonucleotide. The results are evidence that activation of HSP70 by preconditioning improves the ischemia-impaired Ca2+ homeostasis at multiple sites in the heart, which may be responsible, at least partly, for attenuated Ca2+ overload, improved recovery in contractile function, and cardioprotection. intracellular Ca2+, -opioid receptor; Na+/Ca2+ exchanger; ryanodine receptor; sarco(endo)plasmic reticulum Ca2+-ATPase  相似文献   

12.
13.
Multiple cyclin-dependent kinases (CDKs) control eukaryotic cell division, but assigning specific functions to individual CDKs remains a challenge. During the mammalian cell cycle, Cdk2 forms active complexes before Cdk1, but lack of Cdk2 protein does not block cell-cycle progression. To detect requirements and define functions for Cdk2 activity in human cells when normal expression levels are preserved, and nonphysiologic compensation by other CDKs is prevented, we replaced the wild-type kinase with a version sensitized to specific inhibition by bulky adenine analogs. The sensitizing mutation also impaired a noncatalytic function of Cdk2 in restricting assembly of cyclin A with Cdk1, but this defect could be corrected by both inhibitory and noninhibitory analogs. This allowed either chemical rescue or selective antagonism of Cdk2 activity in vivo, to uncover a requirement in cell proliferation, and nonredundant, rate-limiting roles in restriction point passage and S phase entry.  相似文献   

14.

In vitro exposure of human erythrocytes to H2O2 at concentrations of 30–1000 μM resulted in a dose-dependent increase of the intracellular levels of Zn2+ and inhibition of the cytosolic esterase activity, which is a major marker of erythrocyte viability. The observed effect depended on the concentration of H2O2 and the duration of exposure of the cells to this compound. An inverse relationship between the changes in the intracellular level of labile zinc ions and esterase activity in the cells exposed to hydrogen peroxide was detected; this was indicative of the role of Zn2+ in the programmed death of red blood cells. The combined action of hydrogen peroxide and N',N'-tetrakis-(2-pyridyl-methyl)-ethylenediamine, an intracellular zinc ion chelator, has been found to eliminate the cytotoxic effect of H2O2, whereas the addition of Zn2+ to the erythrocyte incubation medium enhanced the effects of hydrogen peroxide. The reduction of the concentration of non-protein thiol groups due to a decrease of the level of reduced glutathione was shown to contribute to the release of Zn2+ from the intracellular binding sites during oxidative stress induced by H2O2 in human erythrocytes.

  相似文献   

15.
A plasmid containing the human HSP70 gene was used to transfect and express the protein in Escherichia coli. The bacterial product was a fusion protein containing 640 amino acids of HSP70, plus 33 additional NH2 terminal amino acids; 12 from the bacterial expression vector and 21 from a 5' human sequence that is not normally translated. It was partially purified by ion-exchange and ATP-Sepharose affinity column chromatography. The bacterially produced human HSP70 protein was then compared with HSP70 obtained from cultured 293 cells. Both shared the same staphylococcal V8 protease peptide fragment pattern, ATP binding, and a weak ATPase activity (about 10-15 nmol ATP hydrolyzed per milligram protein per minute at 30 degrees C). The bacterially produced human HSP70 protein differed in its V8 protease pattern with an E. coli ATP-binding protein that corresponded in molecular mass to the E. coli dnaK gene product. Mutants in the human HSP70 gene were constructed which significantly reduced a predicted major alpha-helical domain in the HSP70 molecule that has partial homology to an ATP-binding site of several protein kinases. One HSP70 mutant clone contained a deletion of 20% at the NH2 terminus, and expressed a 57-kDa product, while the other was missing the middle 50% of the gene (40-kDa product). Neither protein fragment bound to an ATP affinity column, suggesting that ATP binding to HSP70 may be conformationally affected by a region about 20% internal to the NH2 terminal end of the molecule. Recently, a similar location of the ATP-binding site has been reported by Milarski and Morimoto (27).  相似文献   

16.
Ionizing radiation-induced bystander effects have been documented for a multitude of endpoints such as mutations, chromosome aberrations and cell death, which arise in nonirradiated bystander cells having received signals from directly irradiated cells; however, energetic heavy ion-induced bystander response is incompletely characterized. To address this, we employed precise microbeams of carbon and neon ions for targeting only a very small fraction of cells in confluent fibroblast cultures. Conventional broadfield irradiation was conducted in parallel to see the effects in irradiated cells. Exposure of 0.00026% of cells led to nearly 10% reductions in the clonogenic survival and twofold rises in the apoptotic incidence regardless of ion species. Whilst apoptotic frequency increased with time up to 72 h postirradiation in irradiated cells, its frequency escalated up to 24h postirradiation but declined at 48 h postirradiation in bystander cells, indicating that bystander cells exhibit transient commitment to apoptosis. Carbon- and neon-ion microbeam irradiation similarly caused almost twofold increments in the levels of serine 15-phosphorylated p53 proteins, irrespective of whether 0.00026, 0.0013 or 0.0066% of cells were targeted. Whereas the levels of phosphorylated p53 were elevated and remained unchanged at 2h and 6h postirradiation in irradiated cells, its levels rose at 6h postirradiation but not at 2h postirradiation in bystander cells, suggesting that bystander cells manifest delayed p53 phosphorylation. Collectively, our results indicate that heavy ions inactivate clonogenic potential of bystander cells, and that the time course of the response to heavy ions differs between irradiated and bystander cells. These induced bystander responses could be a defensive mechanism that minimizes further expansion of aberrant cells.  相似文献   

17.
18.
19.
Proteins are modified by reactive oxygen species, and oxidation of specific amino acid residues can impair their biological functions, leading to an alteration in cellular homeostasis. Oxidized proteins can be eliminated through either degradation or repair. Repair is limited to the reversion of a few modifications such as the reduction of methionine oxidation by the methionine sulfoxide reductase (Msr) system. However, accumulation of oxidized proteins occurs during aging, replicative senescence, or neurological disorders or after an oxidative stress, while Msr activity is impaired. In order to more precisely analyze the relationship between oxidative stress, protein oxidative damage, and MsrA, we stably overexpressed MsrA full-length cDNA in SV40 T antigen-immortalized WI-38 human fibroblasts. We report here that MsrA-overexpressing cells are more resistant than control cells to hydrogen peroxide-induced oxidative stress, but not to ultraviolet A irradiation. This MsrA-mediated resistance is accompanied by a decrease in intracellular reactive oxygen species and is partially abolished when cells are cultivated at suboptimal concentration of methionine. These results indicate that MsrA may play an important role in cellular defenses against oxidative stress, by catalytic removal of oxidant through the reduction of methionine sulfoxide, and in protection against death by limiting, at least in part, the accumulation of oxidative damage to proteins.  相似文献   

20.
Lim Y  Lee E  Lee J  Oh S  Kim S 《Journal of biochemistry》2008,144(4):523-529
Protein arginine methylation is one of the post-translational modifications which yield monomethyl and dimethyl (asymmetric or symmetric) arginines in proteins. In the present study, we investigated the status of protein arginine methylation during human diploid fibroblast senescence. When the expression of protein arginine methyltransferases (PRMTs), namely PRMT1, PRMT4, PRMT5 and PRMT6 was examined, a significant reduction was found in replicatively senescent cells as well as their catalytic activities against histone mixtures compared with the young cells. Furthermore, when the endogenous level of arginine-dimethylated proteins was determined, asymmetric modification (the product of type I PRMTs including PRMT1, PRMT4 and PRMT6) was markedly down-regulated. In contrast, both up- and down-regulations of symmetrically arginine-methylated proteins (the product of type II PRMTs including PRMT5) during replicative senescence were found. Furthermore, when young fibroblasts were induced to premature senescence by sub-cytotoxic H2O2 treatment, results similar to replicative senescence were obtained. Finally, we found that SV40-mediated immortalized WI-38 and HeLa cell lines maintained a higher level of asymmetrically modified proteins as well as type I PRMTs than young fibroblasts. These results suggest that the maintenance of asymmetric modification in the expressed target proteins of type I PRMTs might be critical for cellular proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号