首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The author presents the current notion of symbiosis as one of the main adaptation of an organism to changeable environment. Symbiosis is considered as a super organism genetic system within which there are different interactions (including mutualism and antagonism). Genetic integration of symbiotic partners can be realized as cross regulation of their genes, exchange of gene products (proteins, RNA), gene amplification and sometimes gene transfer between organisms. On the phenotypic level these processes result in signal interactions, integration of partner metabolic systems and development of symbiotic organs. Co-evolution is considered as an assemblage of micro- and macroevolution processes basing on pre-adaptations and proceeding under influence of different forms of natural selection (individual, frequency-depended and kin selection). Symbiosis can be compared with sexual process since both are the forms of organism integration characterized by different genetic mechanisms and evolutionary consequences. The genome evolution in symbiotic microorganisms can proceed by: 1) simplification of genome in obligate symbiosis (loss of genes that are necessary for independent existence, transfer of some genes to the host organism); 2) complication of genome in facultative symbiosis (increase in genome plasticity, structural and functional differentiation of genome into systems controlling free-living and symbiotic parts of life cycle). Most of symbiotic interactions are correlated to an increase in genetic plasticity of an organism that can lead to evolutionary saltations and origin of new forms of life.  相似文献   

2.
Large amounts of expression data dealing with biotic stresses in rice have been produced in the past 5 years. Here, we extensively review approximately 70 publications and gather together information on more than 2,500 genes of the rice defense arsenal. This information was integrated into the OryGenesDB database. Several genes (e.g., metallothioneins and PBZ1) appear to be hallmarks of rice-pathogen interactions. Cross-referencing this information with the rice kinome highlighted some defense genes and kinases as possible central nodes of regulation. Cross referencing defense gene expression and quantitative trait loci (QTL) information identified some candidate genes for QTL. Overall, pathogenesis-related genes and disease regulators were found to be statistically associated with disease QTL. At the genomic level, we observed that some regions are richer than others and that some chromosomes (e.g., 11 and 12), which contain a lot of resistance gene analogs, have a low content of defense genes. Finally, we show that classical defense genes and defense-related genes such as resistance genes are preferentially organized in clusters. These clusters are not always coregulated and individual paralogs can show specific expression patterns. Thus, the rice defense arsenal has an ARCHIPELAGO-like genome structure at the macro and micro level. This resource opens new possibilities for marker-assisted selection and QTL cloning.  相似文献   

3.
Since operons are unstable across Prokaryotes, it has been suggested that perhaps they re-combine in a conservative manner. Thus, genes belonging to a given operon in one genome might re-associate in other genomes revealing functional relationships among gene products. We developed a system to build networks of functional relationships of gene products based on their organization into operons in any available genome. The operon predictions are based on inter-genic distances. Our system can use different kinds of thresholds to accept a functional relationship, either related to the prediction of operons, or to the number of non-redundant genomes that support the associations. We also work by shells, meaning that we decide on the number of linking iterations to allow for the complementation of related gene sets. The method shows high reliability benchmarked against knowledge-bases of functional interactions. We also illustrate the use of Nebulon in finding new members of regulons, and of other functional groups of genes. Operon rearrangements produce thousands of high-quality new interactions per prokaryotic genome, and thousands of confirmations per genome to other predictions, making it another important tool for the inference of functional interactions from genomic context.  相似文献   

4.
5.
Individual genes or regions are still commonly used to estimate the phylogenetic relationships among viral isolates. The genomic regions that can faithfully provide assessments consistent with those predicted with full-length genome sequences would be preferable to serve as good candidates of the phylogenetic markers for molecular epidemiological studies of many viruses. Here we employed a statistical method to evaluate the evolutionary relationships between individual viral genes and full-length genomes without tree construction as a way to determine which gene can match the genome well in phylogenetic analyses. This method was performed by calculation of linear correlations between the genetic distance matrices of aligned individual gene sequences and aligned genome sequences. We applied this method to the phylogenetic analyses of porcine circovirus 2 (PCV2), measles virus (MV), hepatitis E virus (HEV) and Japanese encephalitis virus (JEV). Phylogenetic trees were constructed for comparisons and the possible factors affecting the method accuracy were also discussed in the calculations. The results revealed that this method could produce results consistent with those of previous studies about the proper consensus sequences that could be successfully used as phylogenetic markers. And our results also suggested that these evolutionary correlations could provide useful information for identifying genes that could be used effectively to infer the genetic relationships.  相似文献   

6.
Bodil K. Ehlers  Trine Bilde 《Oikos》2019,128(6):765-774
The findings that some plants alter their competitive phenotype in response to genetic relatedness of its conspecific neighbour (and presumed competitor) has spurred an increasing interest in plant kin‐interactions. This phenotypic response suggests the ability to assess the genetic relatedness of conspecific competitors, proposing kin selection as a process that can influence plant competitive interactions. Kin selection can favour restrained competitive growth towards kin, if the fitness loss from reducing own growth is compensated by increased fitness in the related neighbour. This may lead to positive frequency dependency among related conspecifics with important ecological consequences for species assemblage and coexistence. However, kin selection in plants is still controversial. First, many studies documenting a plastic response to neighbour relatedness do not estimate fitness consequences of the individual that responds, and when estimated, fitness of individuals grown in competition with kin did not necessarily exceed that of individuals grown in non‐kin groups. Although higher fitness in kin groups could be consistent with kin selection, this could also arise from mechanisms like asymmetric competition in the non‐kin groups. Here we outline the main challenges for studying kin selection in plants taking genetic variation for competitive ability into account. We emphasize the need to measure inclusive fitness in order to assess whether kin selection occurs, and show under which circumstances kin selected responses can be expected. We also illustrate why direct fitness estimates of a focal plant, and group fitness estimates are not suitable for documenting kin selection. Importantly, natural selection occurs at the individual level and it is the inclusive fitness of an individual plant – not the mean fitness of the group – that can capture if a differential response to neighbour relatedness is favoured by kin selection.  相似文献   

7.
Parts of the genome of a single individual can have conflicting interests, depending on which parent they were inherited from. One mechanism by which these conflicts are expressed in some taxa, including mammals, is genomic imprinting, which modulates the level of expression of some genes depending on their parent of origin. Imprinted gene expression is known to affect body size, brain size, and the relative development of various tissues in mammals. A high fraction of imprinted gene expression occurs in the brain. Biologists including Hamilton, Trivers and Haig have proposed that this may explain some intrapersonal conflict in humans. This speculation amounts to an inference from conflict within the genome (which is well-established) to conflict within the brain or mind. This is a provocative proposal, which deserves serious attention. In this paper I assess aspects of Haig’s version of the proposal. I argue, first, that the notion that intragenomic conflict predicts personal inconsistency should be rejected. Second, while it is unlikely that it credibly predicts sub-personal agents representing conflicting genetic interests, it is plausible that it predicts that the division of cognitive labour could be exploited to turn sub-systems into proxies for conflicting interests.  相似文献   

8.
Modern biology has been heavily influenced by the gene‐centric concept. Paradoxically, this very concept – on which bioresearch is based – is challenged by the success of gene‐based research in terms of explaining evolutionary theory. To overcome this major roadblock, it is essential to establish new theories, to not only solve the key puzzles presented by the gene‐centric concept, but also to provide a conceptual framework that allows the field to grow. This paper discusses a number of paradoxes and illustrates how they can be addressed by the genome‐centric concept in order to further resynthesize evolutionary theory. In particular, methodological breakthroughs that analyze genome evolution are discussed. The multiple interactions among different levels of a complex system provide the key to understanding the relationship between self‐organization and natural selection. Darwinian natural selection applies to the biological level due to its unique genetic and heterogeneous features, but does not simply or directly apply to either the lower non‐living level or higher intellectual society level. At the complex bio‐system level, the genome context (the entire package of genes and their genomic physical relationship or genomic topology), not the individual genes, defines the system and serves as the principle selection platform for evolution.  相似文献   

9.
S W Alemu  P Berg  L Janss  P Bijma 《Heredity》2014,112(2):197-206
Social interactions among individuals are widespread, both in natural and domestic populations. As a result, trait values of individuals may be affected by genes in other individuals, a phenomenon known as indirect genetic effects (IGEs). IGEs can be estimated using linear mixed models. The traditional IGE model assumes that an individual interacts equally with all its partners, whether kin or strangers. There is abundant evidence, however, that individuals behave differently towards kin as compared with strangers, which agrees with predictions from kin-selection theory. With a mix of kin and strangers, therefore, IGEs estimated from a traditional model may be incorrect, and selection based on those estimates will be suboptimal. Here we investigate whether genetic parameters for IGEs are statistically identifiable in group-structured populations when IGEs differ between kin and strangers, and develop models to estimate such parameters. First, we extend the definition of total breeding value and total heritable variance to cases where IGEs depend on relatedness. Next, we show that the full set of genetic parameters is not identifiable when IGEs differ between kin and strangers. Subsequently, we present a reduced model that yields estimates of the total heritable effects on kin, on non-kin and on all social partners of an individual, as well as the total heritable variance for response to selection. Finally we discuss the consequences of analysing data in which IGEs depend on relatedness using a traditional IGE model, and investigate group structures that may allow estimation of the full set of genetic parameters when IGEs depend on kin.  相似文献   

10.
Comparison of genes among cereals   总被引:9,自引:0,他引:9  
Comparison of partially sequenced cereal genomes suggests a mosaic structure consisting of recombinationally active gene-rich islands that are separated by blocks of high-copy DNA. Annotation of the whole rice genome suggests that most, but not all, cereal genes are present within the rice genome and that the high number of reported genes in this genome is probably due to duplications. Within the cereals, macrocolinearity is conserved but, at the level of individual genes, microcolinearity is frequently disrupted. Preliminary evidence from limited comparative analysis of sequenced orthologous genomic segments suggests that local gene amplification and translocation within a plant genome may be linked in some cases.  相似文献   

11.
The availability of genomic and proteomic data from across the tree of life has made it possible to infer features of the genome and proteome of the last universal common ancestor (LUCA). A number of studies have done so, all using a unique set of methods and bioinformatics databases. Here, we compare predictions across eight such studies and measure both their agreement with one another and with the consensus predictions among them. We find that some LUCA genome studies show a strong agreement with the consensus predictions of the others, but that no individual study shares a high or even moderate degree of similarity with any other individual study. From these observations, we conclude that the consensus among studies provides a more accurate depiction of the core proteome of the LUCA and its functional repertoire. The set of consensus LUCA protein family predictions between all of these studies portrays a LUCA genome that, at minimum, encoded functions related to protein synthesis, amino acid metabolism, nucleotide metabolism, and the use of common, nucleotide‐derived organic cofactors.  相似文献   

12.
Over the past decade genomic approaches have begun to revolutionise the study of animal diversity. In particular, genome sequencing programmes have spread beyond the traditional model species to encompass an increasing diversity of animals from many different phyla, as well as unicellular eukaryotes that are closely related to the animals. Whole genome sequences allow researchers to establish, with reasonable confidence, the full complement of any particular family of genes in a genome. Comparison of gene complements from appropriate genomes can reveal the evolutionary history of gene families, indicating when both gene diversification and gene loss have occurred. More than that, however, assembled genomes allow the genomic environment in which individual genes are found to be analysed and compared between species. This can reveal how gene diversification occurred. Here, we focus on the Fox genes, drawing from multiple animal genomes to develop an evolutionary framework explaining the timing and mechanism of origin of the diversity of animal Fox genes. Ancient linkages between genes are a prominent feature of the Fox genes, depicting a history of gene clusters, some of which may be relevant to understanding Fox gene function.  相似文献   

13.
《Animal behaviour》1986,34(4):1182-1188
Discrimination between individual full siblings was tested in spiny mice (Acomys cahirinus). At weaning, intact litters were separated into two pairs so that animals only had social contact with one of their full siblings. Following 10 days of being housed in pairs, the four weanlings from a given litter were reunited in an observation terrarium. Pairings by familiar siblings were more frequent than unfamiliar-sibling pairings, indicating that interactions among close kin are mediated by the recognition of individual signatures rather than general phenotypic traits shared by all members of a kin class. Animals rendered anosmic by intranasal injections of zinc sulphate displayed no evidence of discriminating between familiar and unfamiliar siblings. Olfactory cues therefore appear to function as the signatures by which individual siblings are recognized. Since all animals were fed identical diets and otherwise maintained in similar environments, the differences in olfactory signatures between full siblings are most likely a function of genetic variability within this class of kin.  相似文献   

14.
15.
The ultimate goal of functional genomics is to define the function of all the genes in the genome of an organism. A large body of information of the biological roles of genes has been accumulated and aggregated in the past decades of research, both from traditional experiments detailing the role of individual genes and proteins, and from newer experimental strategies that aim to characterize gene function on a genomic scale.It is clear that the goal of functional genomics can only be achieved by integrating information and data sources from the variety of these different experiments. Integration of different data is thus an important challenge for bioinformatics.The integration of different data sources often helps to uncover non-obvious relationships between genes, but there are also two further benefits. First, it is likely that whenever information from multiple independent sources agrees, it should be more valid and reliable. Secondly, by looking at the union of multiple sources, one can cover larger parts of the genome. This is obvious for integrating results from multiple single gene or protein experiments, but also necessary for many of the results from genome-wide experiments since they are often confined to certain (although sizable) subsets of the genome.In this paper, we explore an example of such a data integration procedure. We focus on the prediction of membership in protein complexes for individual genes. For this, we recruit six different data sources that include expression profiles, interaction data, essentiality and localization information. Each of these data sources individually contains some weakly predictive information with respect to protein complexes, but we show how this prediction can be improved by combining all of them. Supplementary information is available at http://bioinfo.mbb.yale.edu/integrate/interactions/.Abbreviations: TP: true possitive; TN: true negative; FP: false positive; FN: false negative; Y2H: yeast two-hybrid.  相似文献   

16.
17.
Intragenomic politics   总被引:1,自引:0,他引:1  
The mammalian genome contains multiple genetic factions with distinct interests in the outcomes of interactions among kin. In the context of an offspring's relations with its mother, these factions are proposed to align into two 'parties', one favoring increased demand by offspring and the other favoring reduced demand. A possible alignment has inhibitors of demand located on the X chromosome and enhancers of demand located on autosomes, because X-linked loci are maternally derived two-thirds of the time by contrast to autosomal loci which are maternally derived half of the time.  相似文献   

18.
19.
Polyploidy and angiosperm diversification   总被引:2,自引:0,他引:2  
Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid event that may have occurred close to the eudicot divergence. However, there is currently no evidence for WGD in Amborella, the putative sister species to other extant angiosperms. The question is no longer "What proportion of angiosperms are polyploid?", but "How many episodes of polyploidy characterize any given lineage?" New algorithms provide promise that ancestral genomes can be reconstructed for deep divergences (e.g., it may be possible to reconstruct the ancestral eudicot or even the ancestral angiosperm genome). Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae. However, additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages and to determine when novel genes resulting from polyploidy have enabled adaptive radiations.  相似文献   

20.
The African trypanosome genome   总被引:1,自引:0,他引:1  
The haploid nuclear genome of the African trypanosome, Trypanosoma brucei, is about 35 Mb and varies in size among different trypanosome isolates by as much as 25%. The nuclear DNA of this diploid organism is distributed among three size classes of chromosomes: the megabase chromosomes of which there are at least 11 pairs ranging from 1 Mb to more than 6 Mb (numbered I-XI from smallest to largest); several intermediate chromosomes of 200-900 kb and uncertain ploidy; and about 100 linear minichromosomes of 50-150 kb. Size differences of as much as four-fold can occur, both between the two homologues of a megabase chromosome pair in a specific trypanosome isolate and among chromosome pairs in different isolates. The genomic DNA sequences determined to date indicated that about 50% of the genome is coding sequence. The chromosomal telomeres possess TTAGGG repeats and many, if not all, of the telomeres of the megabase and intermediate chromosomes are linked to expression sites for genes encoding variant surface glycoproteins (VSGs). The minichromosomes serve as repositories for VSG genes since some but not all of their telomeres are linked to unexpressed VSG genes. A gene discovery program, based on sequencing the ends of cloned genomic DNA fragments, has generated more than 20 Mb of discontinuous single-pass genomic sequence data during the past year, and the complete sequences of chromosomes I and II (about 1 Mb each) in T. brucei GUTat 10.1 are currently being determined. It is anticipated that the entire genomic sequence of this organism will be known in a few years. Analysis of a test microarray of 400 cDNAs and small random genomic DNA fragments probed with RNAs from two developmental stages of T. brucei demonstrates that the microarray technology can be used to identify batteries of genes differentially expressed during the various life cycle stages of this parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号