首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ewes in the luteal phase of the estrous cycle were treated with prostaglandin F2α (PGF), mated to rams at the ensuing estrus 2 days later, and necropsied at 2 or 23 hr after mating. At 2 hr after mating, ewes in PGF-regulated estrus had significantly fewer sperm in the middle and anterior one-thirds of the cervix and in the uterus than did ewes mated during natural estrus. At 23 hr, soon after ovulation, significantly fewer ewes in PGF-regulated estrus had sperm in the oviducts than did ewes in natural estrus.In Experiment 2, ewes in PGF-regulated or natural estrus were laparotomized, inseminated by deposition of semen in the uterine lumen, and necropsied 2 or 23 hr later. Intrauterine insemination prevented most of the reduction in sperm numbers in the reproductive tract at PGF-regulated estrus.In Experiment 3, ewes in PGF-regulated or natural estrus were either mated to rams or inseminated in the uterine lumen and necropsied 2 hr later. Sperm were recovered from three segments of the cervix and were counted and evaluated for motility, response to live-dead staining, and acrosomal morphology. Intrauterine insemination again reduced the detrimental effect of PGF-regulated estrus on sperm numbers. However, the percentages of sperm recovered from the cervix that were motile, live, and had normal acrosomes were much lower in ewes in PGF-regulated estrus than in ewes in natural estrus. Compared with natural mating, intrauterine insemination reduced but did not eliminate the detrimental effects of PGF-regulated estrus on the viability and morphology of sperm. Regulating estrus with PGF resulted in damage to sperm in the cervix regardless of whether sperm reached the cervix from the vagina or from the uterus.  相似文献   

2.
Three experiments were conducted with 105 superovulating Holstein dairy cows in attempts to improve the fertilization rate. Cows were superovulated with follicle-stimulating hormone (FSH) and time of estrus was regulated with prostaglandin F(2)alpha (PGF(2)alpha). Semen was deposited on each infundibulum through a laparoscope inserted through the flank (Experiment 1) or near the uterotubal junctions through flexible tubing passed through the cervix and uterine horns (Experiment 2). In the third experiment, high numbers of sperm in fresh semen were deposited in the uterus. Cows were necropsied and ova were recovered and examined about 3.5 d after the beginning of estrus. Deposition of 0.5 ml of frozen-thawed semen on each infundibulum (Experiment 1) reduced both ovum recovery and fertilization. In ten cows inseminated on the infundibulum, ova representing 43% of ovulation points were recovered and 9% of these recovered ova were fertilized. In ten control cows, ova representing 80% of ovulation points were recovered and 62% of them were fertilized. In a 2 x 2 experiment with 36 superovulating cows (Experiment 2), 1 ml of diluted fresh or frozen semen was deposited either near the uterotubal junction or in the uterine body. The overall fertilization rate was 61%, with no significant effect of site of semen deposition or type of semen used. In Experiment 3, 2 or 3 ml of neat semen (average of 4.4 billion sperm) was deposited in the uterus of 12 cows; 183 of 197 intact ova (93%) were fertilized. In 56 control cows inseminated with 0.5 to 1.5 ml of frozen diluted semen (average of 70 million sperm), 502 of 947 intact ova were fertilized (53%, P<0.001). Insemination with high numbers of fresh sperm overcame problems of sperm loss or sperm transport and improved the fertilization rate.  相似文献   

3.
A plastic spiral intrauterine device (IUD) in the ewe inhibits sperm transport through the cervix. In Exp. 1, plastic spirals were inserted surgically into the lumen of one or both uterine horns. In Exp. 2, Dacron threads were placed in the lumen of each horn. At a subsequent estrus, ewes were mated and necropsied 2 hours later. Sperm were washed from the uterine body and from the anterior, middle and posterior one-third of the cervix and examined. Plastic spirals significantly reduced the percentage of sperm recovered from the uterine body and each segment of the cervix that were motile and live and had normal acrosomes. In the anterior one-third of the cervix, e.g., 49% of the sperm were motile and 66% were live in control ewes but only 17% were motile and 23% were live in IUD ewes. Intrauterine threads also reduced the percentages of sperm that were motile and live in the anterior cervix. Failure of sperm transport in IUD-bearing ewes may be caused by conditions which result in loss of sperm motility in the cervix, thereby inhibiting the establishment of a reservoir of live sperm for transport to the oviducts.  相似文献   

4.
This study was conducted at Belen de Escobar, Argentina, in March and April 1987. Experimental work on synchronization of estrus, deep-freeze conservation of ram semen and small fertility trials involving cervical and intrauterine (i.u.) insemination methods was undertaken. A total of 80 Corriedale ewes were used in seven insemination trials. Insemination trials were grouped into two experimental groups for comparison of 1) frozen semen diluted with an experimental extender and a control diluent inseminated cervically or i.u. in synchronized/superovulated ewes and 2) cervical insemination of fresh diluted or frozen semen in ewes inseminated at natural estrus or in ewes that were synchronized/superovulated. An overall ovulation rate of 8.7 +/- 0.5 was obtained by using a superovulatory regimen consisting of 3 mg Norgestomet implants and a total dose of 18 mg follicle stimulating hormone-pituitary (FSH-P). Numbers of ova recovered per ewe following superovulation ranged from 4.3 to 5.4. In experimental Group I, fertilization rates improved when laparoscopic intrauterine AI was used compared with cervical insemination (P<0.05). Fertility rates of i.u. and cervical insemination of frozen semen diluted with the experimental extender showed satisfactory fertilizing capacity. In experimental Group II, a lower number of fertilized ova were recovered from ewes inseminated with frozen semen (P<0.02), irrespective of their estrus manipulation.  相似文献   

5.
The induction of estrus in 17 previously cycling nulliparous ewes, 9 to 10 months of age, was attempted with Medroxyprogesterone acetate (MAP) pessaries during the early anestrous period (March-April). Ewes were verified to be anestrous by the lack of estrous behavior in the presence of a vasectomized ram and by a radioimmunoassay for serum progesterone in two samples taken 7 days apart showing less than 1 ng/ml serum progesterone. Superovulation was attempted with injections of either FSH or FSH + LH. MAP vaginal pessaries remained in place for a period of 12 days and FSH was administered to all ewes (IM) at 12 hr intervals over a 3 day period; 5 mg was injected twice on day 11 after pessary insertion, followed by 4 and 3 mg injections twice daily on each succeeding day, for a total of 24 mg per ewe. Nine ewes were given 25 mg LH (IV) within 8 hrs after the onset of behavioral estrus in addition to FSH. Ewes were hand-mated to several rams at 12 hr intervals throughout the estrus period. Ovulation and fertilization rates were recorded for each ewe following midline laparotomy and embryo collection. All ewes were in estrus between 36 and 48 hrs after removal of the MAP pessaries. In ewes injected with FSH only, 8 of 8 ovulated with a mean ovulation rate of 6.0 +/- 4.4 and a fertilization rate of 70%. Nine of 9 ewes receiving both FSH + LH ovulated with a mean ovulation rate of 13.9 +/- 13.1 and a fertilization rate of 72%. Statistical analysis by Students t-test resulted in differences in number of ova recovered (P<.05) between FSH only and FSH + LH treated ewes and a trend towards increased ovulation rate in FSH + LH treated ewes. These results show that early seasonally anestrous ewes can be successfully induced and synchronized for estrus with MAP pessaries and the number of ova recovered is increased with the inclusion of LH in the superovulation regime.  相似文献   

6.
In a previous study in our laboratory, treatment of non-prolific Western White Face (WWF) ewes with PGF(2 alpha) and intravaginal sponges containing medroxyprogesterone acetate (MAP) on approximately Day 8 of a cycle (Day 0 = first ovulation of the interovulatory interval) resulted in ovulations during the subsequent 6 days when MAP sponges were in place. Two experiments were performed on WWF ewes during anestrus to allow us to independently examine if such ovulations were due to the direct effects of PGF(2 alpha) on the ovary or to the effects of a rapid decrease in serum concentrations of progesterone at PGF(2 alpha)-induced luteolysis. Experiment 1: ewes fitted with MAP sponges for 6 days (n = 12) were injected with PGF(2 alpha) (n = 6; 15 mg im), or saline (n = 6) on the day of sponge insertion. Experiment 2: ewes received progesterone-releasing subcutaneous implants (n = 6) or empty implants (n = 5) for 5 days. Six hours prior to implant removal, all ewes received a MAP sponge, which remained in place for 6 days. Ewes from both experiments underwent ovarian ultrasonography and blood sampling once daily for 6 days before and twice daily for 6 days after sponge insertion. Additional blood samples were collected every 4 h during sponge treatment. Experiment 1: 4-6 (67%) PGF(2 alpha)-treated ewes ovulated approximately 1.5 days after PGF(2 alpha) injection; these ovulations were not preceded by estrus or a preovulatory surge release of LH, and resulted in transient corpora hemorrhagica (CH). The growth phase was longer (P < 0.05) and the growth rate slower (P < 0.05) in ovulating versus non-ovulating follicles in PGF(2 alpha)-treated ewes. Experiment 2: in ewes given progesterone implants, serum progesterone concentrations reached a peak (1.7 2 ng/mL; P < 0.001) on the day of implant removal and decreased to basal concentrations (<0.17 ng/mL; P < 0.001) within 24 h of implant removal. No ovulations occurred in either the treated or the control ewes. We concluded that ovulations occurring after PGF(2 alpha) injection, in the presence of a MAP sponge, could be due to a direct effect of PGF(2 alpha) at the ovarian level, rather than a sudden decline in circulating progesterone concentrations.  相似文献   

7.
We wished to evaluate the effects of FSH/LH ratio and number of doses of p-FSH during a superovulatory treatment on ovulation rate and embryo production (Experiment I). In Experiment II, we studied the efficacy of fertilization after various insemination schedules in superovulated donors. In Experiment I estrus was synchronized in 40 ewes (FGA, for 9 days plus PGF2alpha on Day 7) and the ewes were randomly assigned to four treatment groups as follows (n = 10 ewes each): Group A: four p-FSH doses with the FSH/LH ratio held constant (1.6); Group B: four p-FSH doses with the FSH/LH ratio decreasing (FSH/LH 1.6-1.0-0.6-0.3); Group C: eight p-FSH doses with the FSH/LH ratio held constant (1.6); Group D: eight p-FSH doses and FSH/LH ratio decreasing (1.6-1.6, 1.0-1.0, 0.6-0.6, 0.3-0.3). p-FSH administrations were performed twice daily 12 h apart. The ewes were mated at the onset of estrus and again after 12 and 24 h; then, one ram per four ewes was maintained with the ewes for two additional days. Ovarian response and embryo production were assessed on Day 7 after estrus. Experiment II. Three groups (n = 10 each) of superovulated ewes were inseminated as follows: Group M: mated at onset of estrus; Group AI: artificial insemination 30 h after onset of estrus; M + AI) mating at onset of estrus and intrauterine AI performed 30 h from estrus with fresh semen. Results of Experiment I showed that treatment (D) improved (P < 0.05) ovulatory response in comparison to Groups (C) and (A). The fertilization rate was lower (P < 0.01) in Group D) than Group (A). Also the proportion of transferable embryos was lower in Group (D) in comparison to all the other treatments (P < 0.01). Group A gave the best production of embryos (7.3/ewe; 89.0% transferable). In Experiment II, combined mating plus AI improved fertilization rate (80.3%) compared to both mating (P < 0.01) and AI (P < 0.02) alone.  相似文献   

8.
Hawk HW  Wall RJ  Conley HH 《Theriogenology》1989,32(2):243-253
Holstein or Angus cows were superovulated, inseminated with fresh bull semen, and necropsied about 12 h after estimated time of ovulation. Ova were centrifuged at 15,600 G for 3 to 8 min to reveal pronuclei. In Experiment 1, pronuclear bovine embryos were transferred to ligated or unligated oviducts of 1-d pseudopregnant rabbits for 7 d; 30 of 32 embryos were recovered from ligated oviducts but only 2 of 26 from oviducts and uterine horns of unligated oviducts. In Experiment 2, a Rous sarcoma virus-chloramphenicol acetyl transferase fusion gene was injected into one pronucleus of about half of 404 fertilized bovine ova, using a micromanipulator and interference contrast optics. Injected and noninjected embryos were then transferred to opposite ligated rabbit oviducts. Embryos were recovered after 7, 8 or 9 d. Of 120 centrifuged but ininjected embryos recovered from rabbit oviducts, 66 (55%) were in the morula to hatching blastocyst stage of development. Of 105 embryos centrifuged and injected with foreign DNA, 55 (52%) were in the morula to hatching blastocyst stage. In Experiment 3, centrifuged bovine embryos, noninjected or DNA-injected, were cultured in rabbit oviducts for 7 d then transferred nonsurgically to the uterus of recipient cows. Embryos were also flushed from superovulated cows 8 d after estrus and transferred directly to recipient cows. After 7 d, the uterus of recipient cows was flushed nonsurgically to recover embryos. The proportion of transferred embryos recovered with normally elongated trophoblastic membranes and the proportion of recipient cows with developing embryos were 14 of 25 DNA-injected embryos, 5 of 8 cows; 6 of 15 centrifuged but noninjected embryos, 4 of 6 cows; and 11 of 29 embryos transferred directly, 5 of 8 cows. Results indicate that bovine embryos can be cultured in rabbit oviducts and survive after transfer to cow uteri and that injection of foreign DNA may not increase embryonic loss within the first 2 wk after injection.  相似文献   

9.
In this study we explored the possible underlying mechanism(s) of the differential transport of unfertilized and fertilized ova in cycling and pregnant rats. The number of ova recovered from rat oviducts and uterus was not significantly different in estrus, metestrus and diestrus but dropped sharply at proestrus. When estrus rats were injected with indomethacin (10(-6)), a well known inhibitor of cyclooxygenase, delivered into both ovarian bursae, and sacrificed next day at metestrus, the number of ova in the oviduct was significantly smaller (p less than 0.025) than in controls at metestrus. On the other hand, when diestrus rats were injected with PGE1 (10(-6)) delivered into both ovarian bursae, and sacrificed next day at proestrus, no ova were found in the oviducts, and only a few of them were in the uterus. When fertilized ova were recovered from oviducts and uteri at day 4 of pregnancy (corresponding to proestrus of cycling rats) an average of 4 embryos were still found in the oviducts, proving a differential ovum transport between cycling and pregnant rats. In order to establish if there exists any ova or embryo releasing factor responsible for this difference, the prostaglandins released to the incubation medium by ovum or 3-day embryo were measured. Unfertilized ova produced significantly more PGE1 (p less than 0.05) than PGE2 or PGF2 alpha. The same pattern of PG production was observed with incubated embryos, but in this case the amount of PGE1 released was significantly higher (p less than 0.01) that the PGE1 released by unfertilized ova.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In the ewe, a rise in circulating concentrations of FSH preceding follicular wave emergence begins in the presence of growing follicles from a previous wave. We hypothesized that prostaglandin F(2alpha) (PGF(2alpha)) given at the time of an endogenous FSH peak in cyclic ewes would result in synchronous ovulation of follicles from two consecutive waves, increasing ovulation rate. Twelve Western White Face (WWF) ewes received a single i.m. injection of PGF(2alpha) (15 mg/ewe) at the expected time of a peak in FSH secretion, from Days 9 to 12 after ovulation. The mean ovulation rate after PGF(2alpha) treatment (2.3+/-0.3) did not differ (P>0.05) from the pre-treatment ovulation rate (1.7+/-0.1). Five ewes ovulated follicles from follicular waves emerging before and after PGF(2alpha) injection (3.0+/-0.6 ovulations/ewe) and seven ewes ovulated follicles only from a wave(s) emerging before PGF(2alpha) treatment (2.0+/-0.3 ovulations/ewe; P>0.05). The mean interval from PGF(2alpha) to emergence of the next follicular wave (1.0+/-0.4 and 4.0+/-0.0 d, respectively; P<0.001) and the interval from PGF(2alpha) treatment to the next FSH peak (0 and 3.5+/-0.4d, respectively; P<0.05) differed between the two groups. Six ewes ovulated after the onset of behavioral estrus, with a mean ovulation rate of 1.7+/-0.2, and six ewes ovulated both before and after the onset of estrus (3.0+/-0.5 ovulations/ewe; P<0.05). None of the ovulations that occurred before estrus resulted in corpora lutea (CL) with a full life span. At 24h before ovulation, follicles ovulating before or after the onset of estrus differed in size (4.1+/-0.3 or 5.5+/-0.4mm, respectively; P<0.05) and had distinctive echotextural characteristics. In conclusion, the administration of PGF(2alpha) at the expected time of an FSH peak at mid-cycle in ewes may alter the endogenous rhythm of FSH secretion and was not consistently followed by ovulation of follicles from two follicular waves. In non-prolific WWF ewes, PGF(2alpha)-induced luteolysis disrupted the normal distribution of the source of ovulatory follicles and may be associated with untimely follicular rupture and luteal inadequacy.  相似文献   

11.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

12.
Hair sheep ewes were used to evaluate the influence of various levels of mating stimuli on the duration and timing of estrus and LH concentrations around estrus. Ewes were treated with PGF2alpha (15 mg, im) 10 d apart. At the time of the second PGF2alpha treatment (Day 0) ewes were placed in groups and exposed to different types of mating stimuli. One group of ewes (n = 16) was exposed to an epididymectomized ram (RAM), a second group of ewes (n = 16) was exposed to an epididymectomized ram wearing an apron to prevent intromission (APRON) and a third group of ewes (n = 17) was exposed to an androgenized ovariectomized ewe (T-EWE). Jugular blood samples were collected from ewes at 6-h intervals through Day 5. Plasma was harvested and LH concentration was determined by RIA. The ewes were observed at 6-h intervals to detect estrus. A ewe was considered to be out of estrus when she no longer stood to be mounted by the teaser animal. There was no difference (P > 0.10) in the proportion of ewes expressing estrus (79.6%) or having an LH surge (85.7%) among the treatments. Neither the time to estrus nor the duration of estrus were different (P > 0.10) among APRON, RAM or T-EWE groups (41.6+/-3.8 vs 43.6+/-3.6 vs 46.1+/-3.6 h, respectively, and 26.5+/-2.2 vs 24.8+/-2.3 vs 30.5+/-2.2 h, respectively). The time to LH surge was similar (P > 0.10) among APRON, RAM and T-EWE groups (51.2+/-4.5 vs 51.2+/-4.7 vs 52.7+/-4.5 h, respectively). The magnitude of the LH surge was similar (P > 0.10) in the T-EWE, APRON and RAM ewes (99.7+/-4.9 vs 87.2+/-4.9 vs 85.8+/-5.0 ng/mL, respectively). The time from estrus to the LH surge was not different (P > 0.10) among APRON, RAM or T-EWE ewes (10.1+/-2.2 vs 9.8+/-2.3 vs 11.6+/-2.3 h, respectively). These results show that the expression and duration of estrus are not influenced by different types of mating stimuli in hair sheep ewes. In addition, the timing and the magnitude of LH release does not appear to be influenced by mating stimuli around the time of estrus.  相似文献   

13.
Ovarian follicular dynamics and steroid secretion patterns were monitored in postpartum beef cows that were synchronized for estrus with melengestrol acetate (MGA) or prostaglandin F(2alpha) (PGF) prior to superovulation. Twenty-four muhiparous Angus cows were stratified by number of days postpartum to an MGA or PGF treatment prior to superovulation. Cows in the MGA group were fed 0.5 mg MGA/d for 14 d in a grain carrier. Superstitnulatory treatments began 14 d after withdrawal of MGA from feed or 11 d after administering a single injection of 500 microg cloprostenol (PGF). Supersthnulatory treatments (FSH) were administered twice daily in decreasing doses (7.5, 5, 5, 2.5 mg) over 4 d. Sixty and 72 h after initiating the superstimulatory treatments, all cows were treated with 750 microg and 500 microg PGF, respectively Cows were inseminated at 0, 12, and 24 h from the onset of standing estrus with semen from 2 proven sires. Cows within treatment were inseminated with 1, 2 and 1 (single) or 2, 4 and 2 units (double) of semen at the designated insemination times. Blood sampling and transrectal ultrasonography of ovaries were performed daily beginning 2 d prior to the initiation of FSH treatment and were continued through embryo recovery. Ovaries were examined daily to determine the number and size of follicles. Plasma samples were analyzed for progesterone and estradiol. Follicles were counted and categorized based on a 5 to 9 mm range or >/= 10 mm. At the end of superovulatory treatment there were more (P /= 10 mm among cows that were estrus synchronized with MGA (75 +/- 1.2) than with PGF (3.9 +/- 1.2) These differences were reflected in higher (P 相似文献   

14.
Luteal function and blastocyst development were compared in ewes treated with GnRH (100 mug) on Day 1 (Day 0 = day of estrus) or in ewes previously induced into estrus with PGF(2)alpha. In Experiment 1, the duration of estrous cycles of ewes previously treated with PGF(2)alpha were longer (P<0.06) than those that received PGF(2)alpha plus GnRH, GnRH alone, or remained untreated (control) ewes. Progesterone concentrations were lower (P<0.07) on Day 1 and higher (P<0.01) on Days 16 and 17 of the estrous cycles following PGF(2)alpha treatment relative to those of the natural (control) cycles. In Experiment 2, blastocysts of ewes treated with PGF(2)alpha were less developed (P<0.06) by Day 13 of pregnancy than those of the control ewes. The GnRH treatment did not influence any of these characteristics. Treatment with PGF(2)alpha delayed luteal formation during the subsequent estrous cycle, increased the duration of the estrous cycle and slowed the rate of blastocyst development relative to GnRH-treated and untreated ewes.  相似文献   

15.
Preovulatory follicles were removed from ewes during estrus to determine hormonal, ovarian and behavioral responses. In Experiment 1, new follicles were recruited and ovulated within 4 days, and a second estrous period was observed in most ewes. In Experiment 2, follicles were removed at Day 0 (estrus), Day 3.5 and Day 7.0 to determine responses to repeated follicular removal in the absence of a corpus luteum (CL). Ewes in two groups were given exogenous progestin at the time of first or second surgery. Each follicular removal was followed by a surge of follicle-stimulating hormone (FSH) and follicular growth, and in many cases, behavioral estrus and/or a surge of luteinizing hormone (LH) was detected around the time of the next follicular removal. Although not necessary for display of estrus, treatment with progestin during follicular maturation increased the number of ewes showing estrus. When the newly developing follicles were allowed to ovulate, resulting corpora lutea produced low levels of progesterone or had a short life span.  相似文献   

16.
The present study was performed in order to explore the influence of ova present within rat oviducts on: a) tubal spontaneous motility and b) oviduct prostaglandin production. It was found that the isometric developed tension (IDT) of tubes isolated from proestrous rats (preovulatory oviducts) was significantly higher (P less than 0.01) than the IDT of tubes from rats at estrus and at metestrus (postovulatory oviducts). After flushing the oviducts with KRB solution (i.e., after removing existing ova) the IDT of the oviducts obtained from estrous rats increased significantly (P less than 0.01), whereas the IDT of tubes isolated from proestrous rats (i.e., preparations without ova) was not modified. On the other hand, isolated tubes containing their corresponding ova released into the suspending solution significantly more PGE1 than PGE2 or PGF2 alpha (P less than 0.005). It was particularly interesting to find that after flushing the oviducts, tissue production of PGE1, PGE2 and PGF2 alpha was similar. Finally, when dose response curves for PGE1 and for PGE2 on the spontaneous contractions of oviducts isolated from rats at proestrus, estrus and metestrus were constructed, both PGs evoked an inhibitory inotropic action. The ED50 for PGE1 in tubes from estrous rats was significantly smaller (P less than 0.01) than that for metestrous animals but significantly greater (P less than 0.01) than that observed in oviducts from proestrous rats. The ED50 for PGE2 did not change in the different tested periods of the sex cycle. Results reported herein suggest the possibility that the ova present within rat oviducts, may influence their own transport along the tubes by modifying the amount of prostaglandins produced by the oviducts or via their own prostaglandin synthesis.  相似文献   

17.
Rabbit ovum donors were superovulated with pregnant mare's serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG). Ova were recovered 16-17 h post-hCG from oviducts immediately after killing and from excised oviducts held in saline 30 min at 33 degrees or 38 degrees C prior to ovum recovery. In vivo-capacitated spermatozoa were used to inseminate both groups of ova. Data revealed a decrease in fertilization rates following a 30-min delay at 38 degrees C in ovum recovery. Thus, 64% (44/69 ova) were fertilized with rapid recovery, whereas 43% (39/90 ova) were fertilized following a 30-min delay. The decrease in fertilization imposed by delay in ovum recovery was apparently overcome when oviduct storage was at 33 degrees C. Under these conditions, 69% of inseminated ova were fertilized. Ova inseminated with in vitro-capacitated sperm showed a similar response to delayed ovum recovery. Embryonic development in culture of ova obtained from mated does was not affected by delay in recovery at 33 degrees or 38 degrees C provided mated does had been injected only with hCG. Ova from mated does receiving both PMSG and hCG were adversely affected by a 38 degrees C delay. The data emphasize the importance of rapid ovum recovery from oviducts and suggest the possibility of altering conditions to overcome damaging effects of delayed recovery.  相似文献   

18.
Three experiments were carried out to evaluate induction in ewes of superovulation and embryo production by a single injection of a porcine pituitary extract (pFSH) dissolved in polyvinylpyrrolidone (PVP), investigating the effects of PVP molecular weight and its concentration (Experiment I), time and method of treatment (Experiments II and III). All ewes were synchronized for estrus by vaginal sponges impregnated with fluorogestone acetate (FGA; 30 mg, 9 days) plus PGF(2alpha) (Cloprostenol, 50 microg, 48h before sponge removal - s.r.), and superovulated by 250 IU pFSH. In Experiment I, 60 Gentile di Puglia ewes were subdivided into five experimental groups (n = 12): Group A, the control, received six decreasing intramuscular (i.m.) doses of pFSH, 12 h apart, beginning 48h before s.r.; Groups B and C were given 48 h before s.r. a single i.m. injection of pFSH dissolved in PVP with MW = 10,000, respectively, at concentrations of 15 and 30% w/v; Groups D and E received the same treatments as for B and C using PVP with MW = 40,000. None of the pFSH-PVP treatments were effective in inducing superovulation. In Experiment II, 22 Leccese ewes were subdivided into two groups (n = 11): Group A, control received i.m. four decreasing doses of pFSH, beginning 24 h before s.r., 12h apart; Group B was given a single i.m. injection of pFSH dissolved in PVP (MW = 40,000 at 30% w/v), 24 h before s.r. The pFSH-PVP treatment provided an ovulation rate similar to the control and tended to enhance embryo yield (4.4 versus 2.4, P>0.05). In Experiment III, 60 Leccese ewes were subdivided into six treatment groups (n = 10). Groups A and D served as controls and received i.m. 12 h apart, six doses (from 48 h before s.r.) and four doses (from 24h before s.r.) of pFSH, respectively. Groups B and C were treated by a single injection of pFSH in PVP (MW = 10,000; 30% w/v) 48 h before s.r., respectively by i.m. or subcutaneous (s.c.) administration. Groups E and F received the same treatments as for B and C 24 h before s.r. Intramuscular pFSH-PVP administration 24 h before s.r. provided an ovulation rate (8.1), mean numbers of ova recovered (5.6) and fertilized (4.2) comparable to the six or four dose treatments and significantly higher (P <0.01) compared to the pFSH-PVP treatment carried out i.m. 48 h before s.r.These results show that a single injection of pFSH dissolved in PVP at 30% w/v, performed i.m. 24 h before s.r., is able to induce a superovulatory response comparable to that following multiple injection treatment, regardless of PVP molecular weight.  相似文献   

19.
There are large variations with age in the number of ovulated ova found in superovulated female Wistar-Imamichi rats. In this study we investigated the numbers of ovulated ova and follicles with the aim of developing a superovulation technique that minimises variations. We also examined the number of non-atretic follicles in untreated rats aged 7-14 weeks, for each week of age. The numbers of 250-549 microm non-atretic follicles in untreated rats and the numbers of ovulated ova in superovulated rats both reached a peak at 12 weeks of age. The coefficients of variation for both follicle numbers and ova numbers changed with each week of age, reaching a maximum at 9 weeks of age and a minimum at 12 weeks of age. In order to achieve stable numbers of ova from superovulated rats, satisfactory results will be achieved using 12-week-old rats, minimising individual variations, with high numbers of ova.  相似文献   

20.
Forty superovulated dairy ewes of the Greek Chios breed were used in an experiment to evaluate the efficiency of laparoscopic intrauterine insemination on fertilization and embryo recovery rates as well as embryo quality. Estrus was synchronized by intravaginal progestagen impregnated sponges and superovulation was induced by administration of 8.8 mg o-FSH i.m. following a standard 8 dose protocol. A small volume (0.3 mL) of diluted fresh ram semen was deposited in each uterine horn 24 to 28 h after onset of the estrus by a laparoscopic technique. The animals were allocated randomly into two groups (Group A and B) of 20 animals each. In Group A, embryos were recovered 18 to 24 h after the intrauterine insemination and in Group B on Day 6. The average number of corpora lutea was 12.8 +/- 1.2 and 11.5 +/- 1.1 (+/- SEM); the overall embryo recovery was 66.4% and 57% and the percentage of recovered fertilized ova was 81% and 82.8% in Groups A and B, respectively. More fertilized ova were collected per ewe from Group A (P < or = 0.1). Results indicated that in Chios breed, superovulation using homologous FSH combined with laparoscopic AI leads to good ovarian response with satisfactory results in fertilization, embryo recovery and quality of embryos. This could lead to improved and more efficient methods for obtaining large numbers of high quality oocytes and embryos for embryo transfer programs which could contribute to genetic improvement and increase of the population size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号