首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inhibitory glycine receptor (GlyR) subunits undergo developmental regulation, but the molecular mechanisms of GlyR regulation in developing neurons are little understood. Using RT-PCR, we investigated the regulation of GlyR alpha-subunit splice forms during the development of the spinal cord of the rat. Experiments to compare the amounts of mRNA for two known splice variants of the GlyR alpha2 subunit, alpha2A and alpha2B, in the developing rat spinal cord revealed the presence of an additional, novel variant that lacked any exon 3, herein named "alpha2N." Examination of the RNA from spinal cords of different-aged rats showed a dramatic down-regulation of alpha2N during prenatal development: alpha2N mRNA formed a significant portion of the alpha2 subunit pool at E14, but its relative level was reduced by 85% by birth and was undetectable in adults. Two proteins previously implicated in regulating the splicing of GlyR alpha2 pre-mRNA, the neurooncological ventral antigen-1 (Nova-1) and the brain isoform of the polypyrimidine tract binding protein (brPTB), underwent small changes over the same period that did not correlate directly with the changes in the level of alpha2N, calling into question their involvement in the developmental regulation of alpha2N. However, treatment of spinal cord neurons in culture with antisense oligonucleotides designed selectively to knock down one of three Nova-1 variants significantly altered the relative level of GlyR alpha2N, showing that Nova-1 isoforms can regulate GlyR alpha2 pre-mRNA splicing in developing neurons. These results provide evidence for a novel splice variant of the GlyR alpha2 subunit that undergoes dramatic developmental regulation, reveal the expression profiles of Nova-1 and brPTB in the developing spinal cord, and suggest that Nova-1 plays a role in regulating GlyR alpha2N in developing neurons.  相似文献   

2.
The inhibitory postsynaptic glycine receptor (GlyR) of rat spinal cord is an oligomeric transmembrane protein which forms an agonist-gated anion channel. Expression in Xenopus oocytes of its mol. wt 48,000 subunit generated glycine-gated chloride channels which were analysed by voltage clamp. The agonist and antagonist response properties as well as the desensitization characteristics of these 48 kd subunit receptors resembled GlyRs expressed from spinal cord poly(A)+ RNA. These data indicate that the 48 kd subunit is capable of assembling into a functional receptor homo-oligomer which displays the pharmacology characteristic of the spinal cord GlyR.  相似文献   

3.
4.
Inhibitory glycine receptor (GlyR) subunits undergo developmental regulation, but the molecular mechanisms of GlyR regulation in developing neurons are little understood. Using RT‐PCR, we investigated the regulation of GlyR α‐subunit splice forms during the development of the spinal cord of the rat. Experiments to compare the amounts of mRNA for two known splice variants of the GlyR α2 subunit, α2A and α2B, in the developing rat spinal cord revealed the presence of an additional, novel variant that lacked any exon 3, herein named “α2N.” Examination of the RNA from spinal cords of different‐aged rats showed a dramatic down‐regulation of α2N during prenatal development: α2N mRNA formed a significant portion of the α2 subunit pool at E14, but its relative level was reduced by 85% by birth and was undetectable in adults. Two proteins previously implicated in regulating the splicing of GlyR α2 pre‐mRNA, the neurooncological ventral antigen‐1 (Nova‐1) and the brain isoform of the polypyrimidine tract binding protein (brPTB), underwent small changes over the same period that did not correlate directly with the changes in the level of α2N, calling into question their involvement in the developmental regulation of α2N. However, treatment of spinal cord neurons in culture with antisense oligonucleotides designed selectively to knock down one of three Nova‐1 variants significantly altered the relative level of GlyR α2N, showing that Nova‐1 isoforms can regulate GlyR α2 pre‐mRNA splicing in developing neurons. These results provide evidence for a novel splice variant of the GlyR α2 subunit that undergoes dramatic developmental regulation, reveal the expression profiles of Nova‐1 and brPTB in the developing spinal cord, and suggest that Nova‐1 plays a role in regulating GlyR α2N in developing neurons. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 156–165, 2002  相似文献   

5.
6.
7.
8.
In the spinal cord, most inhibitory synapses have a mixed glycine-GABA phenotype. Using a pharmacological approach, we report an NMDAR activity-dependent regulation of the mobility of GlyRs but not GABA(A)Rs at inhibitory synapses in cultured rat spinal cord neurons. The NMDAR-induced decrease in GlyR lateral diffusion was correlated with an increase in receptor cluster number and glycinergic mIPSC amplitude. Changes in GlyR diffusion properties occurred rapidly and before the changes in the number of synaptic receptors. Regulation of synaptic GlyR content occurred without change in the amount of gephyrin. Moreover, NMDAR-dependent regulation of GlyR lateral diffusion required calcium influx and calcium release from stores. Therefore, excitation may increase GlyR levels at synapses by a calcium-mediated increase in postsynaptic GlyR trapping involving regulation of receptor-scaffold interactions. This provides a mechanism for a rapid homeostatic regulation of the inhibitory glycinergic component at mixed glycine-GABA synapses in response to increased NMDA excitatory transmission.  相似文献   

9.
Inhibitory glycine receptors (GlyRs) are mainly expressed in the spinal cord and in the midbrain, where they control motor and sensory pathways. We describe here a fast potentiation of GlyR by intracellular Ca2+. This phenomenon was observed in rat spinal cord neurons and in transfected human cell lines. Potentiation develops in <100 ms, is proportional to Ca2+ influx, and is characterized by an increase in GlyR apparent affinity for glycine. Phosphorylation and G protein pathways appear not to be involved in the potentiation mechanism. Single-channel recordings in cell-attached and excised patches, as well as whole-cell data suggest the presence of a diffusible cytoplasmic factor that modulates the GlyR channel gating properties. Ca2+-induced potentiation may be important for rapid modulation of glycinergic synapses.  相似文献   

10.
Gephyrin is an ubiquitously expressed protein that, in the nervous system, is essential for synaptic anchoring of glycine receptors (GlyRs) and major GABAA receptor subtypes. The binding of gephyrin to the GlyR depends on an amphipathic motif within the large intracellular loop of the GlyRbeta subunit. The mouse gephyrin gene consists of 30 exons. Ten of these exons, encoding cassettes of 5-40 amino acids, are subject to alternative splicing (C1-C7, C4'-C6'). Since one of the cassettes, C5', has recently been reported to exclude GlyRs from GABAergic synapses, we investigated which cassettes are found in gephyrin associated with the GlyR. Gephyrin variants were purified from rat spinal cord, brain, and liver by binding to the glutathione S-transferase-tagged GlyRbeta loop or copurified with native GlyR from spinal cord by affinity chromatography and analyzed by mass spectrometry. In addition to C2 and C6', already known to be prominent, C4 was found to be abundant in gephyrin from all tissues examined. The nonneuronal cassette C3 was easily detected in liver but not in GlyR-associated gephyrin from spinal cord. C5 was present in brain and spinal cord polypeptides, whereas C5' was coisolated mainly from liver. Notably C5'-containing gephyrin bound to the GlyRbeta loop, inconsistent with its proposed selectivity for GABAA receptors. Our data show that GlyR-associated gephyrin, lacking C3, but enriched in C4 without C5, differs from other neuronal and nonneuronal gephyrin isoforms.  相似文献   

11.
Cultured human cells were transfected with cloned rat glycine receptor (GlyR) 48 kd subunit cDNA. In these cells glycine elicited large chloride currents (up to 1.5 nA), which were blocked by nanomolar concentrations of strychnine. However, no corresponding high-affinity binding of [3H]strychnine was detected in membrane preparations of the transfected cells. Analysis by monoclonal antibodies specific for the 48 kd subunit revealed high expression levels of this membrane protein. After solubilization, the 48 kd subunit behaved as a macromolecular complex when analyzed by sucrose density centrifugation. Approximately 50% of the solubilized complex bound specifically to a 2-aminostrychnine affinity column, indicating the existence of low-affinity antagonist binding sites on most of the expressed GlyR protein. Thus, the 48 kd strychnine binding subunit efficiently assembles into high molecular weight complexes, resembling the native spinal cord GlyR. However, formation of functional receptor channels of high affinity for strychnine occurs with low efficiency.  相似文献   

12.
Glycinergic inhibitory transmission has been described in spinal cord, but rather disregarded in the brain. The spatial-temporal characterization of glycine receptors (GlyR) in the hippocampus over development is herein reported. GlyR expression increases from late embryonic stage (E18) to 7 days postnatal (P7) and decreases from P7 on. Quantitative real-time PCR showed that GlyR subunit expression changes over neuronal maturation with a preponderance of α2 and α3, over α1 and β. In immature stages, GlyR delineate the cell body of neurons at the Dentate Gyrus and Cornus Ammonis 1 and 3 (CA1/CA3) and are composed of α2 and α3 subunits. At P7, synaptic GlyRα2β can already be observed in the dendritic areas of Dentate Gyrus and of CA1/CA3. In the mature hippocampus, synaptic GlyR decrease and, although a few synaptic GlyRα1β can still be detected in the dendritic layers, extrasynaptic α2/α3-containing GlyR and somatic localized GlyRα3 are the most abundant. Our results point towards an important function of a slow tonic activation of extrasynaptic GlyR, over a fast phasic activation of synaptic GlyRα1β. We clearly show that GlyR are widely expressed in hippocampus and that their subcellular localization and subunit composition change over development.  相似文献   

13.
Although many general anesthetics have been found to produce anesthetic and analgesic effects by augmenting GABA(A) receptor (GABA(A)R) function, the role of the glycine receptor (GlyR) in this process is not fully understood at the neuronal level in the spinal cord. We investigated the effects of a barbiturate general anesthetic, pentobarbital (PB), on the glycinergic miniature inhibitory postsynaptic currents (mIPSCs) and the responses to exogenously applied glycine, or taurine, a low affinity GlyR agonist, by using the whole-cell patch-clamp technique in the rat spinal dorsal horn neurons isolated using a novel mechanical method. Bath application of 30 microm PB significantly prolonged the decay time constant of the spontaneous glycinergic mIPSC without changing its amplitude and frequency. Co-application of 0.3 mm PB reduced the peak amplitude, affected the macroscopic desensitization and deactivation of the response to externally applied Gly in a concentration-dependent manner. In addition, the recovery of Gly response from desensitization was also prolonged by PB. However, PB did not change the desensitization and deactivation kinetics of the taurine-induced response. The GABA(A)R antagonist bicuculline (10 microm) did not affect the effect of PB on the Gly response. Thus, PB prolonged the spinal glycinergic mIPSCs by slowing desensitization and deactivation of GlyR. Two other structurally different intravenous anesthetics, i.e. propofol (10 microm) and etomidate (3 microm), prolonged the duration of the glycinergic mIPSC in the rat spinal dorsal horn neurons. In conclusion, on GlyR-Cl(-) channel complexes there may exist action site(s) of intravenous general anesthetics. GlyR and glycinergic neurotransmission may play an important role in the modulation of general anesthesia in the mammalian spinal cord.  相似文献   

14.
Glycine is the major inhibitory neurotransmitter in the spinal cord and brain stem. Gephyrin is required to achieve a high concentration of glycine receptors (GlyRs) in the postsynaptic membrane, which is crucial for efficient glycinergic signal transduction. The interaction between gephyrin and the GlyR involves the E-domain of gephyrin and a cytoplasmic loop located between transmembrane segments three and four of the GlyR beta subunit. Here, we present crystal structures of the gephyrin E-domain with and without the GlyR beta-loop at 2.4 and 2.7 A resolutions, respectively. The GlyR beta-loop is bound in a symmetric 'key and lock' fashion to each E-domain monomer in a pocket adjacent to the dimer interface. Structure-guided mutagenesis followed by in vitro binding and in vivo colocalization assays demonstrate that a hydrophobic interaction formed by Phe 330 of gephyrin and Phe 398 and Ile 400 of the GlyR beta-loop is crucial for binding.  相似文献   

15.
J Kuhse  V Schmieden  H Betz 《Neuron》1990,5(6):867-873
Agonist activation of the inhibitory glycine receptor (GlyR) in the adult vertebrate CNS is efficiently antagonized by the alkaloid strychnine. Here, we describe a novel rat GlyR alpha subunit cDNA (alpha 2*) that generates chloride channels of low strychnine sensitivity upon expression in Xenopus oocytes. Comparison with the highly homologous human alpha 2 polypeptide and site-directed mutagenesis identified a single amino acid exchange at position 167 that causes the altered pharmacology of alpha 2* receptors. Amplification by the polymerase chain reaction revealed a strong decrease in alpha 2* mRNA abundancy during postnatal spinal cord development. These data indicate that alpha 2* represents a ligand binding subunit of the previously identified neonatal GlyR isoform of low strychnine affinity.  相似文献   

16.
The expression of functional glycine receptors (GlyRs) by embryonic rat spinal cord neurons during development in vitro was investigated using whole-cell patch-clamp recordings. Functional GlyRs were expressed by most neurons within 1 day in vitro, and by all neurons from 4 days onward. However, the extent to which responses to glycine were blocked by the antagonist strychnine differed significantly between the first few days and 8 days in culture. Responses to glycine by neurons during the first few days in culture exhibited significantly less blockade by strychnine than those in neurons after 1 week in culture. Responses to glycine at both ages reflected an increased conductance to chloride ions, ruling out involvement of N-methyl-D -aspartate type glutamate receptors, and were not due to cross activation of γ-aminobutyric acid receptors. Monoclonal antibody 4a, which recognizes multiple subtypes of rat GlyR α subunits, labeled most neurons as early as 1 day in vitro, confirming that neurons express some form of GlyR α subunits by the first day in culture. These results show that rat spinal cord neurons express GlyRs early in their differentiation in vitro, and they suggest that individual neurons express as functional, cell-surface GlyRs a strychnine-insensitive isoform of the GlyR, possibly the previously described α2* subunit. In addition, these results indicate that the expression of GlyR isoforms changes from predominantly a strychnine-insensitive isoform to other, strychnine-sensitive isoform(s) GlyR during development in vitro. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 579–592, 1997  相似文献   

17.
An A1-adenosine receptor has been cloned from a rat brain cDNA library using a probe generated by the polymerase chain reaction. The cDNA encodes a protein of 327 amino acids which is 91% identical to a recently cloned dog A1-adenosine receptor (RDC7). Expression of the rat cDNA in COS-6M and NIH 3T3 cells resulted in ligand binding and functional activity characteristics of an A1-adenosine receptor that is coupled to inhibition of adenylyl cyclase. Examination of the distribution of A1-adenosine receptor mRNA by Northern blot analysis showed that it is highly expressed in brain, spinal cord, testis, and white adipose tissue. In situ hybridization studies revealed an extensive hybridization pattern in the central nervous system, with high levels in cerebral cortex, hippocampus, cerebellum, thalamus, brainstem, and spinal cord. The cloned A1-adenosine receptor may thus mediate many of the modulatory actions of adenosine in neural and endocrine systems.  相似文献   

18.
The glycine receptor (GlyR) is a member of the Cys-loop superfamily of ligand-gated ion channels and the major mediator of inhibitory neurotransmission in the spinal cord and brainstem. Many allosteric modulators affect the functioning of members of this superfamily, with some such as benzodiazepines showing great specificity and others such as zinc, alcohols, and volatile anesthetics acting on multiple members. To date, no potent and efficacious allosteric modulator acting specifically at the GlyR has been identified, hindering both experimental characterization of the receptor and development of GlyR-related therapeutics. We used phage display to identify novel peptides that specifically modulate GlyR function. Peptide D12-116 markedly enhanced GlyR currents at low micromolar concentrations but had no effects on the closely related γ-aminobutyric acid type A receptors. This approach can readily be adapted for use with other channels that currently lack specific allosteric modulators.  相似文献   

19.
Glycine is a major inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates and invertebrates. The postsynaptic receptor for this amino acid is an oligomeric glycoprotein which, upon binding of glycine, transiently forms an anion-selective transmembrane channel. Agonist-mediated receptor activation is antagonized by strychnine, a high-affinity ligand of the glycine receptor (GlyR). Biochemical and immunological data show that affinity-purified preparations of the mammalian GlyR contain three polypeptides of Mr 48,000, 58,000 and 93,000. These polypeptides have different functional properties and/or topologies in the postsynaptic membrane of the glycinergic synapse. The primary sequence of the Mr 48,000 subunit deduced by cDNA cloning exhibits structural and amino-acid homology to nicotinic acetylcholine and GABAa receptor proteins, indicating a common evolutionary relationship between the different neurotransmitter-gated ion channels of excitable membranes. Monoclonal antibodies against the GlyR allow its histochemical localization in different regions of the CNS. GlyR deficiencies have been implicated in the pathogenesis of spasticity and spinal cord degeneration in mouse and man.  相似文献   

20.
The pentameric glycine receptor (GlyR), comprising the α1 and β subunits, is a major inhibitory ionotropic receptor in brainstem and spinal cord. GlyRs interact with gephyrin (GPHN), a scaffold protein that anchors the GlyR in the plasma membrane and enables it to form clusters in glycinergic postsynapses. Using an interaction proteomics approach, evidence of the ArfGEFs IQ motif and Sec7 domain 3 (IQSEC3) and IQ motif and Sec7 domain 2 (IQSEC2) as two novel synaptic proteins interacting with GlyR complexes is provided. When the affinity‐isolated GlyR complexes are fractionated by blue native gel electrophoresis and characterized by mass spectrometry, GlyR α1β‐GPHN appears as the most abundant complex with a molecular weight of ≈1 MDa, and GlyR α1β‐GPHN‐IQSEC3 as a minor protein complex of ≈1.2 MDa. A third GlyR α1β‐GPHN‐IQSEC2 complex exists at the lowest amount with a mass similar to the IQSEC3 containing complex. Using yeast two‐hybrid it is demonstrated that IQSEC3 interacts with the GlyR complex by binding to the GPHN G domain at the N‐terminal of the IQSEC3 IQ‐like domain. The data provide direct evidence of the interaction of IQSEC3 with GlyR‐GPHN complexes, underscoring a potential role of these ArfGEFs in the function of glycinergic synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号