首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By using the splenic fragment assay in a KLH-primed host, we have evaluated the clonal anergy model of tolerance in DBA/2 and spontaneously autoimmune NZB mice. Unlike immature B cells from DBA/2 mice (which are tolerized by encounter with TNP-OVA), SIg- B cells from NZB mice respond to TNP-KLH with equal precursor frequency in TNP-OVA-tolerized or control fragments. In additional experiments, SIg- bone marrow or mature spleen cells of DBA/2 or NZB origin were adoptively transferred into irradiated (DBA/2 X NZB) F1 X xid hosts, and host-derived splenic fragments were stimulated in vitro with LPS and growth factors. These experiments revealed a substantial anti-ssDNA precursor frequency in NZB marrow and spleen (2.5 and 5.1, respectively, per 10(7) transferred cells). In DBA/2 SIg- marrow cells, there was an anti-ssDNA precursor frequency of 1.3 to 3.5/10(7) transferred cells; however, anti-ssDNA-producing clones were reduced in fragments derived from recipients of DBA/2 as compared with NZB spleen cells (0.2 to 1.9/10(7) transferred cells). By using a replica plate technique, we evaluated fragments from recipients of DBA/2 SIg- marrow cells or mature spleen cells for anti-TNP reactivity. In fragments derived from recipients of DBA/2 SIg- marrow cells, 92% of anti-TNP-producing fragments also bound ssDNA. In fragments derived from recipients of DBA/2 spleen cells, only 43% of anti-TNP-producing fragments also bound ssDNA. Our findings document that NZB marrow-derived immature B cells abnormally resist tolerance induction, and that clonal anergy/selection operates in directing the B cell repertoire away from autoantibody formation.  相似文献   

2.
The autoimmune hemolytic anemia of NZB mice is pathogenetically mediated by a genetically prescribed anti-erythrocyte autoantibody response directed to the X erythrocyte autoantigen. The cellular locus of the immunoregulatory defect underlying the anti-X response was explored by adoptively transferring bone marrow cells (BMC) from NZB mice to lethally irradiated histocompatible recipients. Before adoptive transfer, BMC from donor mice were assayed for antigen-binding lymphocytes with receptors for the X autoantigen (X-ABL) by immunocytoadherence assays and for anti-X autoantibody-secreting cells (X-PFC) by plaque-forming cell assays. Twelve weeks after adoptive transfer, splenic lymphocytes from recipient mice were assayed for X-PFC and humoral anti-X autoantibody by Coombs' tests. Transfer of 15 to 30 x 10(6) BMC containing 6 to 12 x 10(3) X-ABL but no X-PFC from 6- to 8-week-old NZB mice to lethally irradiated BALB/c, B10.D2, C57BL/Ks, and DBA/2 mice produced X-PFC in 70% of the recipients. Development of X-PFC was not simply dependent upon available X-ABL since transfer of 15-30 x 10(6) BMC, containing comparable numbers of X-ABL, from BALB/c, B10.D2, C57BL/Ks, or DBA/2 mice to NZB or syngeneic recipients did not produce X-PFC. Transfer of BMC from NZB mice to BALB/c, B10.D2, and DBA/2 mice with weekly administrations of AKR anti-theta antiserum had no effect on the development of X-PFC; Tlymphocyte ablation was evidenced by the absence of theta+ spleen cells. These results suggest that the pathogenetic anti-X response is not genetically prescribed at the level of macrophages, humoral factors, or T cells, but rather appears to be a phenotypic expression of a primary B lymphocyte defect permitting or promoting differentiation of NZB X-ABL.  相似文献   

3.
Purified splenic B cells from autoimmune NZB and nonautoimmune DBA/2 mice were transferred to unmanipulated H-2 compatible xid recipients. The number of autoantibody-secreting clones present in recipient mice was quantitated at varying times after transfer using a splenic fragment assay. We found that NZB and DBA/2 B cells expanded equally well in equivalent xid environments. Cells from either donor expanded significantly better in autoimmune-prone NZB.xid as compared with DBA/2.xid recipients. Moreover, clones producing antibodies reactive with T cell surface antigens, bromelain-treated mouse red cells, or DNA expanded more rapidly than did cells producing antibodies to the nonautoantigen TNP-KLH. Serum autoantibody levels rose in concert with the increased numbers of autoantibody-producing lymphocytes. We conclude that factors present in the internal milieu of autoimmune-prone NZB.xid mice, rather than an intrinsic B cell defect, facilitate the expansion of (auto)antibody-secreting B cells.  相似文献   

4.
This study demonstrates cell lineage-specific resistance to engraftment involving lymphocytes but not erythrocytes by the spontaneously autoimmune MRL/lpr mouse strain. In these experiments, MRL/lpr mice were lethally irradiated (1000 R) and reconstituted with normal A-Thy bone marrow stem cells. Periodic analysis from 6 wk to 6 mo posttransplantation demonstrated that the T and B cells of these chimeras were derived from the MRL/lpr host. However, in the same A-Thy----MRL/lpr chimeras, erythrocyte repopulation was completely of A-Thy donor origin. In contrast, control MRL/+ (congenic mice that differ from MRL/lpr at the lpr locus and do not develop accelerated autoimmune disease) recipients were successfully repopulated in both the lymphoid and erythroid compartments by the A-Thy donor cells.  相似文献   

5.
Lethally irradiated (1000 R whole body) DBA/2J mice of 10 wk or 20 mo of age were repopulated with anti-Thy-1.2-treated DBA/2J bone marrow cells of 10-wk- or 20-mo-old donors. Sixty days post-transplant, limiting dilution cultures of the spleen and thymus cell population of individual mice (for each group) were examined to assess the within-group and between-group diversity in the anti-H-2Kb allo-recognition repertoire. Our data are consistent with a significant expansion of the CTLp repertoire taking place in the periphery, beyond the early appearing specificities present in the thymus. Moreover, comparison of the repertoires in young recipients of young or aged marrow, or in aged recipients of young or aged marrow, support the notion that there is a defect in the peripheral environment of aged mice that results in altered expansion of the thymic CTLp repertoire. In addition, there is an intrinsic difference in bone marrow precursor cells of CTLp in aged mice that is revealed only in an aged environment.  相似文献   

6.
Previous studies have demonstrated that NZB marrow can transfer features of autoimmunity. Therefore, we undertook a study of NZB marrow to determine whether it demonstrated any phenotypic abnormalities. In Whitlock-Witte cultures, NZB marrow cells generated nonadherent cells at low seeding densities, densities at which marrow from other strains did not generate nonadherent cells. In contrast, NZB marrow grew less well than controls in Dexter cultures. Inasmuch as the latter favor growth of granulocyte-macrophage precursors and the former B cells, these results suggest a possible skewing of NZB marrow cells toward lymphocyte production. Unfractionated marrow cells from NZB mice were found to produce 10-fold more splenic colonies in lethally irradiated recipients than marrow cells from control mice. This result was independent of the genotype of the recipient. When the progenitor Thy-1lo, Lin- marrow subpopulation was studied, NZB mice did not differ substantially from controls regarding splenic CFU. Therefore, Thy-1-, Lin- marrow cells were studied as a possible source of the excess splenic CFU in NZB mice. Indeed, the NZB Thy-1-, Lin- population contained 30-fold more splenic CFU than did the Thy-1-, Lin- population from control mice. These results suggest that NZB mice have unusual marrow progenitor cells; such cells may play a role in their autoimmune disease.  相似文献   

7.
B cells from normal DBA/2 and autoimmune NZB mice were transferred into H-2-compatible xid recipients where they engrafted without irradiation or other manipulation of the host. The properties of these cells and their interaction with the host environment were analyzed at the single cell level with a splenic focus assay. When similar numbers of NZB and DBA/2 anti-DNA-producing B cell precursors were transferred, they expanded at similar rates in xid recipients. The rate of expansion varied with the strain of the recipient: it was fastest in autoimmune-prone NZB . xid and slowest in DBA/2 . xid hosts. Cells producing antibodies reactive with the autoantigen DNA proliferated substantially faster than those reactive with the non-autoantigen trinitrophenylated keyhole limpet hemocyanin. These results suggest that 1) B cells from NZB mice do not behave differently from DBA/2 B cells, 2) the internal milieu of the recipient into which the cells are transferred has an important effect on B cell proliferation, and 3) B cells capable of autoantibody production may have a selective growth and/or differentiation advantage relative to other B cells.  相似文献   

8.
The formation of B lymphocytes is abnormal in autoimmune NZB and (NZB x NZW)F1 mice. With age, the proportion of sIg- Ly-5(220)+ pre-B cells and less mature B cell progenitors in the bone marrow progressively declines, reaching only approximately one-third of normal levels in 20-wk-old NZ mice. To determine the mechanisms responsible for the deficiency of NZ B lineage precursors, the mitotic activity of sIg- Ly-5(220)+ bone marrow cells in vivo was determined in NZ and conventional inbred mice as a function of age. The proportion of sIg- Ly-5(220)+ B cell precursors in (S + G2/M) stages of the cell cycle steadily decreased with age in NZ autoimmune mice. Furthermore, upon metaphase arrest, the rate of entry of sIg- Ly-5(220)+ bone marrow cells into G2/M also decreased with age in NZ mice. Therefore, the mitotic activity of sIg- Ly-5(220)+ B cell precursors is substantially decreased in NZ mice greater than or equal to 20 wk of age. The capacity of the bone marrow stromal microenvironment of NZ mice to support B lineage precursor growth was tested in two ways: 1) the capacity of preformed NZ bone marrow stroma to support B lineage cell growth in long term bone marrow cell culture under lymphopoietic conditions was assessed and 2) the capacity of NZ bone marrow B lineage precursors to expand in vivo after sublethal (200 rad) whole body irradiation was determined. Stroma derived from adult NZ mice supported the growth and development of B lineage lymphocytes in long term bone marrow cell culture to a greater extent than did age-matched conventional murine stroma. Furthermore, sublethal irradiation of older adult NZ mice resulted in some expansion of bone marrow sIg- Ly-5(220)+ B cell precursors in vivo. Therefore, the deficiency of B cell progenitors in the bone marrow of older NZ autoimmune mice is associated with diminished mitotic activity. However, this does not result from defects in the capacity of NZ bone marrow stroma to permit B lineage cell expansion as determined by both in vitro and in vivo experiments. In the absence of a detectable stromal cell defect, it is possible that an active inhibitory process within the bone marrow influences the mitotic activity of B cell precursors in NZ mice.  相似文献   

9.
Splenic B cells from DBA/2 and NZB mice were compared with regard to precursor frequency of anti-ssDNA-producing cells. Using a modification of the splenic fragment assay, we show that NZB T cells are capable of increasing the frequency of expression of anti-ssDNA precursors in DBA/2 splenic B cells. When limiting numbers of splenic B cells of DBA/2 origin were adoptively transferred into an irradiated (1200 rad) recipient, the co-transfer of NZB T cells markedly increased the frequency of anti-ssDNA precursors in cultured splenic fragments. The anti-ssDNA produced under these conditions was exclusively IgM and exhibited a high degree of cross-reactivity with TNP and fluorescein. Thus, the increase in anti-ssDNA precursor frequency reflected an expansion of the B cell repertoire to include precursors of polyspecific antibody-producing cells that under normal circumstances are not expressed. The ability of NZB T cells to increase the anti-ssDNA precursor frequency was further defined by the CBA/N immunodeficiency gene xid, in that B cells from DBA/2.xid donors did not exhibit increased anti-ssDNA precursor frequency in the presence of NZB T cells. When NZB splenic B cells were co-transferred with DBA/2 T cells, the anti-DNA precursor frequency of the NZB B cells was not reduced. This study demonstrates that T cells can influence the emergency of B cell clones in an Ag-nonspecific manner. The well documented in vivo spontaneous polyclonal activation of NZB B cells may be secondary to T cell-mediated expansion of the B cell repertoire.  相似文献   

10.
We have analyzed gastrointestinal immune function in both DBA/2 and spontaneously autoimmune New Zealand Black (NZB) mice. We have studied both in vitro proliferation and differentiation of Peyer's patch cells and have measured immunoglobulin (Ig) secretion by cultured jejunal segments. Peyer's patch B cells and T cells from both DBA/2 and NZB mice showed similar proliferative responses to Con A and lipopolysaccharide (LPS), respectively. Unlike NZB splenic B cells, isolated Peyer's patch B cells from NZB mice did not spontaneously secrete Ig of any isotype. Seven-day cultures of equal numbers of Peyer's patch T cells and B cells resulted in similar patterns of secretion of IgA, IgG, and IgM in both strains. The addition of Con A to cultures of DBA/2 Peyer's patch cells consistently resulted in a onefold to threefold increase in IgA secretion after 7 days. Con A stimulation of NZB Peyer's patch cells did not produce any increment in IgA secretion. LPS stimulation of Peyer's patch cells from either strain resulted in a similar increase in IgG secretion with little effect on IgA secretion. The in vivo correlate of this finding was seen in the IgA to IgG ratio of Ig secreted by cultured jejunal fragments. In DBA/2 mice the rates of IgA/IgG varied from 2.36 to 4.85, whereas in NZB mice the ratio never exceeded 0.5. These experiments show that defects on the T cell compartment of NZB mice encompass gut-associated lymphoid tissue. The possible relationship of these findings and previously observed defects in oral tolerance is discussed.  相似文献   

11.
Mouse bone marrow contains theta-negative lymphocytes that can suppress an in vitro plaque response by spleen cells primed in vivo with burro red blood cells (BRBC). These bone marrow cells are radiosensitive and can be induced with thymosin fraction 5 or alpha 1 thymic peptides to express the theta antigen. Enrichment for these suppressor pre-T lymphocytes can be achieved by a one-step density centrifugation, macrophage depletion, or a combination of both procedures. NZB mice, which spontaneously develop an autoimmune disorder, have a suppressor abnormality revealed by this assay system. Upon analysis, they have normal BM pre-T suppressor cells but their spleen cells are refractory to the BM suppressor signal. NZB BM suppressor cells inhibit the response by DBA/2 spleen cells, but DBA/2 BM suppressor cells do not inhibit NZB spleen. This resistance to suppression is a property of the B cell fraction recovered from NZB spleen.  相似文献   

12.
Part-body irradiated CBA mice were injected with CBA-T6 bone marrow. In this way a predominantly donor population was established in the femora while the marrow of the humeri remained largely (average 94 %) of host origin. In animals examined cytologically up to 2 years later, no tendency was observed for the proportion of donor cells in the humeri to increase. Splenectomy had no effect on this. When femoral bone marrow from the experimental mice was injected into lethally (whole-body) irradiated recipients, cells originating from the primary host repopulated the lymph nodes to a disproportionate extent. Equilibration between the cell populations of femora and humeri occurred after re-exposure to 600 rad whole-body irradiation, but not after 100 rad or 350 rad; thus, regeneration of damaged bone marrow involved a significant contribution from extrinsic stem cells only after the highest dose of radiation. The data are compatible with an inflow of at most ten effective stem cells per humerus per day from the blood, and suggest a much lower figure. This means that few if any of the stem cells of peripheral blood enter the bone marrow and found haemopoietic clones. Evidence is adduced for the existence of a proliferating lymphoid sub-population in the bone marrow, contributing some 5–10% of the observed mitoses. The mitotic cells in the lymph nodes are replaced from marrow-derived progenitors at an estimated rate of 4–5 %/day. The relevant data for the thymus are more variable, but suggest an average figure of 8–11 %/day. Earlier data from mouse parabionts suggest a lower rate of inflow to the thymus.  相似文献   

13.
In vivo effects of hyperdiploid Ly-1+ B cells of NZB origin   总被引:3,自引:0,他引:3  
Cells with increased chromosome number and DNA content have been found in the spleens of old NZB mice. These hyperdiploid cells are of clonal origin and demonstrate discrete IgH chain gene rearrangements by Southern blot analysis. In this report, hyperdiploid cells were analyzed by three-color flow cytometric techniques and found to be Ly-1+ B cells which were dull for Ly-1 and bright for surface IgM. These cells, unlike typical diploid Ly-1+ B cells, were negative for B220/6B2 and surface IgD. Hyperdiploid Ly-1+ B cells were found to be the predominant splenic subpopulation in animals receiving a spleen cell transfer from donors which possessed hyperdiploid Ly-1+ B cells. (NZB x DBA/2)F1 recipients of NZB spleen cells demonstrated a 10- to 1000-fold increase in Ly-1+ B cells in the spleen but showed no increased levels of Ly-1+ B cells in the peritoneum. Nearly all the splenic Ly-1+ B cells were hyperdiploid with the phenotype of the NZB parent. Cytogenetic analysis revealed that all the hyperdiploid cells were NZB donor cells. These findings suggest that the increase in splenic Ly-1+ B cells in the F1 recipients was due to expansion of injected splenic hyperdiploid Ly-1+ B cells of NZB origin. All of the F1 recipients of NZB hyperdiploid Ly-1+ B cells demonstrated a significant decrease in endogenous B cells as well as decreased serum IgM and anti-ssDNA autoantibodies. These studies suggest that hyperdiploid Ly-1+ B cells are different from typical peritoneal Ly-1+ B cells both in the lymphoid organs to which they home and in their proliferative capacity. NZB hyperdiploid Ly-1+ B cells, which may arise as a natural consequence of hyperactive Ly-1+ B cells, may play an immunoregulatory role in the spleen.  相似文献   

14.
Chronic energy (calorie) intake restriction (CEIR) prolonged life, inhibited autoimmune disease, and influenced immunologic and hematologic parameters in NZB mice. Abnormalities in numbers and proportions of T and B cells populations were corrected. Deficient responses to phytomitogens, mixed lymphocyte reactions, formation of plaque-forming cells to sheep red blood cells in vitro, production of cytotoxic T lymphocytes after in vitro stimulation, and interleukin 2 production were also corrected. CEIR prevented the extreme splenomegaly that normally occurs with age in NZB mice. This influence was associated with reduction of a greatly expanded non-T, non-B lymphoid cell population. Calorie restriction also prevented in NZB mice the rapid decrease in total numbers of colony-forming B cells in bone marrow that is also characteristic of mice of this strain. The influences of CEIR on immune parameters and hematopoiesis were generally less marked in non-autoimmune-prone DBA/2 mice than in autoimmune-prone NZB mice. CEIR has been shown to produce profound influences on several strains of autoimmune-prone mice (NZB x NZW)F1, MRL/lpr, BXSB, and NZB herein). In each of these strains, the pathogenesis and manifestations of autoimmune disease are dissimilar. Therefore, it seems likely that calorie restriction acts on an as yet elusive mechanism that operates to foster development of the diseases associated with aging common to each of these autoimmune strains as well as autoimmune-resistant mice and rats. Further investigation of the molecular and cellular bases of the benefits of CEIR seems urgent.  相似文献   

15.
Mice homozygous for an autosomal recessive mutation for the scid gene exhibit a defect that specifically impairs lymphoid differentiation but not myelopoiesis. Such mice can be cured of their lymphoid deficiency by grafts with normal bone marrow, although full reconstitution of lymphoid function is seldom obtained. Long-term bone marrow cultures (LTBMC) are devoid of all mature B and pre-B cells but contain lymphoid stem cells. We therefore reconstituted scid mice with LTBMC cells to study the kinetics of B lymphocyte reconstitution in normal and irradiated (4 Gy) scid recipients and in irradiated (9.5 Gy) co-isogenic C.B-17 mice. Detectable colony-forming B cells rapidly increased in the spleen and bone marrow of irradiated C.B-17 and irradiated scid recipients, reaching normal levels between 4 and 6 wk post-grafting. Unirradiated scid recipients showed limited reconstitution in spleen and very poor reconstitution in bone marrow. Unirradiated scid recipients also had relatively few surface Ig+ cells in spleen or bone marrow, whereas both groups of irradiated recipients had normal numbers between 4 and 6 wk post-reconstitution. Normal levels of cytotoxic T cell activity by 8 wk after reconstitution were observed only in the irradiated C.B-17 and irradiated scid recipients. Analysis of mice reconstituted with cells from LTBMC indicates that these cultures contain lymphoid stem cells with significant proliferative and self-renewal potential, and that full reconstitution of lymphoid function requires prior irradiation of the scid recipient.  相似文献   

16.
Lethally irradiated DBA/l mice or (C57Bl X DBA/l1 F1 hybrid mice were injected with therapeutically effective doses of isologous bone marrow cells; simultaneously syngeneic lymph node cells from either intact (control) animals or mice survived after sublethal irradiation were transplanted. In control the viability of the recipients was not affected by the presence of lymphoid cells in the mixed transplant. In contrast, the beneficial action of the bone marrow cells was abolished (killing-effect) by the lymphoid cells from mice sacrificed 6 to 12 months after the irradiation (600--700 r). The manifestation of the killing-effect depended on the number of the transplanted lymphoid cells and on the dose of the bone marrow cells in the transplant. The killing-effect was not revealed when the lymphoid cells were obtained from the donors on the 30th day after irradiation. The results suggest the autosensitization of the organism at the late postirradiation periods.  相似文献   

17.
The mechanism of polyclonal expansion of B cells and subsequent autoantibody production in New Zealand mice remains a critical question. We have been studying the requirements for autoantibody production both in NZB mice as well as NZB mice congenic with the Xid gene of CBA/N mice. In this study, we have attempted to alter the immunologic phenotype of NZB.Xid mice by transfer of cells from young and old NZB mice. There was little difficulty in restoring normal levels of serum IgM, IgG3, splenic Lyb-5 cells, and response to DNP-Ficoll in young NZB.Xid mice that were injected with young NZB bone marrow cells. Although such animals had an almost immediate change in their immune profile to values characteristic of NZB mice, they required, much like unmanipulated NZB mice, a latency period of an additional 6 mo before autoantibodies were detected. In contrast, adult NZB.Xid mice, who likewise developed an immune profile similar to NZB after transfer of bone marrow cells from young NZB mice, began to express autoantibodies immediately without any latency period. NZB.Xid mice who were recipients of adult NZB bone marrow cells did not show sustained autoantibody production, reflecting the limited state of B cell precursors in adult NZB mice. Thus, the age of both donor cells and the age of recipient mice are critical factors for determining the latency period and the age at which autoantibodies will appear. Similarly we attempted to alter the production of autoantibodies in NZB mice that were irradiated and injected with bone marrow cells from NZB.Xid animals. NZB mice had a major amelioration of disease when they received cell transfers from young NZB.Xid mice. This amelioration, which included the acquisition of the immune profile of NZB.Xid animals, was not seen in adult NZB mice that were recipient of young NZB cells. We suggest that although Lyb-5 cells may be the effective mechanism for autoantibody production, there are other interacting influences that may selectively turn on or turn off autoantibodies and that are required and are responsible for the latency period.  相似文献   

18.
Data are presented showing that MRL/lpr in equilibrium DBA/2 tetraparental (allophenic) chimeras, unlike conventional lpr/lpr----+/lpr bone marrow chimeras, fail to develop graft-vs-host disease; instead they develop full-blown lymphoproliferation and autoantibody formation typical of unmanipulated MRL/lpr mice. The increase in the splenic and especially the lymph node mass is comprised predominantly of MRL/lpr-derived cells and all of the serum IgG2a is MRL/lpr derived. This dominance of MRL/lpr lymphoid activity occurred even in chimeras where greater than 90% of the skin and/or bone marrow cells were of the DBA/2 type. These results demonstrate the failure of the lpr environment to recruit normal B and T cells into the autoimmune process, the inability of normal cells to suppress MRL/lpr disease, and indicate further that the lpr mutation has an intrinsic effect on lymphocytes of both the B and T lineages.  相似文献   

19.
The formation of B lymphocytes in young New Zealand Black (NZB) mice proceeds at an accelerated rate resulting in a deficiency of B lineage precursors in adult (greater than 15 wk old) animals. To study the characteristics of B lineage cells in young (4 wk) and old (6 mo) NZB mice, bone marrow from these animals was used to initiate long term lymphoid bone marrow cultures (LBMC) that permit the long term maintenance of B cells and their precursors. Age-matched cultures from BALB/c mice and NZB.xid marrow were established in parallel. Primary LBMC were readily established from these strains and showed similar patterns of growth for the 3-mo observation period. No significant differences in numbers of 14.8 positive cells were observed. However, NZB mice at both ages had a higher percentage of membrane IgM (mIgM)-expressing cells. Significant levels of supernatant IgM were found only in cultures of 6-mo NZB and BALB/c mice; levels were highest in NZB culture supernatants and were often more than 500 ng/ml; significant, although much lower, levels of IgG were likewise detected. Lymphoid cells from NZB.xid mice were unable to generate significant levels of IgM in supernatant fluids indicating the effects of the xid gene were displayed in vitro. Autoantibodies were not detected in any of the culture supernatants. Additional evidence for NZB hyperactivity in primary B lymphopoiesis was observed upon initiation of primary myeloid bone marrow cultures (MBMC) from these strains of mice and subsequently transferring them to LBMC conditions. This results in the cessation of myelopoiesis at the initiation of B lymphopoiesis. At the time of converting MBMC to LBMC, cultures of NZB and BALB/c mice morphologically resembled myeloid cultures and had neither B cell colony-forming units nor cells that expressed 14.8 or mIgM. However, following the switch, NZB mice had a 5-fold higher number of B cell colony-forming units. Further, MBMC established from NZB bone marrow cells had a reduced capacity to form colonies in the granulocyte-macrophage colony-forming unit assay. These studies indicate that defects of NZB hemopoietic cells are manifest in vitro and suggest the use of in vitro long term cultures as a valuable technique to further dissect the hematopoietic abnormalities of NZB mice and possible underlying microenvironmental defects.  相似文献   

20.
The enzyme TdT was used as a marker with which to study the ontogeny of primitive lymphopoietic cells in NZ strain mice. A marked accumulation of abnormally large, rapidly proliferating TdT+ cells was seen in the subcapsular region of the thymus cortex in the NZB and NZB/W mice. This abnormal accumulation of TdT+ thymocytes was most pronounced in the NZB/W hybrid and persisted for at least the first 16 wk of life. In addition, significantly elevated percentages of TdT+ bone marrow cells (presumptive prothymocytes) were present in NZB, NZW, and NZB/W mice between 1 and 4 wk of age, with the highest mean peak levels occurring in the NZB strain. Treatment of both normal and adrenalectomized BALB/c and NZB/W mice with pharmacologic doses (7 to 10 mg/kg) of PGE1 caused a marked, dose-dependent decrease in thymus weight and thymus cell number within 12 to 18 hr. Histologic and cell separation studies showed that this was due to the selective depletion of PNA+ TdT+ cortical thymocytes. Similarly, PGE1 caused a reversible, dose-dependent decrease in the percentage of TdT+ bone marrow cells. In contrast, PGF2 alpha, which is not therapeutically active against autoimmunity in NZB/W mice, had no detectable effect on TdT+ bone marrow cells or thymocytes in BALB/c or NZB/W mice. These results directly document the existence of abnormalities in the development of lymphopoietic precursor cells in the bone marrow and thymus cortex of NZ strain mice prior to the onset of autoimmune phenomena. The results also raise the possibility that the therapeutic efficacy of exogenous PGE1 in autoimmune NZ strain mice may be related, at least in part, to its ability to rectify the abnormal development of these early lymphoid cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号