首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FLOW CYTOMETRY AND THE SINGLE CELL IN PHYCOLOGY   总被引:1,自引:0,他引:1  
Flow cytometers measure light scattering and fluorescence characteristics from individual particles in a fluid stream as they cross one or more light beams at rates of up to thousands of events per second. Flow cytometrically detectable optical signals may arise naturally from algae, reflecting cell size, structure, and endogenous pigmentation, or may be generated by fluorescent stains that report the presence of otherwise undetected cellular constituents. Some flow cytometers can physically sort particles with desired optical characteristics out of the flow stream and collect them for subsequent culture or other analyses. The statistically rigorous, cell‐level perspective provided by flow cytometry has been advantageous in experimental investigations of phycological problems, such as the regulation of cell cycle progression. The capacity of flow cytometry to measure large numbers of cells in large numbers of samples rapidly and quantitatively has been used extensively by biological oceanographers to define the distributions and dynamics of marine picophytoplankton. Recent work has shown that flow cytometry can be used to elucidate relationships between the optical properties of individual cells and the bulk optical properties of the water they live in, and thereby may provide an explicit link between algal physiology and global biogeochemistry. Unfortunately, commercially available flow cytometers that are optimized for biomedical applications have a limited capacity to analyze larger phytoplankton. To circumvent these limitations, many investigators are developing flow cytometers specifically designed for analyzing the broad range of sizes, shapes, and pigments found among algae. These new instruments can perform some novel measurements, including simple fluorescence excitation spectra, detailed angular scattering measurements, and in‐flow digital imaging. The growing accessibility and power of flow cytometers may allow the technology to be applied to a wider array of problems in phycology, including investigations of nonplanktonic and multicellular algae, but also presents new challenges for effectively analyzing the large quantity of multiparameter data produced. Ultimately, the detection of molecular probes by flow cytometry may allow single‐cell taxonomic and physiological information to be garnered for a variety of algae, both in culture and in nature.  相似文献   

2.
Fluorescence is a mainstay of bioanalytical methods, offering sensitive and quantitative reporting, often in multiplexed or multiparameter assays. Perhaps the best example of the latter is flow cytometry, where instruments equipped with multiple lasers and detectors allow measurement of 15 or more different fluorophores simultaneously, but increases beyond this number are limited by the relatively broad emission spectra. Surface enhanced Raman scattering (SERS) from metal nanoparticles can produce signal intensities that rival fluorescence, but with narrower spectral features that allow a greater degree of multiplexing. We are developing nanoparticle SERS tags as well as Raman flow cytometers for multiparameter single cell analysis of suspension or adherent cells. SERS tags are based on plasmonically active nanoparticles (gold nanorods) whose plasmon resonance can be tuned to give optimal SERS signals at a desired excitation wavelength. Raman resonant compounds are adsorbed on the nanoparticles to confer a unique spectral fingerprint on each SERS tag, which are then encapsulated in a polymer coating for conjugation to antibodies or other targeting molecules. Raman flow cytometry employs a high resolution spectral flow cytometer capable of measuring the complete SERS spectra, as well as conventional flow cytometry measurements, from thousands of individual cells per minute. Automated spectral unmixing algorithms extract the contributions of each SERS tag from each cell to generate high content, multiparameter single cell population data. SERS-based cytometry is a powerful complement to conventional fluorescence-based cytometry. The narrow spectral features of the SERS signal enables more distinct probes to be measured in a smaller region of the optical spectrum with a single laser and detector, allowing for higher levels of multiplexing and multiparameter analysis.  相似文献   

3.
Fluorescence microscopy is one of the most powerful tools for elucidating the cellular functions of proteins and other molecules. In many cases, the function of a molecule can be inferred from its association with specific intracellular compartments or molecular complexes, which is typically determined by comparing the distribution of a fluorescently labeled version of the molecule with that of a second, complementarily labeled probe. Although arguably the most common application of fluorescence microscopy in biomedical research, studies evaluating the "colocalization" of two probes are seldom quantified, despite a diversity of image analysis tools that have been specifically developed for that purpose. Here we provide a guide to analyzing colocalization in cell biology studies, emphasizing practical application of quantitative tools that are now widely available in commercial and free image analysis software.  相似文献   

4.
Eight-parameter PC-AT based flow cytometric data system   总被引:1,自引:0,他引:1  
An 8-parameter flow cytometric data system is described using an IBM-AT compatible personal computer (PC) and a commercial analog to digital conversion (ADC) board. A dedicated pulse processing interface adapts the flow cytometric pulses to the ADC board and controls the number of parameters to be taken up and the trigger conditions. The trigger thresholds are automatically held at a level immediately above the noise level. For the timing of kinetic measurements a linear voltage ramp of adjustable rise time is available. A built-in precision voltage source can be used for an overall calibration. The data system is operated by software written in assembly language. Data may be collected and processed in 1-8-parameter listmode or 1-3-parameter histogram mode. Functions are available for graphical color displays, numerical integration, multiparameter gating, and printing.  相似文献   

5.
This report describes the data acquisition electronics for a flow cytometer. The design differs from most instruments in that the signals from a large number of detectors are processed in parallel. Each of the input channels is capable of autonomously measuring and digitizing the fluorescence signals. The digitized values that belong to one particle are collected by digital circuitry and are presented as a compact data package on a special bus. In addition to the pulse values, the data package contains a time marker, information needed for sort decisions, and an error detection code. Specially designed electronic modules that read the information from the bus can take complex multiparameter sort decisions at a very high speed. All events can also be recorded as data lists by a computer. The lists can be used to reconstruct a sort or analysis run. The raw data lists can also be reduced to kinetic curves and/or (gated) multivariate histograms. As a result of the applied scheme of parallel pulse processing, the dead time of the system is independent of the number of parameters measured and the number and time separation of the excitation beams. The instrument has a cycle time of 5 microseconds, which corresponds to a throughput rate of 2 x 10(5) events/s. At this rate, the incidence of correlation errors is well below 1 in 10(8) analyzed particles. The system has proved to be reliable and convenient to use in a variety of experiments. Its high speed and low error rate make it well suited for high-resolution measurements, rare-event analysis, kinetic measurements, and high-speed cell sorting.  相似文献   

6.
7.
Measurement of cellular DNA content and the analysis of the cell cycle can be performed by flow cytometry. Protocols for DNA measurement have been developed including Bivariate cytokeratin/DNA analysis, Bivariate BrdU/DNA analysis, and multiparameter flow cytometry measurement of cellular DNA content. This review summarises the methods for measurement of cellular DNA and analysis of the cell cycle and discusses the commercial software available for these purposes.  相似文献   

8.
9.
10.
The aim of this article is to provide a brief review about the ImageStream system a novel tool for multiparameter cell analysis in flow. The instrument integrates the features of flow cytometry and fluorescence microscopy combined with a modern methodology for image analysis. Similar to flow cytometry, ImageStream allows analysis of a large number of cells based on their fluorescence features and provides statistical analysis of these features. Additionally, ImageStream allows detailed morphometric cellular analysis based on acquired cellular images integrating various morphometric and photometric features of the examined cells. Simply stated, ImageStream system is an advanced flow cytometer acquiring both integrated fluorescence signals as well as high quality fluorescence images and allowing muliparameter analysis. The innovative features of the instrument offer new analytical capabilities and allow for a multitude of possible applications beyond the current means of flow cytometry. While this article summarizes basic information about the features of ImageStream and its applications based on the available literature and it also describes our own experience.  相似文献   

11.
A multiple illumination wavelength multiparameter flow cytophotometer system, using laser sources and controlled by a small, general-purpose digital computer, has been produced for use in the development of new flow cytometric techniques. Three different laser wave-lengths can be used simultaneously to illuminate different regions of the flow chamber; as many as five measurements of light scattering at various angles, extinction, and fluorescence at one or more wavelengths can be made at each illuminated station. Cells in suspension may be examined at rates of 1000 cells/sec, with seven correlated optical measurements being recorded for each cell. A library of programs for data manipulation and statistical analysis make it possible to use the system to develop and implement cell characterization, counting and classification procedures for basic and clinical research applications.  相似文献   

12.
Techniques have recently become available to label protein subunits with fluorescent probes at predetermined orientation relative to the protein coordinates. The known local orientation enables quantitative interpretation of fluorescence polarization experiments in terms of orientation and motions of the protein within a larger macromolecular assembly. Combining data obtained from probes placed at several distinct orientations relative to the protein structure reveals functionally relevant information about the axial and azimuthal orientation of the labeled protein segment relative to its surroundings. Here we present an analytical method to determine the protein orientational distribution from such data. The method produces the broadest distribution compatible with the data by maximizing its informational entropy. The key advantages of this approach are that no a priori assumptions are required about the shape of the distribution and that a unique, exact fit to the data is obtained. The relative orientations of the probes used for the experiments have great influence on information content of the maximum entropy distribution. Therefore, the choice of probe orientations is crucial. In particular, the probes must access independent aspects of the protein orientation, and two-fold rotational symmetries must be avoided. For a set of probes, a "figure of merit" is proposed, based on the independence among the probe orientations. With simulated fluorescence polarization data, we tested the capacity of maximum entropy analysis to recover specific protein orientational distributions and found that it is capable of recovering orientational distributions with one and two peaks. The similarity between the maximum entropy distribution and the test distribution improves gradually as the number of independent probe orientations increases. As a practical example, ME distributions were determined with experimental data from muscle fibers labeled with bifunctional rhodamine at known orientations with respect to the myosin regulatory light chain (RLC). These distributions show a complex relationship between the axial orientation of the RLC relative to the fiber axis and the azimuthal orientation of the RLC about its own axis. Maximum entropy analysis reveals limitations in available experimental data and supports the design of further probe angles to resolve details of the orientational distribution.  相似文献   

13.
A general-purpose multiparameter flow cytophotometry system has been developed for use in the desgin of flow cytophotometers to perform specific tasks in automated cytology. Five separate measurement stations spaced along the axis of a capillary tube can be used to make up to eight optical measurements of individual cells flowing through the capillary. The system uses a broad-band arc source and can measure light scattered at various angles, light absorption by cell constituents and/or dyes and fluorescence of cell constituents and/or fluorochromes, excited directly and/or by energy transfer from neighboring molecules. High numerical aperture optics are used to maximize light-gathering capacity and minimize the effects of cell orientation and eccentricity of position in the fluid stream on measurements. A hard-wired preprocessor is used to detect the presence of cells and adjust sampling timing for changes in cell velocity; the electronic system also controls the gain of the detector photomultiplier tubes to compensate for background variations. Data acquistion and analysis are controled by a small general-purpose digital computer. The system has been used to develop a method and apparatus for blood cell counting and classification.  相似文献   

14.
Advances in fundamental physical and optical principles applied to novel fluorescence methods are currently resulting in rapid progress in cell biology and physiology. Instrumentation devised in pioneering laboratories is becoming commercially available, and study findings are now becoming accessible. The first results have concerned mainly higher eukaryotic cells but many more developments can be expected, especially in microbiology. Until now, some important problems of cell physiology have been difficult to investigate due to interactions between probes and cells, excretion of probes from cells and the inability to make in situ observations deep within the cell, within tissues and structures. These technologies will enable microbiologists to address these topics. This Review aims at introducing the limits of current physiology evaluation techniques, the principles of new fluorescence technologies and examples of their use in this field of research for evaluating the physiological state of cells in model media, biofilms or tissue environments. Perspectives on new imaging technologies, such as super-resolution imaging and non-linear highly sensitive Raman microscopy, are also discussed. This review also serves as a reference to those wishing to explore how fluorescence technologies can be used to understand basic cell physiology in microbial systems.  相似文献   

15.
To unveil the structure of natural marine pelagic bacterial communities, PCR-based techniques as well as fluorescence in situ hybridizations (FISH) were successfully performed in the past. Using fluorescence microscopes or confocal laser scanning microscopes (CLSM) for the analysis of FISH experiments, it was possible to differentiate bacterial communities, but most attempts to combine flow cytometry and FISH for this purpose have failed till now. Here we present a successful analysis of FISH experiments of natural marine pelagic bacterial communities using a flow cytometer based on microfluidics (Agilent 2100 bioanalyzer). Marine water samples were enriched on polycarbonate filters and hybridized with Cy5 labeled gene probes of different phylogenetic depth. Bacteria were detached from the filters and subsequently analyzed in the Cell Chip of the Agilent 2100 Bioanalyzer. Samples were counter-stained using SYTOX. In all samples the EUB338 positive signals could be clearly differentiated from those of the NON probe. Furthermore a dominance of alpha-protebacteria (as indicated by the probes ALF968 and G rB) could be observed. Microfluidics based flow cytometry is a promising technique for the analysis of natural bacterial communities from the marine environment.  相似文献   

16.
High-throughput cell-based assays are becoming a powerful approach in the drug discovery process. The ArrayScan high-content screening (HCS) reader is a cytometer based on a fully automated fluorescence microscope that is able to obtain quantitative information on the intensity and localization of fluorescence signals within single cells over a wide cell population. The aim of this work was to set up an automated HCS multiparameter analysis for the quantification of the in vitro proliferation index of normal human dermal fibroblast (NHDF) cultures. The authors stimulated starved NHDF with insulin-like growth factor-1, platelet-derived growth factor, epidermal growth factor, fibroblast growth factor, or serum, and they quantified the proliferation index by measuring the expression of Ki-67 antigen, the incorporation of bromodeoxyuridine (BrdU), and the phosphorylation of the retinoblastoma protein (pRb). This approach also allowed quantification of the mitotic index by phospho-histone H3 staining and the percentage of cells in the S-phase by BrdU incorporation. The proliferation data from the ArrayScan assays were validated by comparison with a reference enzyme-linked immunosorbent assay (ELISA) and by flow cytometry. The measured proliferation indices were highly reproducible in repeated measures and independent experiments. The authors therefore propose that the ArrayScan HCS system could be used for high-throughput multiparameter analysis and quantification of the proliferation of cellular cultures.  相似文献   

17.
Different genetic stains of avian RNA tumor virus (ATV) were labeled with the fluorescent membrane probe R-18 (rhodamine conjugated to a hydrocarbon chain) and cellular receptors for virus infection were analyzed on a rapid, single-cell basis by a multiparameter cell sorter. Chicken cells genetically susceptible to various R-18 ATV were found to adsorb much more virus, as measured by increased fluorescent binding, than did genetically resistant chicken cells. Virus binding to receptor sites could be saturated with increased concentrations of labeled virus. This binding could be altered by removal of the polycation, polybrene, indicating the important influence of electrostatic forces. Correlated time measurements of virus binding to single cells were taken with these fluorescence measurements allowing for a minute-to-minute study of the kinetics of viral adsorption to resistant and susceptible cells. The ratio of fluorescence (proportional to the number of virions bound per cell) to light scatter (proportional to cell surface area) on a cell-to-cell basis was analyzed to examine the heterogeneity in fluorescent virion bound per unit cell surface area within a given cell type. With these calculations, it was found that a large amount, but not all, of observed fluorescence heterogeneity merely reflects differences in cell surface areas. However, there are significant differences in viral receptor site densities within this supposedly homogeneous population of cells. This study represents a successful application of fluorescent membrane probes and flow cytometry to the study of cellular responses to viral infection at the single-cell level. Sine large numbers of cells can be examined rapidly, small subpopulations of live virally susceptible or resistant cells can be cloned by multiparameter cell sorting.  相似文献   

18.
An in-housed designed computerised flow injection system for low level ammonia analysis is examined. The system features an on-line microdistillation preconcentration unit, which was used as an on-line sample pretreatment step in an ammonia gas-sensing probe flow injection system. A simple, low cost computerised control and data acquisition system was designed using a commercial pH meter with RS-232 interface and in-house designed control system. The system offered a practical and effective means of extending the detection limit of commercial available ammonia gas sensing probes to 5 μg/1 NH3N.  相似文献   

19.
In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.  相似文献   

20.
The problems associated with rapid analysis and interpretation of data from multicolor immunofluorescence panels have been a formidable barrier to their routine use. Using present flow cytometry concepts, a panel of 11 tubes each containing multiple phenotypic markers or controls requires postdata acquisition manipulation of many multiparameter histogram and listmode files. We have developed a method that compresses all of the information from such a panel into a single listmode data file during run time. A single data file is used to record the entire phenotypic analysis for a particular patient or series within an experiment. This is accomplished by the incorporation of a tube identifier parameter (TIP) as well as the fluorescence and light scatter parameters normally collected. The TIP can then be used for gating discrimination of any tube or set of tubes within a panel. When the TIP is correlated with the PRISM parameter the entire patient phenotypic image can be represented within a single two-parameter histogram we have called a phenogram. This phenogram can be generated in real time, providing on-line preprocessing of a complex multicolor experiment. By examining the image created by the phenogram it is possible to rapidly flag abnormalities such as incorrect gating. This procedure was carried out on an EPICS Elite flow cytometer in its standard configuration with the addition of hardware to provide an input for the TIP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号