首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within a long-term research project studying the biogeochemical budget of an oak-beech forest ecosystem in the eastern part of the Netherlands, the nitrogen transformations and solute fluxes were determined in order to trace the fate of atmospherically deposited NH4 + and to determine the contribution of nitrogen transformations to soil acidification.The oak-beech forest studied received an annual input of nitrogen via throughfall and stemflow of 45 kg N ha–1 yr–1, mainly as NH4 +, whereas 8 kg N ha–1 yr–1 was taken up by the canopy. Due to the specific hydrological regime resulting in periodically occurring high groundwater levels, denitrification was found to be the dominant output flux (35 kg N ha–1 yr–1). N20 emmission rate measurements indicated that 57% of this gaseous nitrogen loss (20 kg N ha–1 yr–1) was as N2O. The forest lost an annual amount of 11 kg N ha–1 yr–1 via streamwater output, mainly as N03 .Despite the acid conditions, high nitrification rates were measured. Nitrification occurred mainly in the litter layer and in the organic rich part of the mineral soil and was found to be closely correlated with soil temperature. The large amount of NH4 + deposited on the forest floor via atmospheric deposition and produced by mineralization was to a large extent nitrified in the litter layer. Almost no NH4 + reached the subsurface soil horizons. The N03 was retained, taken up or transformed mainly in the mineral soil. A small amount of N03 (9 kg N ha–1 yr–1) was removed from the system in streamwater output. A relatively small amount of nitrogen was measured in the soil water as Dissolved Organic Nitrogen.On the basis of these data the proton budget of the system was calculated using two different approaches. In both cases net proton production rates were high in the vegetation and in the litter layer of the forest ecosystem. Nitrogen transformations induced a net proton production rate of 2.4 kmol ha–1 yr–1 in the soil compartment.  相似文献   

2.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41 °S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy-soil-atmosphere interactions and to calculate input-output budgets. From May 1999 till April 2000, the experimental watershed received 8121 mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527 mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6 kg ha–1 year–1 and 8.2 kg ha–1 year–1 respectively. Occult deposition (clouds + fog) contributes for 40% to the atmospheric nitrogen input (bulk + occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9 kg ha–1 year–1) and organic (5.2 kg ha–1 year–1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2 kg DIN ha–1 year–1 and 5.6 kg DON ha–1 year–1). The low concentrations of NO 3 and NH 4 + under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

3.
This study examined the biotic and abiotic processes controlling solution chemistry and cycling of aluminum (Al) in the organic horizons of a northern coniferous forest ecosystem. A mass balance budget indicated that aboveground inputs of Al to the O horizon averaged 0.9 kg ha–1 1 yr–1, with major inputs accounted for by litterfall (69%), followed by precipitation (21%), and net canopy throughfall plus stemflow (10%). Estimated leaching losses of Al from the O horizon averaged 2.1 kg Al ha-1 yr1. We hypothesize that the difference between measured Al inputs and outputs can be accounted for by Al release from weathering of soil minerals admixed into the O horizon. Variations in O horizon solution Al chemistry were influenced by a number of factors, including pH, Al equilibria with different solid-phase organic exchange sites, and Al complexation with humic ligands in soil solution.  相似文献   

4.
Overstory species influence the distribution and dynamics of nutrients in forest ecosystems. Ecosystem-level estimates of Ca, Mg, and K pools and cycles in 50-year old Douglas-fir and red alder stands were used to determine the effect of overstory composition on net cation removal from the mineral soil, i.e. cation export from the soil in excess of additions. Net cation removal from Douglas-fir soil was 8 kg Ca ha–1 yr–1, 1 kg Mg ha–1 yr–1, and 0.3 kg K ha–1 yr–1. Annual cation export from soil by uptake and accumulation in live woody tissue and O horizon was of similar magnitude to leaching in soil solution. Atmospheric deposition partially off-set export by adding cations equivalent to 28–88% of cation export. Net cation removal from red alder soil was 58 kg Ca ha–1 yr–1, 9 kg Mg ha–1 yr–1, and 11 kg K ha–1 yr–1. Annual cation accumulation in live woody tissue and O horizon was three times greater than in Douglas-fir, while cation leaching in soil solution was five to eight times greater. The lack of excessive depletion of exchangeable cations in the red alder soil suggests that mineral weathering, rather than exchangeable cations, was the source of most of the removed cations. Nitric acid generated during nitrification in red alder soil led to high rates of weathering and NO3-driven cation leaching.  相似文献   

5.
Reductions in snow cover undera warmer climate may cause soil freezing eventsto become more common in northern temperateecosystems. In this experiment, snow cover wasmanipulated to simulate the late development ofsnowpack and to induce soil freezing. Thismanipulation was used to examine the effects ofsoil freezing disturbance on soil solutionnitrogen (N), phosphorus (P), and carbon (C)chemistry in four experimental stands (twosugar maple and two yellow birch) at theHubbard Brook Experimental Forest (HBEF) in theWhite Mountains of New Hampshire. Soilfreezing enhanced soil solution Nconcentrations and transport from the forestfloor. Nitrate (NO3 ) was thedominant N species mobilized in the forestfloor of sugar maple stands after soilfreezing, while ammonium (NH4 +) anddissolved organic nitrogen (DON) were thedominant forms of N leaching from the forestfloor of treated yellow birch stands. Rates ofN leaching at stands subjected to soil freezingranged from 490 to 4,600 mol ha–1yr–1, significant in comparison to wet Ndeposition (530 mol ha–1 yr–1) andstream NO3 export (25 mol ha–1yr–1) in this northern forest ecosystem. Soil solution fluxes of Pi from the forestfloor of sugar maple stands after soil freezingranged from 15 to 32 mol ha–1 yr–1;this elevated mobilization of Pi coincidedwith heightened NO3 leaching. Elevated leaching of Pi from the forestfloor was coupled with enhanced retention ofPi in the mineral soil Bs horizon. Thequantities of Pi mobilized from the forestfloor were significant relative to theavailable P pool (22 mol ha–1) as well asnet P mineralization rates in the forest floor(180 mol ha–1 yr–1). Increased fineroot mortality was likely an important sourceof mobile N and Pi from the forest floor,but other factors (decreased N and P uptake byroots and increased physical disruption of soilaggregates) may also have contributed to theenhanced leaching of nutrients. Microbialmortality did not contribute to the acceleratedN and P leaching after soil freezing. Resultssuggest that soil freezing events may increaserates of N and P loss, with potential effectson soil N and P availability, ecosystemproductivity, as well as surface wateracidification and eutrophication.  相似文献   

6.
Losses of dissolved nutrients (N, P, K, Ca, Mg, Na,Cl, and SO4) in runoff were measured on grasslandand shrubland plots in the Chihuahuan desert ofsouthern New Mexico. Runoff began at a lowerthreshold of rainfall in shrublands than ingrasslands, and the runoff coefficient averaged 18.6%in shrubland plots over a 7-year period. In contrast,grassland plots lost 5.0 to 6.3% of incidentprecipitation in runoff during a 5.5-year period. Nutrient losses from shrubland plots were greater thanfrom grassland plots, with nitrogen losses averaging0.33 kg ha–1 yr–1 vs0.15 kg ha–1 yr–1, respectively, during a 3-year period. Thegreater nutrient losses in shrublands were due tohigher runoff, rather than higher nutrientconcentrations in runoff. In spite of these nutrientlosses in runoff, all plots showed net accumulationsof most elements due to inputs from atmosphericdeposition. Therefore, loss of soil nutrients byhillslope runoff cannot, by itself, account for thedepletion of soil fertility associated withdesertification in the Chihuahuan desert.  相似文献   

7.
Summary Agro-ecosystems have developed from mixed- and multiple-cropping systems with relatively closed N cycles to intensively managed monocultures with large N inputs in the form of commercial fertilizers. Cultivation of increasingly larger areas of land has resulted in substantial losses of soil organic matter and N. Also, the move from slash and burn agriculture to intensively ploughed systems has resulted in losses through increased erosion.The use of N fertilizers has increased rapidly toca. 60 Tg N yr–1 (1980/81), which is equivalent to at least 40% of the N fixed biologically in all terrestrial systems and 36% more than is fixed in all croplands. On a global scale, the major losses of N from agro-ecosystems are estimated to be: harvest, 30 Tg; leaching, 2 Tg; erosion, 2–20 Tg; denitrification 1–44 Tg; and ammonia volatilization, 13–23 Tg. However, the data base is very crude and several estimates may be wrong by as much as one order of magnitude.Additions of N fertilizers have both direct and indirect effects on soil microorganisms. The possible importance of such effects is briefly discussed and a specific example is given on long-term effects on soil microbial biomass and nitrification rates in 27-year-old cropping systems with different N additions: (i) 0 kg N ha–1 yr–1, (ii) 80 kg N ha–1 yr–1, (iii) farmyard manureca. 80 kg N ha–1 yr–1.Few detailed N budgets exist for agro-ecosystems, despite its major importance as a limiting plant nutrient and the large losses of N from such systems. In conclusion, preliminary nitrogen budgets for four cropping systems (barley receiving 0 or 120 kg N ha–1 yr–1; meadow fescue ley with 200 kg N ha–1 yr–1 and a lucerne ley) are presented, with special attention to N flow through the soil organisms.Keynote address  相似文献   

8.
N deposition, N transformation and N leaching in acid forest soils   总被引:9,自引:3,他引:6  
Nitrogen deposition, mineralisation, uptake and leaching were measured on a monthly basis in the field during 2 years in six forested stands on acidic soils under mountainous climate. Studies were conducted in three Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] plantations (D20: 20 year; D40: 40 yr; D60: 60 yr) on abandoned croplands in the Beaujolais Mounts; and two spruce (Picea abies Karst.) plantations (S45: 45 yr; S90: 90 yr) and an old beech (Fagus sylvatica L.) stand (B150: 150 yr) on ancient forest soils in a small catchment in the Vosges Mountains. N deposition in throughfall varied between 7–8 kg ha–1 year–1 (D20, B150, S45) and 15–21 kg ha–1 yr–1 (S90, D40, D60). N in annual litterfall varied between 20–29 kg ha–1 (D40, D60, S90), and 36–43 kg ha–1 (D20, S45, B150). N leaching below root depth varied among stands within a much larger range, between 1–9 kg ha–1 yr–1 (B150, S45, D60) and 28–66 kg ha–1 yr–1 (D40, S90, D20), with no simple relationship with N deposition, or N deposition minus N storage in stand biomass. N mineralisation was between 57–121 kg ha–1 yr–1 (S45, D40, S90) and between 176–209 kg ha–1 yr–1 in (B150, D60 and D20). The amounts of nitrogen annually mineralised and nitrified were positively related. Neither general soil parameters, such as pH, soil type, base saturation and C:N ratio, nor deposition in throughfall or litterfall were simply related to the intensity of mineralisation and/or nitrification. When root uptake was not allowed, nitrate leaching increased by 11 kg ha–1 yr–1 at S45, 36 kg ha–1 yr–1 at S90 and between 69 and 91 kg ha–1 yr–1 at D20, D40, B150 and D60, in relation to the nitrification rates of each plot. From this data set and recent data from the literature, we suggest that: high nitrification and nitrate leaching in Douglas-fir soils was likely related to the former agricultural land use. High nitrification rate but very low nitrate leaching in the old beech soil was related to intense recycling of mineralised N by beech roots. Medium nitrification and nitrate leaching in the old spruce stand was related to the average level of N deposition and to the deposition and declining health of the stand. Very low nitrification and N leaching in the young spruce stand were considered representative of fast growing spruce plantations receiving low N deposition on acidic soils of ancient coniferous forests. Consequently, we suggest that past land use and fine root cycling (which is dependent on to tree species and health) should be taken into account to explain the variability in the relation between N deposition and leaching in forests.  相似文献   

9.
Enhanced nitrogen (N) availability is one of the main drivers of biodiversity loss and degradation of ecosystem functions. However, in very nutrient-poor ecosystems, enhanced N input can, in the short-term, promote diversity. Mediterranean Basin ecosystems are nutrient-limited biodiversity hotspots, but no information is available on their medium- or long-term responses to enhanced N input. Since 2007, we have been manipulating the form and dose of available N in a Mediterranean Basin maquis in south-western Europe that has low ambient N deposition (<4 kg N ha−1 yr−1) and low soil N content (0.1%). N availability was modified by the addition of 40 kg N ha−1 yr−1 as a 1∶1 NH4Cl to (NH4)2SO4 mixture, and 40 and 80 kg N ha−1 yr−1 as NH4NO3. Over the following 5 years, the impacts on plant composition and diversity (richness and evenness) and some ecosystem characteristics (soil extractable N and organic matter, aboveground biomass and % of bare soil) were assessed. Plant species richness increased with enhanced N input and was more related to ammonium than to nitrate. Exposure to 40 kg NH4 +-N ha−1 yr−1 (alone and with nitrate) enhanced plant richness, but did not increase aboveground biomass; soil extractable N even increased under 80 kg NH4NO3-N ha−1 yr−1 and the % of bare soil increased under 40 kg NH4 +-N ha−1 yr−1. The treatment containing less ammonium, 40 kg NH4NO3-N ha−1 yr−1, did not enhance plant diversity but promoted aboveground biomass and reduced the % of bare soil. Data suggest that enhanced NHy availability affects the structure of the maquis, which may promote soil erosion and N leakage, whereas enhanced NOx availability leads to biomass accumulation which may increase the fire risk. These observations are relevant for land use management in biodiverse and fragmented ecosystems such as the maquis, especially in conservation areas.  相似文献   

10.
Retention of soluble organic nutrients by a forested ecosystem   总被引:10,自引:6,他引:4  
We document an example of a forested watershed at the Coweeta HydrologicLaboratory with an extraordinary tendency to retain dissolved organic matter(DOM) generated in large quantities within the ecosystem. Our objectives weretodetermine fluxes of dissolved organic C, N, and P (DOC, DON, DOP,respectively),in water draining through each stratum of the ecosystem and synthesizeinformation on the physicochemical, biological and hydrologic factors leadingtoretention of dissolved organic nutrients in this ecosystem. The ecosystemretained 99.3, 97.3, and 99.0% of water soluble organic C, N and P,respectively, produced in litterfall, throughfall, and root exudates. Exportsinstreamwater were 4.1 kg ha–1yr–1of DOC, 0.191 kg ha–1 yr–1 ofDON, and 0.011 kg ha–1 yr–1 ofDOP. Fluxes of DON were greater than those of inorganic N in all strata. MostDOC, DON, and DOP was removed from solution in the A and B horizons, with DOCbeing rapidly adsorbed to Fe and Al oxyhydroxides, most likely by ligandexchange. DON and DOC were released gradually from the forest floor over theyear. Water soluble organic C produced in litterfall and throughfall had adisjoint distribution of half-decay times with very labile and veryrefractory fractions so that most labile DOC was decomposed before beingleachedinto the mineral soil and refractory fractions dominated the DOC transportedthrough the ecosystem. We hypothesize that this watershed retained solubleorganic nutrients to an extraordinary degree because the soils have very highcontents of Fe and Al oxyhydroxides with high adsorption capacities and becausethe predominant hydrologic pathway is downwards as unsaturated flow through astrongly adsorbing A and B horizon. The well recognized retention mechanismsforinorganic nutrients combine with adsorption of DOM and hydrologic pathway toefficiently prevent leaching of both soluble inorganic andorganic nutrients in this watershed.  相似文献   

11.
Nitrogen inputs, fluxes, internal generation and consumption, and outputs were monitored in a subalpine spruce-fir forest at approximately 1000-m elevation on Whiteface Mountain in the Adirondacks of New York, USA. Nitrogen in precipitation, cloudwater and dry deposition was collected on an event basis and quantified as an input. Throughfall, stemflow, litterfall and soil water were measured to determine fluxes within the forest. Nitrogen mineralization in the forest floor was estimated to determine internal sources of available N. Lower mineral horizon soil water was used to estimate output from the ecosystem. Vegetation and soil N pools were determined.During four years of continuous monitoring, an average of 16 kg N ha–1 yr–1 was delivered to the forest canopy as precipitation, cloudwater and dry deposition from the atmosphere. Approximately 30% of the input was retained by the canopy. Canopy retention is likely the result of both foliar uptake and immobilization by bark, foliage and microorganisms. Approximately 40 kg of N was made available within the forest floor from mineralization of organic matter. Virtually all the available ammonium (mineralized plus input from throughfall) is utilized in the forest floor, either by microorganisms or through uptake by vegetation. The most abundant N component of soil water solutions leaving the system was nitrate. Net ecosystem fluxes indicate accumulation of both ammonium and nitrate. There is a small net loss of organic N from the ecosystem. Some nitrate leaves the bottom of the B horizon throughout the year. Comparisons with other temperate coniferous sites and examination of the ecosystem N mass balance indicate that N use efficiency is less at our site, which suggests that the site is not severely limited by N.  相似文献   

12.
Sulfur cycling in forests   总被引:6,自引:5,他引:1  
Sulfur is essential for the production of certain amino acids in plants. As amino acid sulfur is the major form of sulfur in trees, there is a strong relationship between organic S and organic N in tree tissue. Sulfur deficiencies occur in parts of southeastern Australia and northwestern North America, remote from pollutant inputs. Since bilogical S requirements of forests are modest (< 5 kg · ha–1 yr–1 for net vegetative increment), however, atmospheric S inputs in polluted regions (10–80 kg · ha–1 yr–1 ) often exceed not only the forest ecosystem S requirement but also its ability to biologically accumulate S. There is some increase in the SO2– 4–S content of forest vegetation in response to elevated atmospheric S inputs, but this capacity is apparently easily saturated. Soil SO2–2 4adsorption is often the dominant feature of S cycling in polluted ecosystems and often accounts for net ecosytem S accumulations.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

13.
Although tropical wet forests play an important role in the global carbon (C) and nitrogen (N) cycles, little is known about the origin, composition, and fate of dissolved organic C (DOC) and N (DON) in these ecosystems. We quantified and characterized fluxes of DOC, DON, and dissolved inorganic N (DIN) in throughfall, litter leachate, and soil solution of an old-growth tropical wet forest to assess their contribution to C stabilization (DOC) and to N export (DON and DIN) from this ecosystem. We found that the forest canopy was a major source of DOC (232 kg C ha–1 y–1). Dissolved organic C fluxes decreased with soil depth from 277 kg C ha–1 y–1 below the litter layer to around 50 kg C kg C ha–1 y–1 between 0.75 and 3.5m depth. Laboratory experiments to quantify biodegradable DOC and DON and to estimate the DOC sorption capacity of the soil, combined with chemical analyses of DOC, revealed that sorption was the dominant process controlling the observed DOC profiles in the soil. This sorption of DOC by the soil matrix has probably led to large soil organic C stores, especially below the rooting zone. Dissolved N fluxes in all strata were dominated by mineral N (mainly NO3). The dominance of NO3 relative to the total amount nitrate of N leaching from the soil shows that NO3 is dominant not only in forest ecosystems receiving large anthropogenic nitrogen inputs but also in this old-growth forest ecosystem, which is not N-limited.  相似文献   

14.
In a pristine evergreen rainforest of Nothofagus betuloides, located at the Cordillera de los Andes in southern Chile (41?°S), concentrations and fluxes of nutrients in bulk precipitation, cloud water, throughfall water, stemflow water, soil infiltration and percolation water and runoff water were measured. The main objectives of this study were to investigate canopy–soil–atmosphere interactions and to calculate input–output budgets. From May 1999 till April 2000, the experimental watershed received 8121?mm water (86% incident precipitation, 14% cloud water), of which the canopy intercepted 16%. Runoff water volume amounted 9527?mm. Bulk deposition of inorganic (DIN) and organic (DON) nitrogen amounted 3.6?kg?ha?1?year?1 and 8.2?kg?ha?1?year?1 respectively. Occult deposition (clouds?+?fog) contributes for 40% to the atmospheric nitrogen input (bulk?+?occult deposition) of the forest. An important part of the atmospheric ammonium deposition is retained within the canopy or converted to nitrate or organic nitrogen by epiphytic bacteria or lichens. Also the export of inorganic (0.9?kg?ha?1?year?1) and organic (5.2?kg?ha?1?year?1) nitrogen via runoff is lower than the input to the forest floor via throughfall and stemflow water (3.2?kg?DIN?ha?1?year?1 and 5.6?kg?DON?ha?1?year?1). The low concentrations of NO-3 and NH+4 under the rooting depth suggest an effective biological immobilization by vegetation and soil microflora. Dry deposition and foliar leaching of base cations (K+, Ca2+, Mg2+) was estimated using a canopy budget model. Bulk deposition accounted for about 50% of the total atmospheric input. Calculated dry and occult deposition are both of equal value (about 25%). Foliar leaching of K+, Ca2+, and Mg2+ accounted for 45%, 38% and 6% of throughfall deposition respectively. On an annual basis, the experimental watershed was a net source for Na+, Ca2+ and Mg2+.  相似文献   

15.
The stable isotope15N was added as (15NH4)2SO4 to throughfall water for one year, to study the fate of the deposited nitrogen at different levels of N deposition in two N saturated coniferous forests ecosystems in the Netherlands. The fate of the15N was followed at high-N (44–55 kg N ha–1 yr–1) 1) and low-N (4–6 kg N ha–1 yr–1) deposition in plots established under transparent roofs build under the canopy in a Douglas fir (Pseudotsuga menziesii (Mirb.) Franco.) and Scots pine (Pinus sylvestris L.) forest.The applied15N was detectable in needles and twigs, the soil and soil water leaching below the rooting zone (90 cm depth). Total15N recovery in major ecosystem compartments was 71–100% during two successive growing seasons after the start of a year-round15N application to throughfall-N. Nine months after the year-round15N application, the15N assimilated into tree biomass was 29–33% of the15N added in the Douglas fir stand and less than 17% in the Scots pine stand. At the same time total15N retention in the soil (down to 70 cm) of the high-N plots was about 37% of the deposited15NH4-N, whereas 46% and 65% of the15N was found in the soil of the low-N deposition plots at the Douglas fir and Scots pine stand, respectively. The organic layers accounted for 60% of the15N retained in the soil. The total N deposition exceeded the demand of the vegetation and microbial immobilization. Total15N leaching losses within a year (below 90 cm) were 10–20% in the high-N deposition plots in comparison to 2–6% in the lowered nitrogen input plots. Relative retention in the soil and vegetation increased at lower N-input levels.Species differences in uptake and tree health seem to contribute to lower15N recoveries in the Scots pine trees compared to the Douglas fir trees. The excessive N deposition and resulting N saturation lead to conditions were the health and functioning of biota were negatively influenced. At decreased N deposition, lower leaching losses together with increased soil and plant retention indicated a change in the fate of the15N deposited. This may have resulted from changes in ecosystem processes, and thus a shift along the continuum of N saturation to N limitation.  相似文献   

16.

Background

The hydrological cycle is an important way of transportation and reallocation of reactive nitrogen (N) in forest ecosystems. However, under a high level of atmospheric N deposition, the N distribution and cycling through water flows in forest ecosystems especially in bamboo ecosystems are not well understood.

Methodology/Principal Findings

In order to investigate N fluxes through water flows in a Pleioblastus amarus bamboo forest, event rainfall/snowfall (precipitation, PP), throughfall (TF), stemflow (SF), surface runoff (SR), forest floor leachate (FFL), soil water at the depth of 40 cm (SW1) and 100 cm (SW2) were collected and measured through the whole year of 2009. Nitrogen distribution in different pools in this ecosystem was also measured. Mean N pools in vegetation and soil (0–1 m) were 351.7 and 7752.8 kg ha−1. Open field nitrogen deposition at the study site was 113.8 kg N ha−1 yr−1, which was one of the highest in the world. N-NH4 +, N-NO3 and dissolved organic N (DON) accounted for 54%, 22% and 24% of total wet N deposition. Net canopy accumulated of N occurred with N-NO3 and DON but not N-NH4 +. The flux of total dissolved N (TDN) to the forest floor was greater than that in open field precipitation by 17.7 kg N ha−1 yr−1, due to capture of dry and cloudwater deposition net of canopy uptake. There were significant negative exponential relationships between monthly water flow depths and monthly mean TDN concentrations in PP, TF, SR, FFL and SW1.

Conclusions/Significance

The open field nitrogen deposition through precipitation is very high over the world, which is the main way of reactive N input in this bamboo ecosystem. The water exchange and N consume mainly occurred in the litter floor layer and topsoil layer, where most of fine roots of bamboo distributed.  相似文献   

17.
The hypothesis that SO4 desorption can explain apparent long term net SO4-S losses (5 kg·ha–1·yr–1 on average) at the Lake Laflamme catchment from 1982 to 1991 is examined. Field observations show that SO4 concentrations in the soil solution are strongly buffered during percolation through the Bf horizon. In the Bf horizon, SO4 exchange reactions between the adsorbed and aqueous compartments are rapid (hours). Most (60%) of the adsorbed SO4 may be readily desorbed with deionized water. These observations and the presence of an important adsorbed SO4-S reservoir in the Bf horizon (113 kg·ha–1) as compared with annual wet SO4-S deposition (7 kg·ha–1), suggest that on the short-term, adsorption and desorption reactions can control dissolved SO4 concentration in the Bf horizon. To examine whether SO4 adsorption/desorption could explain long-term SO4-S losses by the catchment, an aggregated Langmuir isotherm for the Bf horizon was used to calculate the catchment's resilience to changing SO4-S loads. The results indicate that the soil should adjust rapidly (within 4 years) to changing SO4-S loads and that SO4 desorption alone cannot explain long-term net SO4-S losses. Other possibilities, such as an underestimation of dry deposition or the weathering of S-bearing minerals also appear unlikely. Our results suggest a net release of SO4-S from the soil organic S reservoirs (1230 kg·ha–1) present in the catchment.  相似文献   

18.
Carbon balance of a tropical savanna of northern Australia   总被引:7,自引:0,他引:7  
Chen X  Hutley LB  Eamus D 《Oecologia》2003,137(3):405-416
Through estimations of above- and below-ground standing biomass, annual biomass increment, fine root production and turnover, litterfall, canopy respiration and total soil CO2 efflux, a carbon balance on seasonal and yearly time-scales is developed for a Eucalypt open-forest savanna in northern Australia. This carbon balance is compared to estimates of carbon fluxes derived from eddy covariance measurements conducted at the same site. The total carbon (C) stock of the savanna was 204±53 ton C ha–1, with approximately 84% below-ground and 16% above-ground. Soil organic carbon content (0–1 m) was 151±33 ton C ha–1, accounting for about 74% of the total carbon content in the ecosystem. Vegetation biomass was 53±20 ton C ha–1, 39% of which was found in the root component and 61% in above-ground components (trees, shrubs, grasses). Annual gross primary production was 20.8 ton C ha–1, of which 27% occurred in above-ground components and 73% below-ground components. Net primary production was 11 ton C ha–1 year–1, of which 8.0 ton C ha–1 (73%) was contributed by below-ground net primary production and 3.0 ton C ha–1 (27%) by above-ground net primary production. Annual soil carbon efflux was 14.3 ton C ha–1 year–1. Approximately three-quarters of the carbon flux (above-ground, below-ground and total ecosystem) occur during the 5–6 months of the wet season. This savanna site is a carbon sink during the wet season, but becomes a weak source during the dry season. Annual net ecosystem production was 3.8 ton C ha–1 year–1.  相似文献   

19.
Residual P from historical farm practices hasbeen linked to elevated soluble reactivephosphorus (SRP) transport in runoff from afield study site in the Catskills Mountains,New York, U.S.A., with a P source assay indicatingthat successional forest floor biomass was themajor contributor to runoff SRP. In thispaper, we assemble hydrological and SRP budgetsthat indicate net SRP loss of 0.123 kgha–1 yr–1 occurs from the site(composed of 0.044 kg ha–1 yr–1precipitation input, with 0.143 kg ha–1yr–1 and 0.024 kg ha–1 yr–1losses in runoff and groundwater,respectively). These findings contrast withconservative P cycling reported for undisturbedforests. Coupled hydrological and SRP data areanalyzed suggesting that catchment ambient andequilibrium SRP concentrations corresponding togroundwater and long-term average runoffconcentrations are in the range capable ofcontributing to eutrophication of receivingwaters. A physically based variable sourcearea hydrological model is tested to simulateSRP export using deterministic concentrations. The three-layer model (surface runoff, shallowlateral flow, and groundwater) is parameterizedusing spatially distributed data fromadditional P source assays and fieldhydrological monitoring for the site. Differences in simulated and observed outflowand SRP export are partially explained byforest evapotranspiration and frozen soilprocesses. The field data, SRP budgets andsimulations show that sufficient residual Ppools exist to prolong net SRP loss rates untilecosystem processes re-establish moreconservative P cycling.  相似文献   

20.
Time series of values of ingenious parameters indicating ecosystem services from European beech and Norway spruce ecosystems at Solling, Germany, were evaluated with respect to resilient or adaptive behaviour. Studied indicators comprise the use of monitoring data with up to more than 40 years of observation on deposition of potential acidity, sulphate (SO42−) budgets, exchangeable base cation pools, Bc/Al ratio in soil solution, nitrogen (N) budgets, foliar nutrition as indicated by the foliar Bc/N ratio, and defoliation. Deposition of potential acidity decreased considerably at both ecosystems. SO42− budgets reveal retention of sulphur in the soils affecting acid/base budgets. Exchangeable base cation pools decreased at both ecosystems by about 60%. Bc/Al ratio in soil solution in the mineral soil was mostly below critical limits indicating potential toxic stress to tree roots. N retention in the soils decreased from about 40 kg ha−1 yr−1 in the 1970s to currently very low rates of 0–20 kg ha−1 yr−1 indicating increasing N saturation. Foliar Bc/N ratio decreased at the spruce ecosystem indicating possible nutrient imbalances. Defoliation at both Solling ecosystems is on a high level compared to other forests in Germany, but reveals no distinct relation to soil acidification or N saturation. From the selected indicators, SO42− and N budgets reveal resilient behaviour, whereas indicators related to the acid/base status tend to adaptive behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号