首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
HL-60/AMSA is a human leukemia cell line that is 50-100-fold more resistant than its drug-sensitive HL-60 parent line to the cytotoxic actions of the DNA intercalator amsacrine (m-AMSA). HL-60/AMSA topoisomerase II is also resistant to the inhibitory actions of m-AMSA. HL-60/AMSA cells and topoisomerase II are cross-resistant to anthracycline and ellipticine intercalators but relatively sensitive to the nonintercalating topoisomerase II reactive epipodophyllotoxin etoposide. We now demonstrate that HL-60/AMSA and its topoisomerase II are cross-resistant to the DNA intercalators mitoxantrone and amonafide, thus strongly indicating that HL-60/AMSA and its topoisomerase II are resistant to topoisomerase II reactive intercalators but not to nonintercalators. At high concentrations, mitoxantrone and amonafide were also found to inhibit their own, m-AMSA's, and etoposide's abilities to stabilize topoisomerase II-DNA complexes. This appears to be due to the ability of these concentrations of mitoxantrone and amonafide to inhibit topoisomerase II mediated DNA strand passage at a point in the topoisomerization cycle prior to the acquisition of the enzyme-DNA configuration that yields DNA cleavage and topoisomerase II-DNA cross-links. In addition, amonafide can inhibit the cytotoxic actions of m-AMSA and etoposide. Taken together, these results suggest that the cytotoxicity of m-AMSA and etoposide is initiated primarily by the stabilization of the topoisomerase II-DNA complex. Other topoisomerase II reactive drugs may inhibit the enzyme at other steps in the topoisomerization cycle, particularly at elevated concentrations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
HL-60/AMSA is a human leukemia cell line that is 100 times more resistant to the cytotoxic actions of the antineoplastic, topoisomerase II-reactive DNA intercalating acridine derivative amsacrine (m-AMSA) than is its parent HL-60 line. HL-60/AMSA cells are minimally resistant to etoposide, a topoisomerase II-reactive drug that does not intercalate. Previously we showed that HL-60 topoisomerase II activity in cells, nuclei, or nuclear extracts was sensitive to m-AMSA and etoposide, while HL-60/AMSA topoisomerase II was resistant to m-AMSA but sensitive to etoposide. Now we show that purified topoisomerase II from the two cell lines exhibits the same drug sensitivity or resistance as that in the nuclear extracts although the magnitude of the m-AMSA resistance of HL-60/AMSA topoisomerase II in vitro is not as great as the resistance of the intact HL-60/AMSA cells. In addition HL-60/AMSA cells are cross-resistant to topoisomerase II-reactive intercalators from the anthracycline and ellipticine families and the pattern of sensitivity or resistance to the cytotoxic actions of the various topoisomerase II-reactive drugs is paralleled by topoisomerase II-reactive drug-induced DNA cleavage and protein cross-link production in cells and the production of drug-induced, topoisomerase II-mediated DNA cleavage and protein cross-linking in isolated biochemical systems. In addition to its lowered sensitivity to intercalators, HL-60/AMSA differed from HL-60 in 1) the susceptibility of its topoisomerase II to stimulation of DNA topoisomerase II complex formation by ATP, 2) the catalytic activity of its topoisomerase II in an ionic environment chosen to reproduce the environment found within the living cell, and 3) the observed restriction enzyme pattern on a Southern blot probed with a cDNA for human topoisomerase II. These data indicate that an m-AMSA-resistant form of topoisomerase II contributes to the resistance of HL-60/AMSA to m-AMSA and to other topoisomerase II-reactive DNA intercalating agents. The drug resistance is associated with additional biochemical and molecular alterations that may be important determinants of cellular sensitivity or resistance to topoisomerase II-reactive drugs.  相似文献   

3.
4.
T Uemura  K Morikawa    M Yanagida 《The EMBO journal》1986,5(9):2355-2361
We have determined the complete nucleotide sequence of a 5.3-kb long genomic DNA fragment of the fission yeast Schizosaccharomyces pombe that encodes DNA topoisomerase II. It contains a 4293 bp long single open reading frame. The predicted polypeptide has 1431 residues (mol. wt 162,000) and shows three characteristic domains; the large C-terminal region, which consists of alternating acidic-basic stretches and might be a chromatin-binding domain, the NH2 half domain homologous to the ATP-binding gyrB subunit of bacterial gyrase and the central-to-latter part which is homologous to the NH2 domain of the catalytic gyrA subunit, suggesting a possible evolutionary consequence of the gene fusion of the bacterial gyrase subunits into the eucaryotic DNA topoisomerase II gene. We have found that the cloned fission yeast TOP2 gene can complement the budding yeast top2 mutation, although the fission yeast TOP2 protein sequence is only 50% homologous to the recently determined sequence of budding yeast (J.C. Wang, personal communication). Conversely, the budding yeast TOP2 gene can complement the fission yeast top2 mutations, indicating that their DNA topoisomerase II genes are functionally exchangeable.  相似文献   

5.
Cleavage of DNA by mammalian DNA topoisomerase II   总被引:46,自引:0,他引:46  
Using the P4 unknotting assay, DNA topoisomerase II has been purified from several mammalian cells. Similar to prokaryotic DNA gyrase, mammalian DNA topoisomerase II can cleave double-stranded DNA and be trapped as a covalent protein-DNA complex. This cleavage reaction requires protein denaturant treatment of the topoisomerase II-DNA complex and is reversible with respect to salt and temperature. The product after reversal of the cleavage reaction remains supertwisted, suggesting that the two ends of the putatively broken DNA are held tightly by the topoisomerase. Alternatively, the enzyme-DNA interaction is noncovalent, and the covalent linking of topoisomerase to DNA is induced by the protein denaturant. Detailed characterization of the cleavage products has revealed that topoisomerase II cuts DNA with a four-base stagger and is covalently linked to the protruding 5'-phosphoryl ends of each broken DNA strand. Calf thymus DNA topoisomerase II cuts SV40 DNA at multiple and specific sites. However, no sequence homology has been found among the cleavage sites as determined by direct nucleotide-sequencing studies.  相似文献   

6.
DNA gyrase, topoisomerase IV, and the 4-quinolones.   总被引:26,自引:2,他引:24       下载免费PDF全文
For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.  相似文献   

7.
A potential region of drug-DNA interaction in the A subunit of DNA gyrase has previously been identified from crystallographic studies. The local amino acid sequence has been compared with similar regions in yeast topoisomerase II and human topoisomerase IIalpha. Three non- conserved, potentially solvent-accessible residues at positions 762, 763 and 766 in human topoisomerase IIalpha lie between well-conserved regions. The corresponding residues in GyrA (83, 84 and 87) have a high frequency of mutation in quinolone-resistant bacteria. Mutations in human topoisomerase IIalpha have been generated in an attempt to engineer ciprofloxacin sensitivity into this enzyme: M762S, S763A and M766D (each mutated to the identical amino acid present in gyrase), along with an M762S/S763A double mutant and a triple mutant. These enzymes were introduced into a temperature-sensitive yeast strain, deficient in topoisomerase II, for in vivo studies, and were overproduced for in vitro studies. The M766D mutation renders the enzyme incapable of supporting the temperature-sensitive strain at a non-permissive temperature. However, both M766D and the triple mutant enzymes can be overproduced and are fully active in vitro. The double mutant was impaired in its ability to cleave DNA and had reduced catalytic activity. The triple mutation confers a three-fold increase in sensitivity to ciprofloxacin in vitro and similar sensitivities to a range of other quinolones. The activity of the quinolone CP-115,953, a bacterial and eukaryotic topoisomerase II poison, was unaffected by any of these mutations. Mutations in this region were found to increase the sensitivity of the enzyme to the DNA intercalating anti-tumour agents m-AMSA and ellipticine, but confer resistance to the non-intercalating agents etoposide, teniposide and merbarone, an effect that was maximal in the triple mutant. We have therefore shown the importance of this region in determining the sensitivity of topoisomerase II to drugs and have engineered increased sensitivity to quinolones.  相似文献   

8.
DNA topoisomerases are important clinical targets for antibacterial and anticancer therapy. At least one type IA DNA topoisomerase can be found in every bacterium, making it a logical target for antibacterial agents that can convert the enzyme into poison by trapping its covalent complex with DNA. However, it has not been possible previously to observe the consequence of having such a stabilized covalent complex of bacterial topoisomerase I in vivo. We isolated a mutant of recombinant Yersinia pestis topoisomerase I that forms a stabilized covalent complex with DNA by screening for the ability to induce the SOS response in Escherichia coli. Overexpression of this mutant topoisomerase I resulted in bacterial cell death. From sequence analysis and site-directed mutagenesis, it was determined that a single amino acid substitution in the TOPRIM domain changing a strictly conserved glycine residue to serine in either the Y. pestis or E. coli topoisomerase I can result in a mutant enzyme that has the SOS-inducing and cell-killing properties. Analysis of the purified mutant enzymes showed that they have no relaxation activity but retain the ability to cleave DNA and form a covalent complex. These results demonstrate that perturbation of the active site region of bacterial topoisomerase I can result in stabilization of the covalent intermediate, with the in vivo consequence of bacterial cell death. Small molecules that induce similar perturbation in the enzyme-DNA complex should be candidates as leads for novel antibacterial agents.  相似文献   

9.
The B subunit of DNA gyrase (GyrB) consists of a 43 kDa N-terminal domain, containing the site of ATP binding and hydrolysis, and a 47 kDa C-terminal domain that is thought to play a role in interactions with GyrA and DNA. In cells containing a deletion of topA (the gene encoding DNA topoisomerase I) a compensatory mutation is found in gyrB. This mutation (gyrB-225) results in a two amino acid insertion in the N-terminal domain of GyrB. We found that cells containing this mutation are more sensitive than wild-type cells to quinolone drugs with respect to bacteriostatic and lethal action. We have characterised the mutant GyrB protein in vitro and found it to have reduced DNA supercoiling, relaxation, ATPase, and cleavage activities. The mutant enzyme is up to threefold more sensitive to quinolones than wild-type. The mutation also increases the affinity of GyrB for GyrA and DNA, while the affinity of quinolone for the enzyme-DNA complex is unaffected. We propose that the loss in activity is due to misfolding of the GyrB-225 protein, providing an example in which misfolding of one protein, DNA gyrase, suppresses a deficiency of another, topoisomerase I. The increased quinolone sensitivity is proposed to be a consequence of an altered conformation of the protein that renders quinolones better able to disrupt, rather than generate, gyrase-drug-DNA complexes.  相似文献   

10.
Okada Y  Tosaka A  Nimura Y  Kikuchi A  Yoshida S  Suzuki M 《Gene》2001,272(1-2):141-148
In human cells, atypical drug resistance was previously identified with reduced catalytic activity or nuclear localization efficiency of DNA topoisomerase II alpha (TOP2 alpha). We have shown two etoposide resistant hTOP2 alpha mutants, K798L and K798P confer resistance to etoposide. In this work, we showed these mutants are also resistant against doxorubicin and mAMSA in vivo in the yeast strain ISE2, rad52, top2-4 at the non-permissive temperature. We purified these mutants to characterize the drug resistant mechanism. Purified recombinant proteins were 8- to 12-fold more resistant to etoposide and doxorubicin than wild type TOP2 alpha, and 2-fold more resistant to amsacrine, as measured by accumulation of cleavable DNA. These data show that K798L and K798P may be intrinsically resistant against these drugs in vitro and that this character may confer atypical multidrug resistant phenotype in vivo in yeast.  相似文献   

11.
12.
DNA topoisomerases play essential roles in many DNA metabolic processes. It has been suggested that topoisomerases play an essential role in DNA repair. Topoisomerases can introduce DNA damage upon exposure to drugs that stabilize the covalent protein-DNA intermediate of the topoisomerase reaction. Lesions in DNA are also able to trap topoisomerase-DNA intermediates, suggesting that topoisomerases have the potential to either assist in DNA repair by locating sites of damage or exacerbating DNA damage by generation of additional damage at the site of a lesion. We have shown that overexpression of yeast topoisomerase I (TOP1) conferred hypersensitivity to methyl methanesulfonate and other DNA-damaging agents, whereas expression of a catalytically inactive enzyme did not. Overexpression of topoisomerase II did not change the sensitivity of cells to these DNA-damaging agents. Yeast cells lacking TOP1 were not more resistant to DNA damage than cells expressing wild type levels of the enzyme. Yeast topoisomerase I covalent complexes can be trapped efficiently on UV-damaged DNA. We suggest that TOP1 does not participate in the repair of DNA damage in yeast cells. However, the enzyme has the potential of exacerbating DNA damage by forming covalent DNA-protein complexes at sites of DNA damage.  相似文献   

13.
Many intercalative antitumor drugs have been shown to cleave DNA indirectly through their specific effect on the stabilization of a cleavable complex formed between mammalian DNA topoisomerase II and DNA (Nelson, E.M., Tewey, K.M., and Liu, L.F. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 1361-1365). Antitumor epipodophyllotoxins (VP-16 and VM-26) which do not intercalate DNA can similarly induce protein-linked DNA breaks in cultured mammalian cells. In vitro studies using purified mammalian DNA topoisomerase II show that epipodophyllotoxins interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II by stabilizing a cleavable complex. Treatment of this stabilized cleavable complex with protein denaturants results in DNA strand breaks and the covalent linking of a topoisomerase subunit to the 5'-end of the broken DNA. Furthermore, epipodophyllotoxins also inhibit the strand-passing activity of mammalian DNA topoisomerase II, presumably as a result of drug-enzyme interaction. The agreement between the in vivo and in vitro studies suggests that mammalian DNA topoisomerase II is a drug target in vivo. The similarity between the effect of epipodophyllotoxins on mammalian DNA topoisomerase II and the effect of nalidixic acid on Escherichia coli DNA gyrase suggests that the cytotoxic action of epipodophyllotoxins may be analogous to the bactericidal action of nalidixic acid.  相似文献   

14.
DNA gyrase (Topoisomerase II) from Pseudomonas aeruginosa   总被引:13,自引:0,他引:13  
DNA gyrase (Topoisomerase II) has been purified from Pseudomonas aeruginosa strain PAO. This enzyme is inhibited by novobiocin and nalidixic acid. DNA gyrase from P. aeruginosa is resistant to a much higher level of nalidixic acid than is Escherichia coli DNA gyrase. This increased level of resistance may explain, at least in part, the higher levels of natural resistance exhibited by P. aeruginosa toward nalidixic acid.  相似文献   

15.
Type IA DNA topoisomerases, typically found in bacteria, are essential enzymes that catalyse the DNA relaxation of negative supercoils. DNA gyrase is the only type II topoisomerase that can carry out the opposite reaction (i.e. the introduction of the DNA supercoils). A number of diverse molecules target DNA gyrase. However, inhibitors that arrest the activity of bacterial topoisomerase I at low concentrations remain to be identified. Towards this end, as a proof of principle, monoclonal antibodies that inhibit Mycobacterium smegmatis topoisomerase I have been characterized and the specific inhibition of Mycobacterium smegmatis topoisomerase I by a monoclonal antibody, 2F3G4, at a nanomolar concentration is described. The enzyme-bound monoclonal antibody stimulated the first transesterification reaction leading to enhanced DNA cleavage, without significantly altering the religation activity of the enzyme. The stimulated DNA cleavage resulted in perturbation of the cleavage-religation equilibrium, increasing single-strand nicks and protein-DNA covalent adducts. Monoclonal antibodies with such a mechanism of inhibition can serve as invaluable tools for probing the structure and mechanism of the enzyme, as well as in the design of novel inhibitors that arrest enzyme activity.  相似文献   

16.
Several cDNA clones encoding mouse DNA topoisomerase II were obtained from a mouse spermatocyte cDNA library and the entire coding sequence of the gene was determined. The mouse DNA topoisomerase II consists of 1528 amino acids with a molecular weight of 173 kDa. It shares significant homologies with the other eucaryotic enzymes, although species-specific sequences are observed in their highly charged C-terminal regions. The complete mouse TOP2 cDNA was put under yeast GAL1 promoter and examined for complementation of top2ts mutation in S.cerevisiae. We found that the cloned mouse gene could rescue the temperature-sensitive top2ts mutation, depending on its induction by galactose. The functional expression of the mouse DNA topoisomerase II in yeast was further confirmed by enzymatic assays and by immunological methods with antibodies specific for the mouse enzyme.  相似文献   

17.
Analysis of vaccinia topoisomerase mutants that are impaired in DNA relaxation has allowed the identification of amino acid residues required for the transesterification step of catalysis. Missense mutations of wild-type residues Gly-132----Asp and Arg-223----Gln rendered the protein inert in formation of the covalent enzyme-DNA complex and hence completely inactive in DNA relaxation. Mutations of Thr-147----Ile and Gly-132----Ser caused severe defects in covalent adduct formation that correlated with the extent of inhibition of relaxation. None of these point mutations had an effect on noncovalent DNA binding sufficient to account for the defect in relaxation. Deletion of amino- or carboxyl-terminal portions of the polypeptide abrogated noncovalent DNA binding. Two distinct topoisomerase-DNA complexes were resolved by native gel electrophoresis. One complex, which was unique to those proteins competent in covalent adduct formation, contained topoisomerase bound to the 5'-portion of the incised DNA strand. The 3'-segment of the cleaved strand had dissociated spontaneously. This complex was isolated and shown to catalyze transfer of the covalently bound DNA to a heterologous acceptor oligonucleotide, thereby proving that the covalent adduct between protein and duplex DNA is a true intermediate in strand breakage and reunion. The role of the active site region of eukaryotic topoisomerase in determining sensitivity or resistance to camptothecin was examined by converting the active site region of the resistant vaccinia enzyme (SKRAY274) to that of the drug-sensitive yeast enzyme (SKINY). The SKINY mutation did not alter the resistance of the vaccinia enzyme to the cleavage-enhancing effects of camptothecin.  相似文献   

18.
Type IIA topoisomerases catalyze a variety of different reactions: eukaryotic topoisomerase II relaxes DNA in an ATP-dependent reaction, whereas the bacterial representatives gyrase and topoisomerase IV (Topo IV) preferentially introduce negative supercoils into DNA (gyrase) or decatenate DNA (Topo IV). Gyrase and Topo IV perform separate, dedicated tasks during replication: gyrase removes positive supercoils in front, Topo IV removes pre-catenanes behind the replication fork. Despite their well-separated cellular functions, gyrase and Topo IV have an overlapping activity spectrum: gyrase is also able to catalyze DNA decatenation, although less efficiently than Topo IV. The balance between supercoiling and decatenation activities is different for gyrases from different organisms. Both enzymes consist of a conserved topoisomerase core and structurally divergent C-terminal domains (CTDs). Deletion of the entire CTD, mutation of a conserved motif and even by just a single point mutation within the CTD converts gyrase into a Topo IV-like enzyme, implicating the CTDs as the major determinant for function. Here, we summarize the structural and mechanistic features that make a type IIA topoisomerase a gyrase or a Topo IV, and discuss the implications for type IIA topoisomerase evolution.  相似文献   

19.
Leroy D  Kajava AV  Frei C  Gasser SM 《Biochemistry》2001,40(6):1624-1634
Epipodophyllotoxins are effective anti-tumor drugs that inhibit eukaryotic DNA topoisomerase II by trapping the enzyme in a covalent complex with DNA. We show that both the recombinant N-terminal ATPase domain and the B'A' core domain of human topoisomerase IIalpha (htopoIIalpha) bind radiolabeled etoposide specifically, even in the absence of DNA. The addition of ATP impairs etoposide binding to the holoenzyme and the N-terminal domain, but not to the core domain. To see if this interference resembles that between novobiocin and ATP in the bacterial GyrB subunit, we modeled the structure of the N-terminal domain of htopoIIalpha and performed molecular docking analysis with etoposide. Mutagenesis of critical amino acids, predicted to stabilize the drug within the N-terminal domain, reveals a less efficient binding of etoposide to the mutated proteins as monitored by direct drug binding assays, although the binding of ATP is not affected.  相似文献   

20.
The linking number of plasmid DNA in exponentially growingEscherichia coli increases immediately and transiently after heat shock. The purpose of this study was to search for DNA topoisomerases that catalyze this relaxation of DNA. Neither introduction of atopA deletion mutation nor treatment of cells with DNA gyrase inhibitors affected the DNA relaxation induced by heat shock. Thus, DNA topoisomerase I and DNA gyrase are apparently not involved in the process. However, the reaction was inhibited by nalidixic acid or by oxolinic acid in thetopA mutant and the reaction was resistant to nalidixic acid in atopA mutant carrying, in addition, thenalA26 mutation. These results are interpreted as indicating that both DNA topoisomerase I and DNA gyrase are involved in the DNA relaxation induced by heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号