首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis activity after X-ray irradiation which is suggested to be casually related to reduction in cellular amounts of small ubiquitin-like protein modifier (SUMO-2/SMT-3A). In the present study, an increased level of DNA synthesis activity was found 8 h after X-ray irradiation in HeLa cells with reduction in SUMO-2 amounts by siRNA treatment for SUMO-2. When comparative proteomic analysis was performed between the siRNA and mimic control siRNA treated cells using two-dimensional (2D) electrophoresis and mass spectrometry, three proteins were identified as candidates. Our research focused on Nm23-H1, a nucleoside diphosphate kinase, whose amounts decreased after X-ray irradiation in HeLa cells treated with siRNA for SUMO-2. In the Nm23-H1 siRNA treated cells, induction of DNA synthesis was also detected. Furthermore, in synchronized HeLa cells, DNA synthesis was confirmed in the S phase. Moreover, increased expression of proliferating cell nuclear antigen (PCNA) was observed in Nm23-H1 siRNA treated HeLa cells after X-ray irradiation. In addition, Nm23-H1 was modified with SUMO-2 after X-ray irradiation. The present findings suggest that the reduction of Nm23-H1 is related to the decrease in sumoylation, which in turn, is involved in the induction of DNA synthesis via the regulation of PCNA expression after X-ray irradiation.  相似文献   

2.
AimsNm23-H1 is a suppressor of metastasis that has been implicated in the regulation of proliferation and differentiation of hematopoietic cells, although specific mechanisms for Nm23-H1 have not been well-characterized. Our study is designed to further elucidate the role of Nm23-H1 in the human chronic myeloid leukemia K562 cell line.Main methodsIn this study we generated and selected two cell clone pools of human chronic myeloid leukemia K562 cells with up-regulated and down-regulated Nm23-H1 expression.Key findingsOur data show that knockdown of Nm23-H1 decreased proliferation and increased the percentage of cells arrested in the G0/G1 phase of the cell cycle. Correspondingly, K562 cells overexpressing Nm23-H1 were more proliferative. After treatment of these two cell types with phorbol 12-myristate 13-acetate (PMA) for 48 h, cells with reduced Nm23-H1 expression had a higher percentage of 8N ploidy and higher expression of CD41 than K562 cells overexpressing Nm23-H1. A functional proteomics analysis identified ten proteins, including ANP32A, Cdc42GAP, and the isoform 2 of SET, whose expression levels were significantly altered by down-regulation of Nm23-H1. In addition, cells with decreased levels of Nm23-H1 had significantly reduced expression of Cdc42 independent of treatment with PMA. The interaction of the endogenous Nm23-H1 and Cdc42 proteins has been further validated by reciprocal immunoprecipitations.SignificanceWe provide data that complement functional studies of Nm23-H1 in regulating hematopoietic cells, and address action mechanisms of Nm23-H1 that have not previously been reported.  相似文献   

3.
Phagocytosis of microbial pathogens is essential for the host immune response to infection. Our previous work has shown that lipooligosaccharide (LOS) expression on the surface of Neisseria meningitidis (Nm) is essential for phagocytosis, but the receptor involved remained unclear. In this study, we show that human CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are phagocytic receptors for Nm as illustrated by the capacity of CR3- and CR4-transfected Chinese hamster ovary (CHO) cells to facilitate Nm uptake. A CR3-signalling mutant failed to internalize Nm, showing that the ability of CR3 to signal is essential for phagocytosis. Internalization of Nm by CR3-transfected CHO cells could be inhibited by the presence of CR3-specific antibodies. Furthermore, dendritic cells from leukocyte adhesion deficiency-1 patients, who have diminished expression of β2 integrins, showed markedly reduced phagocytosis of Nm. The CR3-mediated phagocytosis required the presence of lipopolysaccharide-binding protein (LBP). Furthermore, the expression of LOS by Nm was essential for LBP binding and phagocytosis via CR3. These results reveal a critical role of CR3 and LBP in the phagocytosis of Nm and provide important insights into the initial interaction meningococci have with the immune system.  相似文献   

4.
The biomechanical effect of tensioning the lumbar fasciae (LF) on the stability of the spine during sagittal plane motion was analysed using a validated finite element model of the normal lumbosacral spine (L4-S1). To apply the tension in the LF along the direction of the fibres, a local coordinate was allocated using dummy rigid beam elements that originated from the spinous process. Up to 10 Nm of flexion and 7.5 Nm of extension moment was applied with and without 20 N of lateral tension in the LF. A follower load of 400 N was additionally applied along the curvature of the spine. To identify how the magnitude of LF tension related to the stability of the spine, the tensioning on the fasciae was increased up to 40 N with an interval of 10 N under 7.5 Nm of flexion/extension moment. A fascial tension of 20 N produced a 59% decrease in angular motion at 2.5 Nm of flexion moment while there was a 12.3% decrease at 10 Nm in the L5-S1 segment. Its decrement was 53 and 9.6% at 2.5 Nm and 10 Nm, respectively, in the L4-L5 segment. Anterior translation was reduced by 12.1 and 39.0% at the L4-L5 and L5-S1 segments under 10 Nm of flexion moment, respectively. The flexion stiffness shows an almost linear increment with the increase in fascial tension. The results of this study showed that the effect of the LF on the stability of the spine is significant.  相似文献   

5.
In order to identify Nm23-H1's structural motifs influencing its metastasis-inhibitory activity, we transfected DU 145 human prostate carcinoma cells with the expression vector encoding the Nm23-H1 protein with mutations at the following amino acids: serine-44, a phosphorylation site; proline-96, a site corresponding to the k-pn mutation that causes developmental defects in Drosophila; and serine-120, a site of mutation in human neuroblastoma and phosphorylation. Significant decrease in colonization in soft agar and invasiveness of DU 145 cells was observed in the wild type nm23-H1 transfectants, and also in the serine-44 and serine-120 to alanine mutant nm23-H1-transfected cell lines. However, the k-pn type proline-96 to serine (P96S) and neuroblastoma type serine-120 to glycine (S120G) mutations of Nm23-H1 abrogated its inhibitory activity on colonization and invasion. Meanwhile, all of the recombinant mutant Nm23-H1 proteins produced in Escherichia coli exhibited NDP kinase activity levels at the wild type protein, although the P96S and S120G mutant proteins exhibited decreased histidine protein kinase activity and autophosphorylation level, respectively. Interestingly, only two of the mutant recombinant Nm23-H1 proteins examined, P96S and S120G, exhibited reduced hexameric and increased dimeric oligomerization relative to the wild type. These correlative data suggest that the metastasis-suppressing activity of Nm23-H1 may depend on its oligomeric structure, but not on its NDP kinase activity.  相似文献   

6.
Non-metastatic protein-23 homolog-1 (Nm23-H1) is a multifunctional protein with DNase and histidine protein kinase activities. Human apurinic endonuclease-1 (APE1) is the AP endonuclease DNA base excision repair (BER) enzyme involved in several important cellular functions. Since the relationship between Nm23-H1 and APE1 proteins is unclear, we evaluated their interaction at different time points after irradiating human lung cancer A549 cells with X-rays. We found that Nm23-H1 and APE1 overexpression was induced by irradiation in a dose- and time-dependent manner. Subcellular distribution pattern of both proteins was reversed after irradiation. After irradiation, APE1 that initially showed nuclear localization was gradually increased in the cytoplasm, whereas Nm23-H1 that mainly showed cytoplasmic localization was gradually increased in the nuclei of A549 cells. Nm23-H1 and APE1 interaction was demonstrated by His-pull-down and co-immunoprecipitation assays. The presence of Nm23-H1/APE1 complex in X-ray-irradiated A549 cells was also detected by DNA affinity precipitation analysis of a DNA fragment containing an AP site. Although the AP endonuclease activity of Nm23-H1 was too weak to be detected, the AP endonuclease activity of APE1 was increased with the enhanced Nm23-H1 expression. In conclusion, our data point to a mechanism by which Nm23-H1 protects cells against oxidative stress through the engagement of DNA BER enzyme APE1.  相似文献   

7.
8.
The application of the radial-flow growth chamber to the study of the initial stages of bacterial adhesion to surfaces under flowing conditions is reported. The adhesive properties of the bacterium Pseudomonas fluorescens (NCIB 9046) to stainless steel (type AISI 316) were found to be highly dependent on surface shear stress and the time and concentration of cells used in the incubation procedure. Maximum levels of adhesion occurred in zones of lowest surface shear stress, particularly less than 6-8 Nm(-2). Adhesion was still noticeable at shear stresses even up to 130 Nm(-2). Significant detachment of cells from a monolayer attached under static conditions was found to occur at surface shear stresses in excess of 10-12 Nm(-2).  相似文献   

9.
Under overdominant selection, mutants substantially contribute to increase the amount of polymorphism. It is also known that under neutrality as the migration rates among demes decrease in a subdivided population, the amount of polymorphism increases along with the increase of the effective population size, N(e). In this study, under overdominant selection the effect of population subdivision on the amount of polymorphism was investigated using the diffusion approximation and the low migration approximation. It was shown that if selection is medium or strong (e.g., N(T)s > 1, where N(T) is the population size and s is the selective advantage of heterozygotes), the nucleotide diversity, pi, decreases along with the decrease of Nm against the increase of N(e), where N is the size of demes and m is the migration rate per deme. In addition, the ratio of the nucleotide diversity to the evolutionary rate also decreases along with the decrease of Nm. In some cases the ratio becomes smaller than that expected under neutrality as Nm decreases.  相似文献   

10.
The cytosolic coat protein complex II (COPII) mediates vesicle formation from the endoplasmic reticulum (ER) and is essential for ER-to-Golgi trafficking. The minimal machinery for COPII assembly is well established. However, additional factors may regulate the process in mammalian cells. Here, a morphological COPII assembly assay using purified COPII proteins and digitonin-permeabilized cells has been applied to demonstrate a role for a novel component of the COPII assembly pathway. The factor was purified and identified by mass spectrometry as Nm23H2, one of eight isoforms of nucleoside diphosphate kinase in mammalian cells. Importantly, recombinant Nm23H2, as well as a catalytically inactive version, promoted COPII assembly in vitro, suggesting a noncatalytic role for Nm23H2. Consistent with a function for Nm23H2 in ER export, Nm23H2 localized to a reticular network that also stained for the ER marker calnexin. Finally, an in vivo role for Nm23H2 in COPII assembly was confirmed by isoform-specific knockdown of Nm23H2 by using short interfering RNA. Knockdown of Nm23H2, but not its most closely related isoform Nm23H1, resulted in diminished COPII assembly at steady state and reduced kinetics of ER export. These results strongly suggest a previously unappreciated role for Nm23H2 in mammalian ER export.  相似文献   

11.
12.
Healthy subjects were asked to make a voluntary ramp and hold contraction. The duration of the ramp stage was 500 ms, and the torque increment in this period was set to 15 Nm. The contraction was made from a relaxed and from a 5 Nm background torque situation. Hoffmann (H-) reflexes were elicited during the voluntary contraction, mostly with 100 ms intervals. These experiments showed an increase (facilitation) in the H-reflex before the torque or the EMG started to increase. This facilitation of the H-reflex remained during all the stages of the voluntary movement and declined to normal levels again only at the very end of the hold phase, which lasted for one second. This specific pattern of facilitation during a voluntary contraction was modeled using a modeling language, that is specifically designed to calculate neuronal systems with a high degree of reality (Ekeberg et al., 1991). Our model consisted of a motoneuron pool with 200 neurons connected to an EMG-model of the human soleus muscle and an extra group of higher-level neurons for controlling the amount of decrease of presynaptic inhibition. The model was used to simulate the observed modulation of the H-reflex with both a presynaptic and a postsynaptic mechanism. Simulations showed that a continuous change in the descending control signals is needed to make the model based on postsynaptic mechanism fit with the experimental data, whereas no extra control from the CNS over the excitatory drive to the motoneuron pool is needed when the decrease of presynaptic inhibition mechanism is applied.  相似文献   

13.
We demonstrate here the catalytic activity and subcellular localization of the Nm23-H4 protein, product of nm23-H4, a new member of the human nm23/nucleoside diphosphate (NDP) kinase gene family (Milon, L., Rousseau-Merck, M., Munier, A., Erent, M., Lascu, I., Capeau, J., and Lacombe, M. L. (1997) Hum. Genet. 99, 550-557). Nm3-H4 was synthesized in escherichia coli as the full-length protein and as a truncated form missing the N-terminal extension characteristic of mitochondrial targeting. The truncated form possesses NDP kinase activity, whereas the full-length protein is inactive, suggesting that the extension prevents enzyme folding and/or activity. X-ray crystallographic analysis was performed on active truncated Nm23-H4. Like other eukaryotic NDP kinases, it is a hexamer. Nm23-H4 naturally possesses a serine residue at position 129, equivalent to the K-pn mutation of the Drosophila NDP kinase. The x-ray structure shows that the presence of Ser(129) has local structural effects that weaken subunit interactions. Site-directed mutagenesis shows that the serine is responsible for the lability of Nm23-H4 to heat and urea treatment, because the S129P mutant is greatly stabilized. Examination of human embryonic kidney 293 cells transfected with green fluorescent protein fusions by confocal microscopy shows a specific mitochondrial localization of Nm23-H4 that was also demonstrated by Western blot analysis of subcellular fractions of these cells. Import into mitochondria is accompanied by cleavage of the N-terminal extension that results in NDP kinase activity. Submitochondrial fractionation indicates that Nm23-H4 is associated with mitochondrial membranes, possibly to the contact sites between the outer and inner membranes.  相似文献   

14.
The Nm23 protein is a nucleoside diphosphate kinase (NDPK) and is thought to play a critical role in metastatic behavior. It has been reported that a NDPK activity is present in microtubules assembled in vitro. Since microtubule assembly is determinant in cell growth and differentiation, we investigated whether Nm23-M1 forms molecular complexes with β-tubulin in murine cells either actively proliferating or differentiating. For this purpose a polyclonal antibody against the GST-Nm23-M1 fusion protein was generated and employed to detect Nm23-M1/β-tubulin complexes in murine tumor cells derived from the Lewis lung carcinoma (3LL) and in undifferentiated and differentiated myogenic cells (C2C12). Immunoblotting and immunoprecipitation experiments performed using the anti-fusion protein antibody demonstrated that the Nm23-M1 protein is detectable in in vitro tumor cell lines and in in vivo primary tumors but not in spontaneous lung metastases. These data are in good agreement with data previously reported. Immunoprecipitation experiments demonstrated that the Nm23-M1 protein forms complexes with β-tubulin in in vitro tumor cell lines, but not in primary tumors. Furthermore, the Nm23-M1 protein forms complexes with β-tubulin in myogenic cells prior to and after differentiation. Interestingly, however, the level of the Nm23-M1/β-tubulin complexes is remarkably increased in differentiated myotubes. In conclusion, the results indicate that the Nm23-M1 protein forms molecular complexes with β-tubulin and that the number of complexes increases during the differentiation process of murine cells.  相似文献   

15.
The biochemical mechanism(s) by which Nm23 proteins/nucleoside diphosphate kinases suppress tumor metastasis, inhibit cell motility, and affect cellular differentiation are not known. Here we report that Nm23 proteins can phosphorylate geranyl and farnesyl pyrophosphates to give triphosphates. Wild type Nm23-H1 had higher geranyl and farnesyl pyrophosphate kinase activities than did mutants of Nm23-H1 that do not inhibit cell motility. The phosphorylation of farnesyl pyrophosphate appears to occur in vivo as cells with an elevated level of Nm23-H1 contained more farnesyl triphosphate than did control cells. To our knowledge, this is the first report that farnesyl triphosphate exists in cells. The phosphorylation of farnesyl pyrophosphate by Nm23 proteins could alter isoprenoid metabolism, and cells with an elevated level of Nm23 proteins were found to contain more farnesylated 46- and 24-kDa proteins than did control cells. The phosphorylation of geranyl and farnesyl pyrophosphates by Nm23 proteins provides a novel mechanism by which these proteins might exert their biological effects.  相似文献   

16.
Nucleoside diphosphate kinases (NDP kinases) are enzymes known to be conserved throughout evolution and have been shown to be involved in various biological events, in addition to the "housekeeping" phosphotransferase activity. We present the molecular cloning of a novel human NDP kinase gene, termed Nm23-H6. Nm23-H6 gene has been mapped at chromosome 3p21.3 and is highly expressed in heart, placenta, skeletal muscle, and some of the cancer cell lines. Recombinant Nm23-H6 protein has been identified to exhibit functional NDP kinase activity. Immunolocalization studies showed that both endogenous and inducibly expressed Nm23-H6 proteins were present as short, filament-like, perinuclear radical arrays and that they colocalized with mitochondria. Cell fractionation study also demonstrated the presence of Nm23-H6 protein in a mitochondria-rich fraction. Moreover, induction of overexpression of Nm23-H6 in SAOS2 cells, using the Cre-loxP gene activation system, resulted in growth suppression and generation of multinucleated cells. Flow cytometric analysis also demonstrated that the proportion of cells with more than 4N DNA content increased to 28.1% after induction of Nm23-H6, coinciding with the appearance of multinucleated cells. These observations suggest that Nm23-H6, a new member of the NDP kinase family, resides in mitochondria and plays a role in regulation of cell growth and cell cycle progression.  相似文献   

17.
Nucleoside diphosphate kinases (Nm23/NDPK) are enzymes functional in cell proliferation, differentiation, development, tumor progression, and metastasis. Nevertheless, no consensus exists about the molecular mechanism by which Nm23/NDPK isoforms exert their role in these processes. We investigated the expression of the rat Nm23-R1/NDPKbeta and Nm23-R2/NDPKalpha isoforms, homologues of the human Nm23-H1/NDPK A and Nm23-H2/NDPK B proteins, respectively, upon cAMP-induced differentiation of rat C6 glioma cells and demonstrated a differential interaction with intermediate filaments. Semiquantitative RT-PCR, immunoblotting, and flow cytometry showed a constitutive expression of both Nm23 isoforms. After induction of differentiation in C6 cells with cAMP analogs or isoproterenol, a dose-dependent 2- and 2.5-fold upregulation of the Nm23-R1 mRNA and protein, respectively, was observed. In contrast, the expression of Nm23-R2 remained unchanged. Localization of both isoforms with confocal laser scanning microscopy demonstrated a punctate reticular staining pattern for both Nm23 isoforms in the cytosol and processes of the cells which was particularly intense in the perinuclear region. In addition, while Nm23-R2 was colocalized and coimmunoprecipitated with vimentin in nondifferentiated cells, both isoforms were associated with GFAP in differentiated cells. The significance of these findings in relation to a possible function of Nm23 isoforms in cell proliferation, differentiation, and tumor-associated mechanisms is discussed.  相似文献   

18.
The Opc protein of Neisseria meningitidis (Nm, meningococcus) is a surface-expressed integral outer membrane protein, which can act as an adhesin and an effective invasin for human epithelial and endothelial cells. We have identified endothelial surface-located integrins as major receptors for Opc, a process which requires Opc to first bind to integrin ligands such as vitronectin and via these to the cell-expressed receptors1. This process leads to bacterial invasion of endothelial cells2. More recently, we observed an interaction of Opc with a 100kDa protein found in whole cell lysates of human cells3. We initially observed this interaction when host cell proteins separated by electrophoresis and blotted on to nitrocellulose were overlaid with Opc-expressing Nm. The interaction was direct and did not involve intermediate molecules. By mass spectrometry, we established the identity of the protein as α-actinin. As no surface expressed α-actinin was found on any of the eight cell lines examined, and as Opc interactions with endothelial cells in the presence of serum lead to bacterial entry into the target cells, we examined the possibility of the two proteins interacting intracellularly. For this, cultured human brain microvascular endothelial cells (HBMECs) were infected with Opc-expressing Nm for extended periods and the locations of internalised bacteria and α-actinin were examined by confocal microscopy. We observed time-dependent increase in colocalisation of Nm with the cytoskeletal protein, which was considerable after an eight hour period of bacterial internalisation. In addition, the use of quantitative imaging software enabled us to obtain a relative measure of the colocalisation of Nm with α-actinin and other cytoskeletal proteins. Here we present a protocol for visualisation and quantification of the colocalisation of the bacterium with intracellular proteins after bacterial entry into human endothelial cells, although the procedure is also applicable to human epithelial cells.  相似文献   

19.
根据Nm23-H1与HbFGFcDNA序列,人工合成一段中间核酸序列,将它分别与Nm23-H1cDNA的上游引物及HbFGFcDNA的下游引物组成两对引物,通过PCR(聚合酶链式反应)构建出融合基因Nm23-H1/HbFGF,将其定向克隆于质粒载体pBV220上,经诱导,SDS-PAGE分析,表达产物分子量为34kD,表达量占菌体总蛋白的14%,表达产物以包涵体形式存在,ELISA和Western  相似文献   

20.
Besides serving as signal terminators for G protein pathways, several regulators of G protein signaling (RGS) can also modulate cell proliferation. RGS19 has previously been shown to enhance Akt signaling despite impaired Ras signaling. The present study examines the mechanism by which RGS19 inhibits Ras signaling. In HEK293 cells stably expressing RGS19, serum-induced Ras activation and phosphorylations of Raf/MEK/ERK were significantly inhibited, while cells expressing RGS2, 4, 7, 8, 10, or 20 did not exhibit this inhibitory phenotype. Conversely, siRNA-mediated knockdown of RGS19 enabled partial recovery of serum-induced ERK phosphorylation. Interestingly, two isoforms of the tumor metastasis suppressor Nm23 (H1 and H2) were upregulated in 293/RGS19 cells. As a nucleoside diphosphate kinase, Nm23H1 can phosphorylate the kinase suppressor of Ras (KSR). Elevated levels of phosphorylated KSR were indeed detected in the nuclear fractions of 293/RGS19 cells. Co-immunoprecipitation assays revealed that Nm23H1/2 can form complexes with RGS19, Ras, or KSR. siRNA-mediated knockdown of Nm23H1/2 allowed 293/RGS19 cells to partially recover their ERK responses to serum treatment, while overexpression of Nm23H1/2 in HEK293 cells suppressed the serum-induced ERK response. This study demonstrates that expression of RGS19 can suppress Ras-mediated signaling via upregulation of Nm23.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号