首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation of functional neural circuits that process sensory information requires coordinated development of the central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate, neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate border, providing a coordinated spatial and temporal control of the early development of the central and peripheral nervous systems.  相似文献   

2.
The anterior midline tissue (AML) of the late gastrula mouse embryo comprises the axial mesendoderm and the ventral neuroectoderm of the prospective forebrain, midbrain and rostral hindbrain. In this study, we have investigated the morphogenetic role of defined segments of the AML by testing their inductive and patterning activity and by assessing the impact of their ablation on the patterning of the neural tube at the early-somite-stage. Both rostral and caudal segments of the AML were found to induce neural gene activity in the host tissue; however, the de novo gene activity did not show any regional characteristic that might be correlated with the segmental origin of the AML. Removal of the rostral AML that contains the prechordal plate resulted in a truncation of the head accompanied by the loss of several forebrain markers. However, the remaining tissues reconstituted Gsc and Shh activity and expressed the ventral forebrain marker Nkx2.1. Furthermore, analysis of Gsc-deficient embryos reveals that the morphogenetic function of the rostral AML requires Gsc activity. Removal of the caudal AML led to a complete loss of midline molecular markers anterior to the 4th somite. In addition, Nkx2.1 expression was not detected in the ventral neural tube. The maintenance and function of the rostral AML therefore require inductive signals emanating from the caudal AML. Our results point to a role for AML in the refinement of the anteroposterior patterning and morphogenesis of the brain.  相似文献   

3.
4.
Effects of mesodermal tissues on avian neural crest cell migration   总被引:4,自引:0,他引:4  
We have used microsurgical techniques to investigate the effects of embryonic mesodermal tissues on the pattern of chick neural crest cell migration in the trunk. Segmental plate or lateral plate mesenchyme was transplanted into regions encountered by neural crest cells. We found that neural crest cells are able to migrate through lateral plate mesenchyme but not through segmental plate tissue until this tissue differentiates into a sclerotome. After this stage, segmental migration is controlled by the subdivision of the sclerotome into a rostral and a caudal half; when the rostrocaudal orientation of the sclerotomes is reversed by rotating the segmental plate 180 degrees about its rostrocaudal axis, neural crest cells migrate through the portion of the sclerotome that was originally rostral.  相似文献   

5.
The development and distribution of the cranial neural crest in the rat embryo   总被引:10,自引:0,他引:10  
Summary The head region of rat embryos was investigated by scanning electron microscopy after removal of the surface ectoderm with adhesive tape. Observations were made in embryos from 6-somite to 11-somite stages of development, in order to determine: (1) the sequence of emigration of neural crest cells from the different regions of the future brain; (2) the appearance of crest cells before, during, and after their conversion from an epithelial to a mesenchymal form; (3) the migration pathways.Emigration occurs first from the midbrain, and next from the rostral hindbrain; crest cells from these two regions migrate into the first visceral arch. Subsequently cells emigrate from the caudal hindbrain, but not in a rostrocaudal sequence. At the time of crest cell emigration, the neural fold morphology varies from a slightly convex, widely open plate (midbrain) to a closed tube (caudal hindbrain). Thus the timing of emigration is related neither to age (as reflected in rostrocaudal levels) nor to morphology of the neural epithelium.  相似文献   

6.
While the ventralizing factor Sonic hedgehog is expressed in the entire notochord (Development 121 (1995) 2537) the latter displays distinct ventralizing activities along its rostrocaudal axis. Hence, in HH stage-10 chicken embryo, the caudal notochord exhibits floor plate inducing capacities lost by rostral regions (Development 117 (1993) 205). Therefore, we hypothesize that the caudal notochord produces some cofactors which may contribute to its ventralizing properties. In order to identify such molecules we applied the differential display strategy and isolated a secreted Tolloid-related metalloprotease displaying a regionalized expression in the notochord.  相似文献   

7.
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages, future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in na?ve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins: activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.  相似文献   

8.
A secreted signaling factor, Sonic hedgehog (Shh), has a crucial role in the generation of ventral cell types along the entire rostrocaudal axis of the neural tube. At caudal levels of the neuraxis, Shh is secreted by the notochord and floor plate during the period that ventral cell fates are specified. At anterior prosencephalic levels that give rise to the telencephalon, however, neither the prechordal mesoderm nor the ventral neural tube expresses Shh at the time that the overt ventral character of the telencephalon becomes evident. Thus, the precise role and timing of Shh signaling relevant to the specification of ventral telencephalic identity remains unclear. By analysing neural cell differentiation in chick neural plate explants we provide evidence that neural cells acquire molecular properties characteristic of the ventral telencephalon in response to Shh signals derived from the anterior primitive streak/Hensen's node region at gastrula stages. Exposure of prospective anterior prosencephalic cells to Shh at this early stage is sufficient to initiate a temporal program of differentiation that parallels that of neurons generated normally in the medial ganglionic eminence subdivision of the ventral telencephalon.  相似文献   

9.
The peripheral nervous system in vertebrates is composed of repeating metameric units of spinal nerves. During development, factors differentially expressed in a rostrocaudal pattern in the somites confine the movement of spinal motor axons and neural crest cells to the rostral half of the somitic sclerotome. The expression patterns of transmembrane ephrin-B ligands and interacting EphB receptors suggest that these proteins are likely candidates for coordinating the segmentation of spinal motor axons and neural crest cells. In vitro, ephrin-B1 has indeed been shown to repel axons extending from the rodent neural tube (Wang & Anderson, 1997). In avians, blocking interactions between EphB3 expressed by neural crest cells and ephrin-B1 localized to the caudal half of the somite in vivo resulted in loss of the rostrocaudal patterning of trunk neural crest migration (Krull et al., 1997). The role of ephrin-B1 in patterning spinal motor axon outgrowth in avian embryos was investigated. Ephrin-B1 protein was found to be expressed in the caudal half-sclerotome and in the dermomyotome at the appropriate time to interact with the EphB2 receptor expressed on spinal motor axons. Treatment of avian embryo explants with soluble ephrin-B1, however, did not perturb the segmental outgrowth of spinal motor axons through the rostral half-somite. In contrast, under the same treatment conditions with soluble ephrin-B1, neural crest cells migrated aberrantly through both rostral and caudal somite halves. These results indicate that the interaction between ephrin-B1 and EphB2 is not required for patterning spinal motor axon segmentation. Even though spinal motor axons traverse the same somitic pathway as neural crest cells, different molecular guidance mechanisms appear to influence their movement.  相似文献   

10.
Summary 1. The lateral hypothalamus (LH) and the dorsal periaqueductal gray area (dPAG) are two important brain structures involved in central cardiovascular control.2. In the present study, we searched for possible rostrocaudal somatotopy in the neural connections from the three subdivisions of the LH (anterior—LHa; tuberal—LHt and posterior—LHp) to the different rostrocaudal portions of the dPAG.3. The bidirectional neuronal tracer biotinylated-dextran-amine (BDA) was microinjected into different rostrocaudal coordinates of the dPAG (AP 3.4–2.7 mm) of male Wistar rats. One week later, animals were sacrificed and brain slices were processed and analyzed to detect neuronal efferent projections from the LH to the dPAG.4. Neuronal cell body staining was observed along all the rostrocaudal axis of the LH when BDA was microinjected in more rostral dPAG coordinates. When the BDA was microinjected into more caudal dPAG regions, labeled neurons were observed only in the caudal portion of the LH.5. Efferent projections from the LHa were directed only to the rostral portion of the dPAG. Projections from the rostral and medial portions of the LHt were also directed to the rostral dPAG, whereas both rostral and caudal dPAG received projections from the caudal portion of the LHt. Efferent projections from the anterior portion of the LHp were directed to both rostral and caudal dPAG, whereas projections from the caudal LHp were only directed to the rostral portion of the dPAG.6. The results suggest a somatotopic correlation in LH projections to the dPAG with main connections to the rostral dPAG, which are efferent from the three divisions of the LH. More caudal regions of the dPAG received afferents only from posterior sites in the LH.7. Moreover, the results point out to extensive and complex neural somatotopic projections from all LH subdivisions to different rostrocaudal portions of the dPAG, reinforcing the idea of significant functional interactions between the brain structures.  相似文献   

11.
12.
We have investigated the interactions between the cells of the rostral and caudal halves of the chick somite by carrying out grafting experiments. The rostral half-sclerotome was identified by its ability to support axon outgrowth and neural crest cell migration, and the caudal half by the binding of peanut agglutinin and the absence of motor axons and neural crest cells. Using the chick-quail chimaera technique we also studied the fate of each half-somite. It was found that when half-somites are placed adjacent to one another, their interactions obey a precise rule: sclerotome cells from like halves mix with each other, while those from unlike halves do not; when cells from unlike halves are adjacent to one another, a border is formed. Grafting quail half-somites into chicks showed that the fates of the rostral and caudal sclerotome halves are similar: both give rise to bone and cartilage of the vertebral column, as well as to intervertebral connective tissue. We suggest that the rostrocaudal subdivision serves to maintain the segmental arrangement when the mesenchymal sclerotome dissociates, so that the nervous system, vasculature and possibly vertebrae are patterned correctly.  相似文献   

13.
Trunk neural crest cells and motor axons move in a segmental fashion through the rostral (anterior) half of each somitic sclerotome, avoiding the caudal (posterior) half. This metameric migration pattern is thought to be caused by molecular differences between the rostral and caudal portions of the somite. Here, we describe the distribution of T-cadherin (truncated-cadherin) during trunk neural crest cell migration. T-cadherin, a novel member of the cadherin family of cell adhesion molecules was selectively expressed in the caudal half of each sclerotome at all times examined. T-cadherin immunostaining appeared graded along the rostrocaudal axis, with increasing levels of reactivity in the caudal halves of progressively more mature (rostral) somites. The earliest T-cadherin expression was detected in a small population of cells in the caudal portion of the somite three segments rostral to last-formed somite. This initial T-cadherin expression was observed concomitant with the invasion of the first neural crest cells into the rostral portion of the same somite in stage 16 embryos. When neural crest cells were ablated surgically prior to their emigration from the neural tube, the pattern of T-cadherin immunoreactivity was unchanged compared to unoperated embryos, suggesting that the metameric T-cadherin distribution occurs independent of neural crest cell signals. This expression pattern is consistent with the possibility that T-cadherin plays a role in influencing the pattern of neural crest cell migration and in maintaining somite polarity.  相似文献   

14.
Little is known about the tissue interactions and the molecular signals implicated in the sequence of events leading to the subdivision of the somite into its rostral and caudal compartments. It has been demonstrated that rostrocaudal identity of the sclerotome is acquired at the presomitic (PSM) level. However, it is not known whether this compartment specification is fully determined in the PSM or whether it is dependent upon maintenance cues from the surrounding environment, as is the case for somite epithelialization. In this report, we address this issue by examining the expression profiles of C-Delta-1 and C-Notch-1, the avian homologues of mouse Delta-like1 (Delta1) and Notch1 which have been implicated in the specification of the somite rostrocaudal polarity in mouse. In chick, these genes are expressed in distinct but partially overlapping domains in the PSM and subsequently in the caudal regions of the somites. We have used an in vitro assay that consists of culturing PSM explants to examine the regulation of these genes in this tissue. We find that PSM explants cultured without overlying ectoderm continue to lay down stripes of C-Delta-1 expression, although epithelialization is blocked. These results suggest that somite rostrocaudal patterning is an autonomous property of the PSM. In addition, they demonstrate that segmentation is not necessarily coupled with the formation of somites. Dev. Genet. 23:77–85, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
In the vertebrate central nervous system (CNS), diverse cellular types are generated in response to inductive signals provided by specialized cellular groups that act as organizing centers. The roof plate is a critical dorsal signaling center that occupies the dorsal midline of the developing CNS along its entire anterior-posterior axis. During caudal neural tube development, the roof plate produces proteins of the Bmp and Wnt families controlling proliferation, specification, migration, and axon guidance of adjacent dorsal interneurons. Although primarily investigated in the developing spinal cord, a growing number of studies indicate that roof plate-derived signals are also critical for the patterning of dorsal structures in more rostral regions of CNS including the hindbrain, diencephalon and telencephalon. In this review, we discuss recent progress towards understanding the molecular and cellular mechanisms of roof plate-dependent patterning of the dorsal CNS.  相似文献   

16.
17.
During development, inferior olivary axons cross the floor plate and project from the caudal to the rostral hindbrain, whence they grow into the cerebellar plate. We have investigated the axon guidance signals involved in the formation of this projection in vitro. When the cerebellar plate was grafted ectopically along the margin of the hindbrain in organotypic cultures, inferior olivary axons could pathfind to the ectopic cerebellum, establishing a topographically normal projection. Following rostrocaudal reversal of a region of tissue in the axon pathway between the inferior olive and the cerebellum, olivary axons still navigated towards the cerebellum. Moreover, olivary axons could cross a bridging tissue explant (spinal cord) to reach a cerebellar explant. In collagen gel cultures of inferior olive explants, olivary axon outgrowth increased significantly in the presence of cerebellar explants and axons deflected towards the cerebellar tissue. These results show that the cerebellum is a source of diffusible axon guidance signals for olivary axons. We also found that, in organotypic cultures, olivary axons which had crossed the floor plate showed an increased tendency to respond to cerebellar cues. Taken together, these results indicate that the cerebellum is the source of cues that are chemoattractant and growth-promoting for inferior olivary axons; prior exposure to the floor plate increases responsiveness to these cues.  相似文献   

18.
《Developmental biology》1997,189(2):256-269
In this study we investigate the induction of the cell behaviors underlying neurulation in the frog,Xenopus laevis.Although planar signals from the organizer can induce convergent extension movements of the posterior neural tissue in explants, the remaining morphogenic processes of neurulation do not appear to occur in absence of vertical interactions with the organizer (R. Kelleret al.,1992,Dev. Dyn.193, 218–234). These processes include: (1) cell elongation perpendicular to the plane of the epithelium, forming the neural plate; (2) cell wedging, which rolls the neural plate into a trough; (3) intercalation of two layers of neural plate cells to form one layer; and (4) fusion of the neural folds. To allow planar signaling between all the inducing tissues of the involuting marginal zone and the responding prospective ectoderm, we have designed a “giant sandwich” explant. In these explants, cell elongation and wedging are induced in the superficial neural layer by planar signals without persistent vertical interactions with underlying, involuted mesoderm. A neural trough forms, and neural folds form and approach one another. However, the neural folds do not fuse with one another, and the deep cells of these explants do not undergo their normal behaviors of elongation, wedging, and intercalation between the superficial neural cells, even when planar signals are supplemented with vertical signaling until the late midgastrula (stage 11.5). Vertical interactions with mesoderm during and beyond the late gastrula stage were required for expression of these deep cell behaviors and for neural fold fusion. These explants offer a way to regulate deep and superficial cell behaviors and thus make possible the analysis of the relative roles of these behaviors in closing the neural tube.  相似文献   

19.
We used Pax-2 mRNA expression and Lim 1/2 antibody staining as markers for the conversion of chick intermediate mesoderm (IM) to pronephric tissue and Lmx-1 mRNA expression as a marker for mesonephros. Pronephric markers were strongly expressed caudal to the fifth somite by stage 9. To determine whether the pronephros was induced by adjacent tissues and, if so, to identify the inducing tissues and the timing of induction, we microsurgically dissected one side of chick embryos developing in culture and then incubated them for up to 3 days. The undisturbed contralateral side served as a control. Most embryos cut parallel to the rostrocaudal axis between the trunk paraxial mesoderm and IM before stage 8 developed a pronephros on the control side only. Embryos manipulated after stage 9 developed pronephric structures on both sides, but the caudal pronephric extension was attenuated on the cut side. These results suggest that a medial signal is required for pronephric development and show that the signal is propagated in a rostral to caudal sequence. In manipulated embryos cultured for 3 days in ovo, the mesonephros as well as the pronephros failed to develop on the experimental side. In contrast, embryos cut between the notochord and the trunk paraxial mesoderm formed pronephric structures on both sides, regardless of the stage at which the operation was performed, indicating that the signal arises from the paraxial mesoderm (PM) and not from axial mesoderm. This cut also served as a control for cuts between the PM and the IM and showed that signaling itself was blocked in the former experiments, not the migration of pronephric or mesonephric precursor cells from the primitive streak. Additional control experiments ruled out the need for signals from lateral plate mesoderm, ectoderm, or endoderm. To determine whether the trunk paraxial mesoderm caudal to the fifth somite maintains its inductive capacity in the absence of contact with more rostral tissue, embryos were transected. Those transected below the prospective level of the fifth somite expressed Pax-2 in both the rostral and the caudal isolates, whereas embryos transected rostral to this level expressed Pax-2 in the caudal isolate only. Thus, a rostral signal is not required to establish the normal pattern of Pax-2 expression and pronephros formation. To determine whether paraxial mesoderm is sufficient for pronephros induction, stage 7 or earlier chick lateral plate mesoderm was cocultured with caudal stage 8 or 9 quail somites in collagen gels. Pax-2 was expressed in chick tissues in 21 of 25 embryos. Isochronic transplantation of stage 4 or 5 quail node into caudal chick primitive streak resulted in the generation of ectopic somites. These somites induced ectopic pronephroi in lateral plate mesoderm, and the IM that received signals from both native and ectopic somites formed enlarged pronephroi with increased Pax-2 expression. We conclude that signals from a localized region of the trunk paraxial mesoderm are both required and sufficient for the induction of the pronephros from the chick IM. Studies to identify the molecular nature of the induction are in progress.  相似文献   

20.
Neural crest contributions to the lamprey head   总被引:5,自引:0,他引:5  
The neural crest is a vertebrate-specific cell population that contributes to the facial skeleton and other derivatives. We have performed focal DiI injection into the cranial neural tube of the developing lamprey in order to follow the migratory pathways of discrete groups of cells from origin to destination and to compare neural crest migratory pathways in a basal vertebrate to those of gnathostomes. The results show that the general pathways of cranial neural crest migration are conserved throughout the vertebrates, with cells migrating in streams analogous to the mandibular and hyoid streams. Caudal branchial neural crest cells migrate ventrally as a sheet of cells from the hindbrain and super-pharyngeal region of the neural tube and form a cylinder surrounding a core of mesoderm in each pharyngeal arch, similar to that seen in zebrafish and axolotl. In addition to these similarities, we also uncovered important differences. Migration into the presumptive caudal branchial arches of the lamprey involves both rostral and caudal movements of neural crest cells that have not been described in gnathostomes, suggesting that barriers that constrain rostrocaudal movement of cranial neural crest cells may have arisen after the agnathan/gnathostome split. Accordingly, neural crest cells from a single axial level contributed to multiple arches and there was extensive mixing between populations. There was no apparent filling of neural crest derivatives in a ventral-to-dorsal order, as has been observed in higher vertebrates, nor did we find evidence of a neural crest contribution to cranial sensory ganglia. These results suggest that migratory constraints and additional neural crest derivatives arose later in gnathostome evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号