首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Lysosomal acid phosphatase (LAP) is synthesized as a transmembrane protein with a short carboxy-terminal cytoplasmic tail of 19 amino acids, and processed to a soluble protein after transport to lysosomes. Deletion of the membrane spanning domain and the cytoplasmic tail converts LAP to a secretory protein, while deletion of the cytoplasmic tail as well as substitution of tyrosine 413 within the cytoplasmic tail against phenylalanine causes accumulation at the cell surface. A chimeric polypeptide, in which the cytoplasmic tail of LAP was fused to the ectoplasmic and transmembrane domain of hemagglutinin is rapidly internalized and tyrosine 413 of the LAP tail is essential for internalization of the fusion protein. A chimeric polypeptide, in which the membrane spanning domain and cytoplasmic tail of LAP are fused to the ectoplasmic domain of the Mr 46 kd mannose 6-phosphate receptor, is rapidly transported to lysosomes, whereas wild type receptor is not transported to lysosomes. We conclude that a tyrosine containing endocytosis signal in the cytoplasmic tail of LAP is necessary and sufficient for targeting to lysosomes.  相似文献   

2.
BHK cells transfected with human lysosomal acid phosphatase (LAP) cDNA (CT29) expressed 70-fold higher enzyme activities of acid phosphatase than non-transfected BHK cells. The CT29-LAP was synthesized in BHK cells as a heterogeneously glycosylated precursor that was tightly membrane associated. Transfer to the trans-Golgi was associated with a small increase in size (approximately 7 kd) and partial processing of the oligosaccharides to complex type structures. CT29-LAP was transferred into lysosomes as shown by subcellular fractionation, immunofluorescence and immunoelectron microscopy. Lack of mannose-6-phosphate residues suggested that transport does not involve mannose-6-phosphate receptors. Part of the membrane-associated CT29-LAP was processed to a soluble form. The mechanism that converts CT29-LAP into a soluble form was sensitive to NH4Cl, and reduced the size of the polypeptide by 7 kd. In vitro translation of CT29-derived cRNA in the presence of microsomal membranes yielded a CT29-LAP precursor that is protected from proteinase K except for a small peptide of approximately 2 kd. In combination with the sequence data available for LAP, these observations suggest that CT29-LAP is synthesized and transported to lysosomes as a transmembrane protein. In the lysosomes, CT29-LAP is released from the membrane by proteolytic cleavage, which removes a C-terminal peptide including the transmembrane domain and the cytosolic tail of 18 amino acids.  相似文献   

3.
To gain entry into non-phagocytic cells, Trypanosoma cruzi trypomastigotes recruit lysosomes to the host cell surface. Lysosome fusion at the site of parasite entry leads to the formation of a parasitophorous vacuole with lysosomal properties. Here, we show that increased expression of the lysosomal membrane glycoprotein Lamp-1 at the cell surface renders CHO cells more susceptible to trypomastigote invasion in a microtubule-dependent fashion. Mutation of critical residues in the lysosome-targeting motif of Lamp-1 abolished the enhancement of T. cruzi invasion. This suggests that interactions dependent on Lamp-1 cytoplasmic tail motifs, and not the surface-exposed luminal domain, modulate T. cruzi entry. Measurements of Ca2+-triggered exocytosis of lysosomes in these cell lines revealed an enhancement of beta-hexosaminidase release in cells expressing wild-type Lamp-1 on the plasma membrane; this effect was not observed in cell lines transfected with Lamp-1 cytoplasmic tail mutants. These results also implicate Ca2+-regulated lysosome exocytosis in cell invasion by T. cruzi and indicate a role for the Lamp-1 cytosolic domain in promoting more efficient fusion of lysosomes with the plasma membrane.  相似文献   

4.
V Prill  L Lehmann  K von Figura    C Peters 《The EMBO journal》1993,12(5):2181-2193
Lysosomal acid phosphatase (LAP) is synthesized as a type I membrane glycoprotein and targeted to lysosomes via the plasma membrane. Its cytoplasmic tail harbours a tyrosine-containing signal for rapid internalization. Expression in Madine-Darby canine kidney cells results in direct sorting to the basolateral cell surface, rapid endocytosis and delivery to lysosomes. In contrast, a deletion mutant lacking the cytoplasmic tail is delivered to the apical plasma membrane where it accumulates before it is slowly internalized. A chimeric protein, in which the cytoplasmic tail of LAP is fused to the extracytoplasmic and transmembrane domain of the apically sorted haemagglutinin, is sorted to the basolateral plasma membrane. A series of truncation and substitution mutants in the cytoplasmic tail was constructed and comparison of their polarized sorting and internalization revealed that the determinants for basolateral sorting and rapid internalization reside in the same segment of the cytoplasmic tail. The cytoplasmic factors decoding these signals, however, tolerate distinct mutations indicating that different receptors are involved in sorting at the trans-Golgi network and at the plasma membrane.  相似文献   

5.
Neuraminidase 1 is a negative regulator of lysosomal exocytosis   总被引:1,自引:0,他引:1  
Lysosomal exocytosis is a Ca2+-regulated mechanism that involves proteins responsible for cytoskeletal attachment and fusion of lysosomes with the plasma membrane. However, whether luminal lysosomal enzymes contribute to this process remains unknown. Here we show that neuraminidase NEU1 negatively regulates lysosomal exocytosis in hematopoietic cells by processing the sialic acids on the lysosomal membrane protein LAMP-1. In macrophages from NEU1-deficient mice, a model of the disease sialidosis, and in patients' fibroblasts, oversialylated LAMP-1 enhances lysosomal exocytosis. Silencing of LAMP-1 reverts this phenotype by interfering with the docking of lysosomes at the plasma membrane. In neu1-/- mice the excessive exocytosis of serine proteases in the bone niche leads to inactivation of extracellular serpins, premature degradation of VCAM-1, and loss of bone marrow retention. Our findings uncover an unexpected mechanism influencing lysosomal exocytosis and argue that exacerbations of this process form the basis for certain genetic diseases.  相似文献   

6.
The juvenile form of ceroid lipofuscinosis (Batten disease) is a neurodegenerative lysosomal storage disorder caused by mutations in the CLN3 gene. CLN3 encodes a multimembrane-spanning protein of unknown function, which is mainly localized in lysosomes in non-neuronal cells and in endosomes in neuronal cells. For this study we constructed chimeric proteins of three CLN3 cytoplasmic domains fused to the lumenal and transmembrane domains of the reporter proteins LAMP-1 and lysosomal acid phosphatase to identify lysosomal targeting motifs and to determine the intracellular transport and subcellular localization of the chimera in transfected cell lines. We report that a novel type of dileucine-based sorting motif, EEEX(8)LI, present in the second cytoplasmic domain of CLN3, is sufficient for proper targeting to lysosomes. The first cytoplasmic domain of CLN3 and the mutation of the dileucine motif resulted in a partial missorting of chimeric proteins to the plasma membrane. At equilibrium, 4-13% of the different chimera are present at the cell surface. Analysis of lysosome-specific proteolytic processing revealed that lysosomal acid phosphatase chimera containing the second cytoplasmic domain of CLN3 showed the highest rate of lysosomal delivery, whereas the C terminus of CLN3 was found to be less efficient in lysosomal targeting. However, none of these cytosolic CLN3 domains was able to interact with AP-1, AP-3, or GGA3 adaptor complexes. These data revealed that lysosomal sorting motifs located in an intramolecular cytoplasmic domain of a multimembrane-spanning protein have different structural requirements for adaptor binding than sorting signals found in the C-terminal cytoplasmic domains of single- or dual-spanning lysosomal membrane proteins.  相似文献   

7.
Human lysosome membrane glycoprotein h-lamp-1 is a highly N-glycosylated protein found predominantly in lysosomes, with low levels present at the cell surface. The signal required for delivery of h-lamp-1 to lysosomes was investigated by analyzing the intracellular distribution of h-lamp-1 with altered amino acid sequences expressed from mutated cDNA clones. A cytoplasmic tail tyrosine residue found conserved in chicken, rodent, and human deduced amino acid sequences was discovered to be necessary for efficient lysosomal transport of h-lamp-1 in COS-1 cells. In addition, the position of the tyrosine residue relative to the membrane and carboxyl terminus also determined lysosomal expression. Supplanting the wild-type h-lamp-1 cytoplasmic tail onto a cell surface reporter glycoprotein was sufficient to cause redistribution of the chimera to lysosomes. A similar chimeric protein replacing the cytoplasmic tyrosine residue with an alanine was not expressed in lysosomes. Altered proteins that were not transported to lysosomes were found to accumulate at the cell surface, and unlike wild-type lysosomal membrane glycoproteins, were unable to undergo endocytosis. These data indicate that lysosomal membrane glycoproteins are sorted to lysosomes by a cytoplasmic signal containing tyrosine in a specific position, and the sorting signal may be recognized both in the trans-Golgi network and at the cell surface.  相似文献   

8.
Our aim was to elucidate the physiological role of calpains (CAPN) in mammary gland involution. Both CAPN-1 and -2 were induced after weaning and its activity increased in isolated mitochondria and lysosomes. CAPN activation within the mitochondria could trigger the release of cytochrome c and other pro-apoptotic factors, whereas in lysosomes it might be essential for tissue remodeling by releasing cathepsins into the cytosol. Immunohistochemical analysis localized CAPNs mainly at the luminal side of alveoli. During weaning, CAPNs translocate to the lysosomes processing membrane proteins. To identify these substrates, lysosomal fractions were treated with recombinant CAPN and cleaved products were identified by 2D-DIGE. The subunit b(2) of the v-type H(+) ATPase is proteolyzed and so is the lysosomal-associated membrane protein 2a (LAMP2a). Both proteins are also cleaved in vivo. Furthermore, LAMP2a cleavage was confirmed in vitro by addition of CAPNs to isolated lysosomes and several CAPN inhibitors prevented it. Finally, in vivo inhibition of CAPN1 in 72-h-weaned mice decreased LAMP2a cleavage. Indeed, calpeptin-treated mice showed a substantial delay in tissue remodeling and involution of the mammary gland. These results suggest that CAPNs are responsible for mitochondrial and lysosomal membrane permeabilization, supporting the idea that lysosomal-mediated cell death is a new hallmark of mammary gland involution.  相似文献   

9.
Cystinosis is a lysosomal transport disorder characterized by an accumulation of intra-lysosomal cystine. Biochemical studies showed that the lysosomal cystine transporter was distinct from the plasma membrane cystine transporters and that it exclusively transported cystine. The gene underlying cystinosis, CTNS, encodes a predicted seven-transmembrane domain protein called cystinosin, which is highly glycosylated at the N-terminal end and carries a GY-XX-Phi (where Phi is a hydrophobic residue) lysosomal-targeting motif in its carboxyl tail. We constructed cystinosin-green fluorescent protein fusion proteins to determine the subcellular localization of cystinosin in transfected cell lines and showed that cystinosin-green fluorescent protein colocalizes with lysosomal-associated membrane protein 2 (LAMP-2) to lysosomes. Deletion of the GY-XX-Phi motif resulted in a partial redirection to the plasma membrane as well as sorting to lysosomes, demonstrating that this motif is only partially responsible for the lysosomal targeting of cystinosin and suggesting the existence of a second sorting signal. A complete relocalization of cystinosin to the plasma membrane was obtained after deletion of half of the third cytoplasmic loop (amino acids 280-288) coupled with the deletion of the GY-DQ-L motif, demonstrating the presence of the second signal within this loop. Using site-directed mutagenesis studies we identified a novel conformational lysosomal-sorting motif, the core of which was delineated to YFPQA (amino acids 281-285).  相似文献   

10.
Lysosomal proteinases are translated as preproforms, transported through the Golgi apparatus as proforms, and localized in lysosomes as mature forms. In this study, we analyzed which subclass of proteinases participates in the processing of lysosomal proteinases using Bafilomycin A1, a vacuolar ATPase inhibitor. Bafilomycin A1 raises lysosomal pH resulting in the degradation of lysosomal proteinases such as cathepsins B, D, and L. Twenty-four hours after the withdrawal of Bafilomycin A1, NIH3T3 cells possess these proteinases in amounts and activities similar to those in cells cultured in DMEM and 5% BCS. In the presence of various proteinase inhibitors, procathepsin processing is disturbed by E-64-d, resulting in abnormal processing of cathepsins D and L, but not by APMSF, Pepstatin A, or CA-074. In the presence of Helicobacter pylori Vac A toxin, which prevents vesicular transport from late endosomes to lysosomes, the processing of procathepsins B and D occurs, while that of procathepsin L does not. Thus, procathepsins B and D are converted to their mature forms in late endosomes, while procathepsin L is processed to the mature form after its arrival in lysosomes by some cysteine proteinase other than cathepsin B.  相似文献   

11.
We isolated and sequenced LGP 96, a cDNA clone corresponding to the entire coding sequence of the rat liver lysosomal membrane sialoglycoprotein with an apparent Mr of 96 K, LGP 96. The deduced amino acid sequence indicates that LGP 96 consists of 411 amino acid residues (Mr 45,163) and the 26 NH2-terminal residues presumably constitute a cleavable signal peptide. The major portion of LGP 96 resides on the luminal side of the lysosome and bears a large number of N-linked heavily sialylated complex type carbohydrate chains, giving the mature molecule of 96 kDa. The protein has 17 potential N-glycosylation sites and 32.1 and 65.3% sequence similarities in amino acid to LGP 107 and human lamp-2, respectively. The glycosylation sites are clustered into two domains separated by a hinge-like structure enriched with proline and threonine. LGP 96 possesses one putative transmembrane domain consisting of 24 hydrophobic amino acids near the COOH-terminus and contains a short cytoplasmic segment constituting 12 amino acid residues at the COOH-terminal end. Comparison of LGP 96 and recently cloned lysosomal membrane glycoprotein sequences reveals strong similarity in the putative transmembrane domain and cytoplasmic tail. It is very likely that these portions are important for the targeting of molecules to lysosomes. A comparison of LGP 96 and LGP 107 showed numerous structural similarities.  相似文献   

12.
Mach L 《Biological chemistry》2002,383(5):751-756
Proteolytic maturation of lysosomal proteinases is initiated after receptor-mediated targeting to prelysosomal compartments, while terminal processing occurs upon delivery to lysosomes. These late processing events are impaired in patients suffering from inherited lysosomal disorders, such as sialic acid storage disease and mucolipidosis II (I-cell disease). Lysosomes in the affected cells display marked changes in their physiological and morphological properties, with features reminiscent of prelysosomal compartments. This indicates that the absence of mature lysosomes interferes with the final processing steps during the biosynthesis of lysosomal proteinases. Thus, impaired proteinase maturation reflects an incompetent lysosomal apparatus and as such can be seen as a hallmark of lysosomal storage diseases.  相似文献   

13.
Melanosomes are lysosome-related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal enzymes tyrosinase-related protein 1 (Tyrp1) and tyrosinase follow an intracellular Golgi to melanosome pathway, whereas in the absence of glycosphingolipids, they are observed to pass over the cell surface. Unexpectedly, the lysosome-associated membrane protein 1 (LAMP-1) and 2 behaved exactly opposite: they were found to travel through the cell surface in control melanocytes but followed an intracellular pathway in the absence of glycosphingolipids. Chimeric proteins having the cytoplasmic tail of Tyrp1 or tyrosinase were transported like lysosomal proteins, whereas a LAMP-1 construct containing the lumenal domain of Tyrp1 localized to melanosomes. In conclusion, the lumenal domain contains sorting information that guides Tyrp1 and probably tyrosinase to melanosomes by an intracellular route that excludes lysosomal proteins and requires glucosylceramide.  相似文献   

14.
B Mechler  H Müller    D H Wolf 《The EMBO journal》1987,6(7):2157-2163
Studies were performed to unravel the activation and maturation mechanism of vacuolar (lysosomal) proteinases in Saccharomyces cerevisiae. In vivo and in vitro studies show that proteinase yscA and proteinase yscB are involved in the activation and processing event of pro-carboxypeptidase yscY. Processing and activation of pro-carboxypeptidase yscY by proteinase yscA depends on an additional factor contained in the vacuolar fraction. Comparable activation can be mimicked by sodium polyphosphate. Optimum pH for processing by this proteinase yscA-triggered event is 5. The proteinase yscA-triggered maturation process of pro-carboxypeptidase yscY leads to an intermediate mol. wt form of the enzyme which is, however, fully active. Proteinase yscB transfers the intermediate mol. wt form of the original precursor to the apparently authentic, mature and active carboxypeptidase yscY. An activation and maturation scheme is devised.  相似文献   

15.
We have used stably transfected CHO cell lines to characterize the pathway of intracellular transport of the lgp120 (lgp-A) to lysosomes. Using several surface labeling and internalization assays, our results suggest that lgp120 can reach its final destination with or without prior appearance on the plasma membrane. The extent to which lgp120 was transported via the cell surface was determined by two factors: expression level and the presence of a conserved glycine-tyrosine motif in the cytoplasmic tail. In cells expressing low levels of wild-type lgp120, the majority of newly synthesized molecules reached lysosomes without becoming accessible to antibody or biotinylation reagents added extracellularly at 4 degrees C. With increased expression levels, however, an increased fraction of transfected lgp120, as well as some endogenous lgp-B, appeared on the plasma membrane. The fraction of newly synthesized lgp120 reaching the cell surface was also increased by mutations affecting the cytoplasmic domain tyrosine or glycine residues. A substantial fraction of both mutants reached the surface even at low expression levels. However, only the lgp120G----A7 mutant was rapidly internalized and delivered from the plasma membrane to lysosomes. Taken together, our results show that the majority of newly synthesized wild-type lgp120 does not appear to pass through the cell surface en route to lysosomes. Instead, it is likely that lysosomal targeting involves a saturable intracellular sorting site whose affinity for lgp's is dependent on a glycine-tyrosine motif in the lgp120 cytoplasmic tail.  相似文献   

16.
《The Journal of cell biology》1995,130(6):1297-1306
The bovine cation-dependent mannose 6-phosphate receptor (CD-MPR) is a type 1 transmembrane protein that cycles between the trans-Golgi network, endosomes, and the plasma membrane. When the terminal 40 residues were deleted from the 67-amino acid cytoplasmic tail of the CD- MPR, the half-life of the receptor was drastically decreased and the mutant receptor was recovered in lysosomes. Analysis of additional cytoplasmic tail truncation mutants and alanine-scanning mutants implicated amino acids 34-39 as being critical for avoidance of lysosomal degradation. The cytoplasmic tail of the CD-MPR was partially effective in preventing the lysosomal membrane protein Lamp1 from entering lysosomes. Complete exclusion required both the CD-MPR cytoplasmic tail and transmembrane domain. The transmembrane domain alone had just a minor effect on the distribution of Lamp1. These findings indicate that the cytoplasmic tail of the CD-MPR contains a signal that prevents the receptor from trafficking to lysosomes. The transmembrane domain of the CD-MPR also contributes to this function.  相似文献   

17.
Polyamines stimulate lysosomal cystine transport   总被引:1,自引:0,他引:1  
Lysosomal cystine transport is a carrier-dependent process that, in isolated lysosomes, is stimulated by proton gradients, membrane potential, and millimolar concentrations of divalent cations. The importance of these regulatory factors in vivo is not well established. Polyamines were found to stimulate cystine transport in Percoll gradient purified rat liver lysosomes with spermidine greater than putrescine = cadaverine greater than spermine in order of effectiveness. Maximal stimulation was achieved with 500 microM spermidine. The effects of optimal concentrations of polyamines and divalent cations on cystine transport were not additive. Spermidine stimulated cystine efflux from lysosomes of cultured human diploid fibroblasts, but had no effect on lysosomes of cystinotic fibroblasts which have defective cystine transport. Spermidine did not accumulate within lysosomes in exchange for cystine, had no effect on lysosomal pH, had only slight effects on the lysosomal membrane potential, and had little effect on either methionine or tyrosine efflux. Polyamines are cellular cytoplasmic components that, in physiologic concentrations, stimulate lysosomal cystine transport.  相似文献   

18.
Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking.  相似文献   

19.
CLN7 is a polytopic lysosomal membrane glycoprotein of unknown function and is deficient in variant late infantile neuronal ceroid lipofuscinosis. Here we show that full-length CLN7 is proteolytically cleaved twice, once proximal to the used N-glycosylation sites in lumenal loop L9 and once distal to these sites. Cleavage occurs by cysteine proteases in acidic compartments and disruption of lysosomal targeting of CLN7 results in inhibition of proteolytic cleavage. The apparent molecular masses of the CLN7 fragments suggest that both cleavage sites are located within lumenal loop L9. The known disease-causing mutations, p.T294K and p.P412L, localized in lumenal loops L7 and L9, respectively, did not interfere with correct lysosomal targeting of CLN7 but enhanced its proteolytic cleavage in lysosomes. Incubation of cells with selective cysteine protease inhibitors and expression of CLN7 in gene-targeted mouse embryonic fibroblasts revealed that cathepsin L is required for one of the two proteolytic cleavage events. Our findings suggest that CLN7 is inactivated by proteolytic cleavage and that enhanced CLN7 proteolysis caused by missense mutations in selected luminal loops is associated with disease.  相似文献   

20.
Heparanase processing by lysosomal/endosomal protein preparation   总被引:6,自引:0,他引:6  
Cohen E  Atzmon R  Vlodavsky I  Ilan N 《FEBS letters》2005,579(11):2334-2338
Heparanase is an endo-beta-glucuronodase involved in cleavage of heparan sulfate side chains, activity that is strongly implicated in cell dissemination associated with tumor metastasis and inflammation. Heparanase is first synthesized as a latent 65 kDa precursor that is converted into an active enzyme upon proteolytic processing. Previously, we have reported that elevation of the lysosomal pH results in complete inhibition of heparanase processing, suggesting that lysosomal protease(s) and acidic pH conditions are required for heparanase processing. Here, we adopted a cell fractionation approach and provide evidence that incubation of the pro-enzyme with lysosome/endosome, but not with cytoplasmic fractions resulted in processing and activation of the 65 kDa latent heparanase. Moreover, while the water soluble lysosome/endosome fraction exhibited no apparent processing activity, heparanase processing by the water insoluble lysosome/endosome membrane fraction was readily detected and exhibited the expected pH dependency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号