首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect of CpG methylation on the DNA binding of cisplatin analogues with an attached aminoacridine intercalator. DNA-targeted 9-aminoacridine carboxamide Pt complexes are known to bind at 5′-CpG sequences. Their binding to methylated and non-methylated 5′-CpG sequences was determined and compared with cisplatin. The damage profiles of each platinum compound were quantified via a polymerase stop assay with fluorescently labelled primers and capillary electrophoresis. Methylation at 5′-CpG was shown to significantly increase the binding intensity for the 9-aminoacridine carboxamide compounds, whereas no significant increase was found for cisplatin. 5′-CpG methylation had the largest effect on the 9-ethanolamine-acridine carboxamide Pt complex, followed by the 9-aminoacridine carboxamide Pt complex and the 7-fluoro complex. The methylation state of a cell’s genome is important in maintaining normal gene expression, and is often aberrantly altered in cancer cells. An analogue of cisplatin which differentially targets methylated DNA may be able to improve its therapeutic activity, or alter its range of targets and evade the chemoresistance which hampers cisplatin efficacy in clinical use.  相似文献   

2.
The effect of sequence on the binding of 9-aminoacridine to DNA has been investigated by studying its interaction with deoxydinucleoside phosphates of different sequences using proton nuclear magnetic resonance. Quantitative binding information can be obtained by comparison of the proton chemical shift behavior of 9-aminoacridine upon addition of dinucleoside phosphate to various models for the interaction using least-squares computer fitting procedures. The simplest model that fits the data includes (1) dimerization of 9-aminoacridine and (2) a mixture of 1:1 and 2:1 (dinucleoside phosphate/9-aminoacridine) complexes. The computed parameters allow comparison of binding constants and stereochemistry for different sequences. The 1:1 complexes seem to involve interaction of the ring nitrogen with the backbone phosphate and stacking of one or both chromophores on the acridine; preference in binding is observed for alternating (purine-pyrimidine or pyrimidine-purine) over non-alternating (purine-purine) dinucleoside phosphates. The 2:1 complexes involve intercalation of the acridine between two complementary dinucleoside phosphate strands with weak sequence preferences in binding. The stereochemistry of intercalation differs between non-alternating purine-purine sequences and the alternating pyrimidine-purine or purine-pyrimidine sequences in having the 9-aminoacridine stacked with the purines of one strand rather than straddling the purines on opposite strands. The difference in stereochemistry could possibly be a determining factor in frameshift sequence specificity.  相似文献   

3.
As part of an ongoing drug development programme, this paper describes the sequence specificity and time course of DNA adduct formation for a series of novel DNA-targeted analogues of cis-diaminedichloroplatinum(II) (cisplatin) (9-aminoacridine-4-carboxamide Pt complexes) in intact HeLa cells. The sequence specificity of DNA damage caused by cisplatin and analogues in human (HeLa) cells was studied using Taq DNA polymerase and a linear amplification/polymerase stop assay. Primer extension is inhibited by a Pt-DNA adduct, and hence the sites of these lesions can be analysed on DNA sequencing gels. The repetitive alphoid DNA sequence was used as the target DNA in human cells. The 9-aminoacridine-4-carboxamide Pt complexes exhibited a markedly different sequence specificity relative to cisplatin and other analogues. The sequence specificity of the 9-aminoacridine-4-carboxamide Pt complexes is shifted away from a preference for runs of guanines. The 9-aminoacridine-4-carboxamide Pt complexes have an enhanced preference for GA dinucleotides. This is the first occasion that an altered DNA sequence specificity has been demonstrated for a cisplatin analogue in human cells. A time course of DNA damage revealed that the DNA-targeted Pt complexes, consisting of four 9-aminoacridine-4-carboxamide Pt complexes and one acridine-4-carboxamide Pt complex, damaged DNA more rapidly compared to cisplatin and non-targeted analogues. A comparison of the time taken to reach half the maximum relative intensity indicated that the DNA-targeted Pt complexes reacted approximately 4-fold faster than cisplatin and the non-targeted analogues.  相似文献   

4.
The anti-tumour drug, cisplatin, preferentially forms adducts at G-rich DNA sequences. Telomeres are found at the ends of chromosomes and, in humans, contain the repeated DNA sequence (GGGTTA)n that is expected to be targeted by cisplatin. Using a plasmid clone with 17 tandem telomeric repeats, (GGGTTA)17, the DNA sequence specificity of cisplatin was investigated utilising the linear amplification procedure that pin-pointed the precise sites of cisplatin adduct formation. This procedure used a fluorescently labelled primer and capillary electrophoresis with laser-induced fluorescence detection to determine the DNA sequence specificity of cisplatin. This technique provided a very accurate analysis of cisplatin-DNA adduct formation in a long telomeric repeat DNA sequence. The DNA sequence specificity of cisplatin in a long telomeric tandem repeat has not been previously reported. The results indicated that the 3′-end of the G-rich strand of the telomeric repeat was preferentially damaged by cisplatin and this suggests that the telomeric DNA repeat has an unusual conformation.  相似文献   

5.
The DNA sequence specificity of the cancer chemotherapeutic agent bleomycin was examined in a human telomeric DNA sequence and compared with that of non-telomeric sequences. The target DNA sequence contained 17 repeats of the human telomeric sequence and other primary sites of bleomycin cleavage. The 377-base-pair target DNA was fluorescently labelled at the 3′-end, damaged with bleomycin and electrophoresed in an ABI 3730 automated capillary sequencer to determine the intensity and sequence specificity of bleomycin damage. The results revealed that bleomycin cleaved primarily at 5′-GT in the telomeric sequence 5′-GGGTTA. Maxam–Gilbert chemical sequencing reactions were utilised as DNA size markers to determine the precise sites of bleomycin cleavage. The telomeric region contained strong sites of bleomycin cleavage and constituted 57% of the 30 most intense bleomycin damage sites in the DNA sequence examined. These data indicated that telomeric DNA sequences are a major site for bleomycin damage.  相似文献   

6.
The sequence preferences for alkylation of a series of novel parasubstituted aniline mustards linked to the DNA-intercalating chromophore 9-aminoacridine by an alkyl chain of variable length were studied by using procedures analogous to Maxam-Gilbert reactions. The compounds alkylate DNA at both guanine and adenine sites. For mustards linked to the acridine by a short alkyl chain through a para O- or S-link group, 5'-GT sequences are the most preferred sites at which N7-guanine alkylation occurs. For analogues with longer chain lengths, the preference of 5'-GT sequences diminishes in favor of N7-adenine alkylation at the complementary 5'-AC sequence. Magnesium ions are shown to selectively inhibit alkylation at the N7 of adenine (in the major groove) by these compounds but not the alkylation at the N3 of adenine (in the minor groove) by the antitumor antibiotic CC-1065. Effects of chromophore variation were also studied by using aniline mustards linked to quinazoline and sterically hindered tert-butyl-9-aminoacridine chromophores. The results demonstrate that in this series of DNA-directed mustards the noncovalent interactions of the carrier chromophores with DNA significantly modify the sequence selectivity of alkylation by the mustard. Relationships between the DNA alkylation patterns of these compounds and their biological activities are discussed.  相似文献   

7.
G-quadruplex structures of telomeric sequences are of growing interest because they inhibit telomerase, an enzyme involved in the maintenance of telomere length of cancer cells. As we have shown previously, the antiparallel structure of G-quadruplexes can be cross-linked in vitro by the anti-tumour drug cisplatin. The question arises whether platination of quadruplex structures of human telomeric sequences by cisplatin could be relevant from a biological point of view. Therefore, we have compared the kinetics of reactions of the diaqua form of cisplatin, cis-[Pt(NH(3))(2)(H(2)O)(2)](2+), with the human telomeric quadruplex structure, a duplex DNA and a single-stranded DNA containing one specific platination GG site. The ratio between the platination rate constants was obtained using two intramolecular competition experiments: either a construct with a junction between duplex DNA containing a unique GG platination site and the quadruplex structure of the human telomeric sequence AG(3)(T(2)AG(3))(3), or a construct with a junction between duplex DNA and a single strand containing each a unique GG platination site. Those competition experiments allowed us to conclude that the platination of the quadruplex is favoured over that of the GG duplex by a factor of about two whereas the GG duplex is platinated three times faster than the GG single strand.  相似文献   

8.
Two 1-nitro-9-aminoacridine dimers were prepared: one bearing a spermine flexible linking chain, compound 4, the other a rigid dipiperidine-type linker, compound 7. Both dimers elicited a higher affinity constant for DNA than the parent monomeric drug nitracrine 2. This affinity was several orders lower than what was found for other dimeric compounds having the same linkers and no nitro group on the acridine ring (3, 5, 6 and 8). Bisintercalation was evidenced for compound 4 by viscosimetric measurements. In the absence of dithiothreitol, an inhibitory effect of RNA synthesis in vitro was observed for all the tested compounds except 2 and 7. In the presence of dithiothreitol, 4 and 7 formed irreversible complexes with DNA of decreased template properties. The level of the dimers binding was lower than that of the parent compound 2. Cross-links were detected by means of hydroxylapatite chromatography in a complex of the dimer bearing a flexible linking chain, compound 4 with DNA, while the compound 7-DNA complex eluted in the single-stranded DNA region. The extent of cytotoxicity of the two 1-nitro-9-aminoacridine dimers against L1210 cultured cells was different.  相似文献   

9.
The sequence specificity and intensity of DNA damage induced by six peptide-tethered platinum complexes was compared to cisplatin and Pt(en)Cl(2). DNA damage was investigated in pUC19 plasmid and in intact HeLa cells, and quantitatively analyzed using a Taq DNA polymerase/linear amplification assay. The DNA sequence specificity of the peptide-platinum compounds was found to be very similar to cisplatin and Pt(en)Cl(2), with runs of consecutive guanines being the most intensely damaged sites. The observed reactivity of the peptide-platinum complexes towards plasmid DNA was lower compared to cisplatin and Pt(en)Cl(2), with the glycine-tethered complex 3 and the phenylalanine-tethered complex 4 producing the highest relative damage intensity, followed by (in decreasing order) lysine-tethered (5), arginine-tethered (6), serine-tethered (7) and glutamate-tethered (8). The reactivity of the peptide-platinum complexes towards cellular DNA was also lower compared to cisplatin and Pt(en)Cl(2). For most investigated complexes, the relative damage intensities were found to be similar in cells compared to plasmid DNA, but were greatly reduced for 3 and 4. The lysine-tethered 5 complex produced the highest DNA damage intensity in cells followed by (in decreasing order) 6, 7, 3, 4 and 8.  相似文献   

10.
The inhibition of ribonucleic acid polymerase by acridines   总被引:8,自引:6,他引:2       下载免费PDF全文
1. The aminoacridines, proflavine (3,6-diaminoacridine) and 9-aminoacridine, and a hydrogenated derivative, 9-amino-1,2,3,4-tetrahydroacridine, were shown to inhibit in vitro the DNA-primed RNA polymerase of Escherichia coli. The inhibition is strong with both proflavine and 9-aminoacridine, but weak with 9-amino-1,2,3,4-tetrahydroacridine. 2. The extent to which the three acridines bind to calf-thymus DNA in the enzyme medium was studied spectrophotometrically. The extent of binding decreases in the order: proflavine, 9-aminoacridine, 9-amino-1,2,3,4-tetrahydroacridine. Some evidence was also obtained for interaction between the nucleoside triphosphate substrates and proflavine or 9-aminoacridine; no such interaction was detectable with 9-amino-1,2,3,4-tetrahydroacridine. 3. Although the amount of acridine bound to DNA increases with increasing inhibition, a stage is reached where an increase in acridine concentration still causes an increase in inhibition, with practically no increase in the amount bound to DNA. 4. Plots of reciprocal rates against the reciprocal of DNA concentration were linear and had a common intercept when proflavine or 9-aminoacridine was present. Similar relations were obtained when the reciprocal concentration of nucleoside triphosphates was plotted. The observations are interpreted kinetically in terms of a competitive inhibition of the enzyme by proflavine or 9-aminoacridine and of a kinetic role for the DNA analogous to ;activation'. 5. This suggests that inhibitory acridine molecules can occupy the sites on the RNA polymerase that are specific for binding the nucleoside triphosphate substrate or the bases of the DNA, when these become accessible during the copying process.  相似文献   

11.
We present the results of free energy perturbation/molecular dynamics studies on B-DNA.daunomycin and B-DNA.9-aminoacridine complexes as well as on B-DNA itself in order to calculate the free energy differences between complexes having different base pair sequences. The results generally reproduce the trends observed experimentally, i.e., preferences of acridine and daunomycin to bind to a specific base sequence in the DNA. This is encouraging, given the simplicity of the molecular mechanical/dynamical model in which solvent is not explicitly included.  相似文献   

12.
Interaction of acridine- and 9-aminoacridinecarboxamide platinum complexes with DNA was investigated with respect to their DNA sequence specificity and kinetics of binding. The DNA sequence specificity of the compounds was quantitatively analyzed using a polymerase stop assay with the plasmid pUC19. The 9-aminoacridinecarboxamide platinum complexes exhibited a different sequence specificity to that of cisplatin, shifted away from runs of consecutive guanines (the main binding site for cisplatin). This alteration was dependent on chain length. Shorter chain length compounds (n = 2, 3) showed a greater difference in sequence specificity, while longer chain length compounds (n = 4, 5) more closely resembled cisplatin. An acridinecarboxamide platinum complex showed a similar sequence specificity to cisplatin, revealing that the major change of sequence specificity was due to the presence of the 9-amino substituent. A linear amplification system was used to investigate the time course of the reaction. The presence of an intercalating group (acridinecarboxamide or 9-aminoacridinecarboxamide) greatly increased the rate of reaction with DNA; this is proposed to be due to a different reaction mechanism with DNA (direct displacement by the N-7 of guanine).  相似文献   

13.
The binding of platinum (II)-terpyridine complexes to DNA was studied by using equilibrium dialysis. Optical absorption methods were used to measure the ability of the ligands to aggregate in aqueous buffer. Scatchard plots for the binding of the monomeric [Pt(terpy)SC4H9]+ cation to DNA at I0.01 are curvilinear, concave upwards, suggesting two modes of binding. The association constant decreases at higher ionic strengths, consistent with polyelectrolyte theory, and 1.1 cations are released per bound ligand molecule. The association constants of the binuclear ligands [Pt(terpy)S[CH2]4S(terpy)Pt]2+ and [Pt(terpy)S[CH2]6S(terpy)Pt]2+ are 8 and 23 times larger respectively than the affinity of the monomer. For the latter binuclear derivative the increase may be ascribed to bifunctional reaction. Differential dialysis experiments with DNAs of differing base composition show that [Pt(terpy)SC4H9]+ has a requirement for a single G X C base-pair at the highest-affinity site. However, in the binuclear ligands chromophore specificity is severely compromised. Similar experiments indicate that 9-aminoacridine and selected methylene-linked diacridines show no significant sequence selectivity.  相似文献   

14.
Bleomycin is an antibiotic drug that is widely used in cancer chemotherapy. Telomeres are located at the ends of chromosomes and comprise the tandemly repeated DNA sequence (GGGTTA) n in humans. Since bleomycin cleaves DNA at 5??-GT dinucleotide sequences, telomeres are expected to be a major target for bleomycin cleavage. In this work, we determined the DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. This was accomplished using a linear amplification procedure, a fluorescently labelled oligonucleotide primer and capillary gel electrophoresis with laser-induced fluorescence detection. This represents the first occasion that the DNA sequence specificity of bleomycin cleavage in telomeric DNA sequences in human cells has been reported. The bleomycin DNA sequence selectivity was mainly at 5??-GT dinucleotides, with lesser amounts at 5??-GG dinucleotides. The cellular bleomycin telomeric DNA damage was also compared with bleomycin telomeric damage in purified human genomic DNA and was found to be very similar. The implications of these results for the understanding of bleomycin??s mechanism of action in human cells are discussed.  相似文献   

15.
Abstract

Ledakrin (nitracrine), C-283, is a 1-nitro-9-aminoacridine derivative that is used in Poland as an antitumor agent. In order to investigate the basis of the activity of this compound the structure of another analog, [9-(3-dimethyl-l-methylpropylimino)-l-nitro-9, 10-dihydroacridine], C-829, that has similar activity, was determined by X-ray crystallographic techniques and was compared with that of ledakrin, already reported in the literature. In both molecules the proximity of the 1-nitro to the substituted 9-aminoacridine group causes extensive distortions. These compounds are believed to act, after metabolic “activation”, by cross-linking DNA. Such cross-linking does not occur in the absence of the 1-nitro group or if the nitro group is moved to the 2-, 3- or 4-position. Computer-assisted model-building has been used to test possible intercalative models. It has shown that functional groups on C-829 or C-283 are, when the acridine portion of the molecule is intercalated as in a proflavine dinucleoside phosphate complex, in positions suitable for DNA cross-linking by activated 1-nitro- 9-aminoacridine derivatives.  相似文献   

16.
New molecules with high and specific affinity for nucleic acid base sequences have been synthesized. They involve an oligodeoxynucleotide covalently attached to an intercalating dye. Visible absorption spectroscopy and fluorescence have been used to investigate the binding of poly(rA) to octadeoxythymidylates substituted by a 9-aminoacridine derivative in different positions along the oligonucleotide chain. The 9-amino group of the acridine dye was linked through a polymethylene bridge to the 3''-phosphate, the 5''-phosphate, the fourth internucleotidic phosphate or to both the 3''- and 5''-phosphates. Different interactions of the acridine dye were exhibited by these different substituted oligodeoxynucleotides when they bind to poly(rA). The interaction was shown to be specific for adenine-containing polynucleotides. The stability of these complexes was compared with that of oligodeoxynucleotides substituted by an alkyl group on the 3''-phosphate. The increase in stability due to the presence of the intercalating dye has been determined from the comparison of melting temperatures. These results are discussed with respect to the strategy of synthesis of a new class of molecules with high affinity and high specificity for nucleic acid base sequences.  相似文献   

17.
G Lancelot  N T Thuong 《Biochemistry》1986,25(19):5357-5363
The oligodeoxynucleotide d(TATC) was covalently attached to the 9-amino group of 2-methoxy-6-chloro-9-aminoacridine (Acr) through its 3'-phosphate via a pentamethylene linker (m5). Complex formation between d(TATC)m5Acr and the complementary strand d(GATA) in aqueous solution was investigated by nuclear magnetic resonance. The COSY and NOESY connectivities allowed us to assign all the proton resonances of the bases, the sugars (except the overlapping 5'/5' resonances), the acridine, and the pentamethylene chain. Structural informations derived from relative intensities of COSY and NOESY maps revealed that the duplex d(TATC)-d(GATA) adopts a B-type conformation and that the deoxyriboses preferentially adopt a 2'-endo conformation. The NOE connectivities observed between the protons of the bases or of the sugars and the protons of the dye and of the pentamethylene chain led us to propose a model involving an equilibrium between two families of configurations. In the first family, the acridine derivative is intercalated between base pairs C4-G4 and T3-A3. In the second family, the acridine derivative is sandwiched between two aggregated duplexes. The structure of the intercalated complex as well as that of the aggregated species is discussed.  相似文献   

18.
Summary The changes in DNA base sequence induced in the lambda cI gene in an E. coli lysogen have been determined following mutagenesis by three acridine derivatives: 9-aminoacridine and proflavin, which bind reversibly to DNA; and ICR-191, which attaches covalently to DNA through a half-mustard group. For all three derivatives, most mutations are +1 and-1 frameshifts in runs of adjacent G:C pairs. The specificity of mutagenesis at various sites is similar for all three compounds. Prophage in mutL host cells, deficient in mismatch repair, are much more susceptible to mutagenesis by 9-aminoacridine. The induced mutations are also frameshifts, and the site specificity is the same as in lysogens of wild type cells. Thus, additions or deletions of single bases can be corrected by the mismatch repair system, but mismatch repair does not play an important role in determining the sequence specificity of the mutational events.  相似文献   

19.
cis-Diamminedichloroplatinum(II) (cisplatin) forms adducts with DNA. The sequence specificity of formation of cisplatin adducts with plasmid DNA was investigated using Taq DNA polymerase. This procedure involved the extension of an oligonucleotide primer by Taq DNA polymerase up to the cisplatin adduct. Using thermal cycling, this process is repeated many times in order to amplify the signal. The products of this linear amplification can then be examined on DNA sequencing gels, and the sequence specificity of cisplatin adduct formation can be determined to the exact base pair. In the pUC8 plasmid, the sequences that produced the most intense damage sites (as determined by densitometry) were runs of two or more Gs. Adducts could also be detected at GA, AG, and GC dinucleotides. Four other cisplatin analogues were also tested in the system. Two of these analogues contained an attached intercalating chromophore, and the strong damage with these compounds was similar to that found for cisplatin, but the medium and weak damage tended to be different. Weak damage was also detected with trans-diamminedichloroplatinum(II). With this compound, a large number of the damage sites were at the CG dinucleotide. This technique represents a simple, accurate, and quick method for determining the sequence specificity of damage for a cisplatin analogue in any DNA sequence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号