首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A reproducible and efficient transformation method was developed for the banana cv. Rasthali (AAB) via Agrobacterium-mediated genetic transformation of suckers. Three-month-old banana suckers were used as explant and three Agrobacterium tumefaciens strains (EHA105, EHA101, and LBA4404) harboring the binary vector pCAMBIA1301 were used in the co-cultivation. The banana suckers were sonicated and vacuum infiltered with each of the three A. tumefaciens strains and co-cultivated in the medium containing different concentrations of acetosyringone for 3 days. The transformed shoots were selected in 30 mg/l hygromycin-containing selection medium and rooted in rooting medium containing 1 mg/l IBA and 30 mg/l hygromycin. The presence and integration of the hpt II and gus genes into the banana genome were confirmed by GUS histochemical assay, polymerase chain reaction, and southern hybridization. Among the different combinations tested, high transformation efficiency (39.4 ± 0.5% GUS positive shoots) was obtained when suckers were sonicated and vacuum infiltered for 6 min with A. tumefaciens EHA105 in presence of 50 μM acetosyringone followed by co-cultivation in 50 μM acetosyringone-containing medium for 3 days. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into banana has been developed and that this transformation system could be useful for future studies on transferring economically important genes into banana.  相似文献   

2.
3.
An improved method for the Agrobacterium infiltration of epicotyl segments of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and ‘Swingle’ citrumelo [Citrus paradisi Macf. X Poncirus trifoliata (L.) Raf.] was developed in order to increase transformation frequency. Sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum infiltration, and a combination of the two procedures were compared with conventional Agrobacterium-mediated inoculation method (‘dipping’ method). It was observed that the morphogenic potential of the epicotyl segments decreased as the duration of SAAT and vacuum treatments increased. Transient GUS expression was not affected by the different SAAT treatments, but it was significantly enhanced by the vacuum infiltration treatments. The highest transformation efficiencies were obtained when the explants were subjected to a combination of SAAT for 2 s followed by 10 min of vacuum infiltration. PCR and Southern blot analysis of the uidA gene were used to confirm the integration of the transgenes. The transformation frequencies achieved in this study (8.4% for ‘Pineapple’ sweet orange and 11.2% for ‘Swingle’ citrumelo) are the highest ones reported for both cultivars.  相似文献   

4.
Improved binary vectors for Agrobacterium-mediated plant transformation   总被引:38,自引:0,他引:38  
Improved plant transformation vectors were constructed which utilize the pRiHRI origin of replication for highly stable maintenance in Agrobacterium tumefaciens, the ColE1 origin of replication for high copy maintenance in Escherichia coli, and a gentamycin resistance gene as a strong selectable marker for bacteria. Concise T-DNA elements were engineered with border sequences from the TL-DNA of pTiA6, the Tn5 neomycin phosphotransferase gene (npt II) expressed from either CaMV 35S or mannopine synthase (mas) promoters, and the lac Z gene segment from pUC18 as a source of unique restriction sites as well as an insertional inactivation marker for cloned DNA. The order of T-DNA components in all vectors is left border, plant marker cassette, lac Z, and right border, respectively. The prototype vector, pCGN1547, was shown to be very stable in A. tumefaciens strain LBA4404 and to act as an efficient donor of T-DNA in tomato transformation experiments. Use of the other vectors is also described.  相似文献   

5.
Agrobacterium tumefaciens mediated vacuum infiltration transformation in planta has been established in pakchoi, a kind of Chinese cabbage, but the transformation frequency in harvested seeds has varied in the range of 0.5 to 3.0 × 10−4 over several years and is much lower than the transformation frequency in Arabidopsis thaliana. To understand that, the distribution and vitality changes of A. tumefaciens in plant tissues were examined. Results revealed that there was a majority of A. tumefaciens in the flower compared with that in the stem and in the leaf at all times after infiltration. As fact of transformants in the upper part of the treated plant (T0) stalk and fact of the survival of A. tumefaciens in the plant were proved, possibilities of optimizing the transformation conditions to increase the transformation frequency in pakchoi was discussed.  相似文献   

6.
Sedums are used as groundcover, in rock gardens and flower borders, and for greening the top floor of buildings, cottages, and thatched roofs. In this study, Agrobacterium-mediated genetic transformation of Sedum erythrostichum was studied by introducing a herbicide-resistant gene (phosphinothricin-N-acetyl-transferase) and a reporter gene (#-glucuronidase, GUS). Following co-cultivation with Agrobacterium on MS medium supplemented with 0.5 mg/l !-naphthaleneacetic acid (NAA) and 2 mg/l 6-benzylaminopurine (BA) for 3 days, leaf segments were transferred onto medium containing 300 mg/l cefotaxime. When adventitious shoots developed directly near the margins of explants after 3 weeks, they were transferred to selection medium with 25 mg/l kanamycin. Of a total of 640 infected leaf explants, 24 (3.75%) produced kanamycin-resistant adventitious shoots; of these, 2.5% were GUS-positive. Transgenic plantlets were confirmed using polymerase chain reaction, Southern, and Northern analyses. Ninety-four percent of the transgenic plantlets were successfully transferred to soil and produced flowers. All GUS-positive transgenic plants were strongly resistant to Basta (phosphinothricin at 200 mg/l) after spraying.  相似文献   

7.
Agrobacterium-mediated plant transformation protocol was evaluated as a fast method to obtain genetically modified Coffea canephora plantlets. Leaf explants were used as source material for Agrobacterium tumefaciens-mediated transformation involving a vacuum infiltration protocol, followed by a step of somatic embryogenesis induction and a final selection of the transformed plants. A. tumefaciens strain C58CI containing the binary vector pER10W-35SRed was used. PCR amplification of DsRFP gene and visual detection of the red fluorescent protein demonstrated 33% transformed embryos. The protocol presented here produces reliable transgenic coffee embryos in two months.  相似文献   

8.
An improved method for genetic transformation of cucumber (Cucumis sativus L. cv. Shinhokusei No. 1) was developed. Vacuum infiltration of cotyledonary explants with Agrobacterium suspension enhanced the efficiency of Agrobacterium infection in the proximal regions of explants. Co-cultivation on filter paper wicks suppressed necrosis of explants, leading to increased regeneration efficiency. Putative transgenic plants were screened by kanamycin resistance and green fluorescent protein (GFP) fluorescence, and integration of the transgene into the cucumber genome was confirmed by genomic polymerase chain reaction (PCR) and Southern blotting. These transgenic plants grew normally and T1 seeds were obtained from 7 lines. Finally, stable integration and transmission of the transgene in T1 generations were confirmed by GFP fluorescence and genomic PCR. The average transgenic efficiency for producing cucumbers with our method was 11.9 ± 3.5 %, which is among the highest values reported until date using kanamycin as a selective agent.  相似文献   

9.
For the first time we have developed a reliable and efficient vacuum infiltration-assisted Agrobacterium-mediated genetic transformation (VIAAT) protocol for Indian soybean cultivars and recovered fertile transgenic soybean plants through somatic embryogenesis. Immature cotyledons were used as an explant and three Agrobacterium tumefaciens strains (EHA 101, EHA 105, and KYRT 1) harbouring the binary vector pCAMBIA1301 were experimented in the co-cultivation. The immature cotyledons were pre-cultured in liquid somatic embryo induction medium prior to vacuum infiltration with the Agrobacterium suspension and co-cultivated for 3 days on co-cultivation medium containing 50 mg l?1 citric acid, 100 µM acetosyringone, and 100 mg l?1 l-cysteine. The transformed somatic embryos were selected in liquid somatic embryo induction medium containing 10 mg l?1 hygromycin and the embryos were germinated in basal medium containing 20 mg l?1 hygromycin. The presence and integration of the hpt II and gus genes into the soybean genome were confirmed by GUS histochemical assay, polymerase chain reaction, and Southern hybridization. Among the different combinations tested, high transformation efficiency (9.45 %) was achieved when immature cotyledons of cv. Pusa 16 were pre-cultured for 18 h and vacuum infiltrated with Agrobacterium tumefaciens KYRT 1 for 2 min at 750 mm of Hg. Among six Indian soybean cultivars tested, Pusa 16 showed highest transformation efficiency of 9.45 %. The transformation efficiency of this method (VIAAT) was higher than previously reported sonication-assisted Agrobacterium-mediated transformation. These results suggest that an efficient Agrobacterium-mediated transformation protocol for stable integration of foreign genes into soybean has been developed.  相似文献   

10.
Integration of T-DNA into the maize genome as a result of treatment of silks with Agrobacterium cells, containing activated vir genes, was demonstrated. In planta treatment of maize (Zea mays L.) was performed during flowering in field. Cell suspension of Agrobacterium tumefaciens line GV3101(pTd33), carrying activated vir genes, was applied onto the previously isolated silks, which were afterwards pollinated with the pollen of the same cultivar. Integration of T-DNA into maize genome was confirmed by PCR (the nptII and gus reporter genes) and hystochemical staining of the seedling tissues, obtained from the transformed seeds. Amplification of the nptII gene showed the presence of about 60.3% of PCR-positive plants out of the total number of kanamycin-resistant seedlings examined, or 6.8% of the total of number of seedlings.  相似文献   

11.
Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.  相似文献   

12.
Transformation technology as a research or breeding tool to improve maize is routinely used in most industrial and some specialized public laboratories. However, transformation of many inbred lines remains a challenging task, especially when using Agrobacterium tumefaciens as the delivery method. Here we report success in generating transgenic plants and progeny from three maize inbred lines using an Agrobacterium-mediated standard binary vector system to target maize immature embryos. Eleven maize inbred lines were pre-screened for transformation frequency using N6 salts. A subset of three maize inbred lines was then systematically evaluated for frequency of post-infection embryogenic callus induction and transformation on four media regimes: N6 or MS salts in each of two distinct media backgrounds. Transgenic plants recovered from inbred lines B104, B114, and Ky21 were analyzed for transgene integration, expression, and transmission. Average transformation frequencies of 6.4% (for B104), 2.8% (for B114), and 8% (for Ky21) were achieved using MS salts. Availability of Agrobacterium-mediated maize inbred line transformation will improve future opportunities for maize genetic and functional genomic studies.  相似文献   

13.
Agrobacterium-mediated transformation of maize   总被引:4,自引:0,他引:4  
Ishida Y  Hiei Y  Komari T 《Nature protocols》2007,2(7):1614-1621
Maize may be transformed very efficiently using Agrobacterium tumefaciens-mediated methods. The most critical factor in the transformation protocol is the co-cultivation of healthy immature embryos of the correct developmental stage with A. tumefaciens; the embryos should be collected only from vigorous plants grown in well-conditioned glasshouses. With the protocol described here, approximately 50% of immature embryos from the inbred line A188 and 15% from inbred lines A634, H99 and W117 will produce transformants. About half of the transformed plants are expected to carry one or two copies of the transgenes, which are inherited by the progeny in a mendelian fashion. More than 90% of transformants are expected to be normal in morphology. The protocol takes about 3 months from the start of co-cultivation to the planting of transformants into pots.  相似文献   

14.
In vitro grown shoot tissue of facultative apomictic lines of guayule (Parthenium argentatum Gray), a rubber producing desert shrub, were transformed by Agrobacterium-mediated DNA transfer and regenerated into complete plants. Guayule shoots of lines 11591, UC101 and UC104 were inoculated with A. tumefaciens strains LBA4404 or PC2760 harboring the binary vector pCGN1557. Axillary shoots were regenerated from transformed cells and rooted in vitro in the presence of kanamycin. Genetic transformation in all cases was verified by Southern blot analysis. Transgenic plants were grown to maturity in the greenhouse and, as predicted for apomictic species, all seed produced possessed kanamycin resistance. Because apomicts have limitations for gene transfer by normal sexual crosses, this method offers a new means of transferring genes into this species.Abbreviations BA benzyladenine - EDTA ethylene diamine tetraacetate - kanR kanamycin resistance - MS salts salts of Murashige and Skoog medium (1962) - NAA naphthalene acetic acid - NPT-II neomycin phosphotransferase - SDS sodium dodecyl sulfate  相似文献   

15.
Summary A translational fusion between the enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NPTH) genes was used to optimize parameters influencing Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless. The corresponding bifunctional protein produced from this EGFP/NPTH fusion gene allowed for a single promoter to drive expression of both green fluorescence and kanamycin resistance, thus conserving promoter resources and climinating potential promoter-promoter interactions. The fusion gene, driven by either a double cauliflower mosaic virus 35S (CaMV 35S) promoter or a double cassava vein mosaic virus (CsVMV) promoter, was immobilized into Agrobacterium strain EHA 105. Somatic embryos capable of direct secondary embryogenesis were used as target tissues to recover transgenic plants. Simultaneous visualization of GFP fluorescence and kanamycin selection of transgenic cells, tissues, somatic embryos, and plants were achieved. GFP expression and recovery of embryogenic culture lines were used as indicators to optimize transformation parameters. Preculturing of somatic embryos for 7 d on fresh medium prior to transformation minimized Agrobacterium-induced tissue browning/necrosis. Alternatively, browning/necrosis was reduced by adding 1 gl−1 of the antioxidant dithiothreitol (DTT) to post co-cultivation wash media. While combining preculture with antioxidant treatments did not result in a synergistic improvement in response, either treatment resulted in recovery of more stable embryogenic lines than did the control. A 48h co-cultivation period combined with 75 mgl−1 kanamycin in selection medium was optimal. DNA analysis confirmed stable integration of transgenes into the grape genome: 63% had single gene insertions, 27% had two inserts, and 7 and 3% had three and four inserts, respectively. Utilizing optimized procedures, over 1400 stable independent transgenic embryogenic culture lines were obtained, of which 795 developed into whole plants. Transgenic grapevines have exhibited normal vegetative morphology and stable transgene expression for over 5 yr.  相似文献   

16.
A transformation system for Campanula glomerata 'Acaulis' based on the co-cultivation of leaf explants with Agrobacterium tumefaciens LBA4404 or EHA105 was developed. A. tumefaciens was eliminated when the explants were cultured on medium containing 400 mg/l vancomycin and 100 mg/l cefotaxime. Transgenic plants containing the uidA gene that codes for #-glucuronidase (gus) were obtained following co-cultivation with either strain of A. tumefaciens, LBA4404 or EHA105, both of which harbored the binary vector pGUSINT, coding for the uidA and neomycin phosphotransferase II (nptII) genes. While the transformation frequency (2-3%) was similar for both strains, A. tumefaciens LBA4404 was effectively eliminated from Campanula at a lower concentration of antibiotic as compared to EHA105. The concentration of individual antibiotics required to eliminate EHA105 resulted in a decreased rate (55-67%) of regeneration. The highest percentage of explants that regenerated plants (79%) and the highest regeneration rate was achieved with 100 mg/l cefotaxime combined with 400 mg/l vancomycin. Plants were also transformed with the isopentenyl transferase (ipt) gene using LBA4404 containing the 35S-ipt vector construct (pBC34).  相似文献   

17.
转基因育种是快速定向改良兰花育种目标性状的有效方法,但迄今未见有关墨兰转基因育种的研究报道。试验以‘企剑白墨’墨兰Cymbidium sinensis cv.‘Qijianbaimo’的根状茎为受体材料,研究了影响农杆菌介导墨兰遗传转化效率的因素,以建立有实用价值的墨兰遗传转化技术体系。结果表明,受体的预培养时间、乙酰丁香酮的添加方式及浓度、农杆菌工程菌液浓度(OD600)、侵染时间和共培养时间均对‘企剑白墨’根状茎的GUS瞬时表达率有显著影响。以预培养39 d的根状茎尖为材料,在添加200μmol/L乙酰丁香酮,OD600为0.9的工程菌液中侵染35 min后,转入添加200μmol/L乙酰丁香酮的共培养基中培养7 d时,‘企剑白墨’根状茎的GUS瞬时表达率最高,为11.67%。采用上述条件对‘企剑白墨’墨兰进行遗传转化,经PCR鉴定和GUS染色检测,从400株再生植株中获得了3株转基因植株,转化率为0.75%。研究表明通过农杆菌介导法对墨兰进行遗传改良是可行的。  相似文献   

18.
An efficient method for adventitious shoot regeneration for Arabis drummondii and a transformation protocol for A. gunnisoniana from hypocotyl explants are described. Hypocotyl explants from 7-day-old aseptically grown seedlings were cultured on MS medium containing plant growth regulators (6-benzylaminopurine, 1-phelyl-3- (1,2,3-thiadiazol-5-yl) urea, -naphthaleneacetic acid and 2,4-dichlorophenoxy-acetic acid). After 4 weeks in culture, high frequency of adventitious shoot regeneration was observed. Regenerated shoots were rooted on half-strength MS basal medium supplemented 1% (w/v) sucrose, with or without NAA. This protocol was then used to produce transformed Arabis gunnisoniana plants. A. gunnisoniana hypocotyl explants were co-cultivated with Agrobacterium tumefaciens strain GV3101 harbouring pBJ40. Transgenic shoots were selected on MS 21 medium supplemented with 50 mg l kanamycin. PCR analysis verified the presence of the nptII gene in the plant DNA isolated from kanamycin resistant shoots.  相似文献   

19.
Regeneration and Agrobacterium-mediated transformation of chrysanthemum   总被引:5,自引:0,他引:5  
A method has been developed to regenerate shoots directly from leaf pieces of the autumn flowering chrysanthemum Dendranthema indicum (L.) Des Moul (genotype Korean). Transgenic plants of this genotype were generated using transformation mediated by the disarmed strain of Agrobacterium tumefaciens LBA4404, containing either pKIWI110 or pGA643. Both pKIWI110 and pGA643 contain the selectable marker gene neomycin phosphotransferase II (NPTII) and pKIWI110 also contains the reporter gene -D-glucuronidase. Leaf pieces inoculated with pKIWI110 produced zones of blue cells two days after inoculation. Shoots from leaf pieces inoculated with pGA643 were selected on kanamycin. PCR and Southern analysis of shoots that were able to root on kanamycin confirmed the presence of the NPTII gene in the plant genome.  相似文献   

20.
Agrobacterium-mediated transformation of Sclerotinia sclerotiorum   总被引:2,自引:0,他引:2  
Ascospores from the phytopathogenic fungus Sclerotinia sclerotiorum were transformed to hygromycin B resistance by co-cultivation with Agrobacterium tumefaciens. Transformed spores germinated and grew on PDA supplemented with 100 ug/ml hygromycin B. The presence of mitotically stable hph gene integration at random sites in the genome was confirmed by PCR and Southern blot analysis. A transformation frequency of 8 x 10(-5) was achieved in five separate experiments. This study is the first report of success co-cultivating A. tumefaciens with S. sclerotiorum. This report of a reproducible Agrobacterium-mediated transformation method should allow the development of T-DNA tagging as a system for insertional mutagenesis in S. sclerotiorum and provide a simple and reliable method for genetic manipulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号