首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are several examples of membrane-associated protein domains that target curved membranes. This behavior is believed to have functional significance in a number of essential pathways, such as clathrin-mediated endocytosis, which involve dramatic membrane remodeling and require the recruitment of various cofactors at different stages of the process. This work is motivated in part by recent experiments that demonstrated that the amphipathic N-terminal helix of endophilin (H0) targets curved membranes by binding to hydrophobic lipid bilayer packing defects which increase in number with increasing membrane curvature. Here we use state-of-the-art atomistic simulation to explore the packing defect structure of curved membranes, and the effect of this structure on the folding of H0. We find that not only are packing defects increased in number with increasing membrane curvature, but also that their size distribution depends nontrivially on the curvature, falling off exponentially with a decay constant that depends on the curvature, and crucially that even on highly curved membranes defects large enough to accommodate the hydrophobic face of H0 are never observed. We furthermore find that a percolation model for the defects explains the defect size distribution, which implies that larger defects are formed by coalescence of noninteracting smaller defects. We also use the recently developed metadynamics algorithm to study in detail the effect of such defects on H0 folding. It is found that the comparatively larger defects found on a convex membrane promote H0 folding by several kcal/mol, while the smaller defects found on flat and concave membrane surfaces inhibit folding by kinetically trapping the peptide. Together, these observations suggest H0 folding is a cooperative process in which the folding peptide changes the defect structure relative to an unperturbed membrane.  相似文献   

2.
The discovery of proteins that recognize membrane curvature created a paradigm shift by suggesting that membrane shape may act as a cue for protein localization that is independent of lipid or protein composition. Here we review recent data on membrane curvature sensing by three structurally unrelated motifs: BAR domains, amphipathic helices and membrane-anchored proteins. We discuss the conclusion that the curvature of the BAR dimer is not responsible for sensing and that the sensing properties of all three motifs can be rationalized by the physicochemical properties of the curved membrane itself. We thus anticipate that membrane curvature will promote the redistribution of proteins that are anchored in membranes through any type of hydrophobic moiety, a thesis that broadens tremendously the implications of membrane curvature for protein sorting, trafficking and signaling in cell biology.  相似文献   

3.
Antimicrobial peptides (AMPs) have received considerable interest as a source of new antibiotics with the potential for treatment of multiple-drug resistant infections. An important class of AMPs is composed of linear, cationic peptides that form amphipathic alpha-helices. Among the most potent of these are the cecropins and synthetic peptides that are hybrids of cecropin and the bee venom peptide, mellitin. Both cecropins and cecropin-mellitin hybrids exist in solution as unstructured monomers, folding into predominantly alpha-helical structures upon membrane binding with their long helical axis parallel to the bilayer surface. Studies using model membranes have shown that these peptides intercalate into the lipid bilayer just below the level of the phospholipid glycerol backbone in a location that requires expansion of the outer leaflet of the bilayer, and evidence from a variety of experimental approaches indicates that expansion and thinning of the bilayer are common characteristics during the early stages of antimicrobial peptide-membrane interactions. Subsequent disruption of the membrane permeability barrier may occur by a variety of mechanisms, leading ultimately to loss of cytoplasmic membrane integrity and cell death.  相似文献   

4.
BAR (Bin/Amphiphysin/Rvs) domains and amphipathic α‐helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent‐shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed that membrane curvature sensing critically depends on the N‐terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains emerge as an important means for a protein to sense membrane curvature. Measurements on single liposomes allowed us to document heterogeneous binding behaviour within the ensemble and quantify the influence of liposome polydispersity on bulk membrane curvature sensing experiments. The latter results suggest that bulk liposome‐binding experiments should be interpreted with great caution.  相似文献   

5.
The interactions of a series of amphipathic alpha-helical peptides containing from 6 to 18 amino acid residues with dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) were studied by optical and calorimetric methods. Several peptides rapidly decreased the turbidity of DMPC and DPPC liposomes when mixed at the phase transition temperatures of the lipids. The extent of the clearing depended upon the chain length of the peptides, with the most effective clearing attained with peptides 10-12 residues in length. An eight-residue peptide was somewhat less effective and a six-residue peptide had no effect on liposome structure. The peptides formed small micellar structures, as judged by gel filtration chromatography. The effects of the peptides on the phase transitions of the lipids were examined by differential scanning calorimetry. The peptides that were most effective in disrupting the liposomes and forming clear micelles were also most effective in reducing the enthalpy of the gel to liquid-crystalline phase transition of the lipid. The addition of DMPC or DPPC liposomes to the peptides increased the magnitude of the negative bonds at 208 and 222 nm in circular dichroism measurements, consistent with the expected formation of alpha-helical structure on binding to lipid. The extent of burial of the single tryptophan residue in the peptides was determined by fluorescence spectroscopy. In peptides that bound to lipid, the tryptophan was in a less solvent-exposed environment in the presence of lipid, as evidenced by a blue shift in the fluorescence emission maximum of the peptide.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
A model for membrane transport through alpha-helical protein pores   总被引:3,自引:0,他引:3  
In this communication we explore possible mechanisms by which hydrogen-bonded, knobs-into-holes packed side chains from adjoining α-helical segments could function in proton transport through membranes and mechanisms by which proton transport could be coupled to active transport of other substances.  相似文献   

7.
8.
The peptide-induced fusion of neutral and acidic liposomes was studied in relation to the amphiphilicities evaluated by alpha-helical contents of peptides by means of a carboxyfluorescein leakage assay, light scattering, a membrane intermixing assay and electron microscopy. An amphipathic mother peptide, Ac-(Leu-Ala-Arg-Leu)3-NHCH3 (4(3], and its derivatives, [Pro6]4(3) (1), [Pro2,6]4(3) (2), and [Pro2,6,10]4(3) (3), which have very similar hydrophobic moments, caused a leakage of contents from small unilamellar vesicles composed of egg yolk phosphatidylcholine and egg yolk phosphatidic acid (3:1). The abilities of the peptides to induce the fusion of the acidic liposomes increased with increasing alpha-helical content: in acidic liposomes the helical contents were in the order of 4(3) greater than 1 greater than 2 greater than 3 (Lee et al. (1989) Chem. Lett., 599-602). Electron microscopic data showed that 1 caused a transformation of the small unilamellar vesicles (20-50 nm in diameter) to large ones (100-300 nm). Based on the fact that these peptides have very similar hydrophobic moments despite of decreasing in the mean residue hydrophobicities to some extent, it was concluded that the abilities of the peptides to induce the fusion of liposomes depend on the extent of amphiphilic conformation evaluated by alpha-helical contents of the peptides in the presence of liposomes. For neutral liposomes of egg yolk phosphatidylcholine, all the proline-containing peptides showed no fusogenic ability but weak leakage abilities, suggesting that the charge interaction between the basic peptides and acidic phospholipid is an important factor to induce the perturbation and fusion of the bilayer.  相似文献   

9.
10.
Shih YL  Huang KF  Lai HM  Liao JH  Lee CS  Chang CM  Mak HM  Hsieh CW  Lin CC 《PloS one》2011,6(6):e21425
Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE(2-9), which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature.  相似文献   

11.
The internal membranes of eukaryotic cells are all twists and bends characterized by high curvature. During recent years it has become clear that specific proteins sustain these curvatures while others simply recognize membrane shape and use it as “molecular information” to organize cellular processes in space and time. Here we discuss this new important recognition process termed membrane curvature sensing (MCS). First, we review a new fluorescence-based experimental method that allows characterization of MCS using measurements on single vesicles and compare it to sensing assays that use bulk/ensemble liposome samples of different mean diameter. Next, we describe two different MCS protein motifs (amphipathic helices and BAR domains) and suggest that in both cases curvature sensitive membrane binding results from asymmetric insertion of hydrophobic amino acids in the lipid membrane. This mechanism can be extended to include the insertion of alkyl chain in the lipid membrane and consequently palmitoylated and myristoylated proteins are predicted to display similar curvature sensitive binding. Surprisingly, in all the aforementioned cases, MCS is predominantly mediated by a higher density of binding sites on curved membranes instead of higher affinity as assumed so far. Finally, we integrate these new insights into the debate about which motifs are involved in sensing versus induction of membrane curvature and what role MCS proteins may play in biology.  相似文献   

12.
Rationalizing alpha-helical membrane protein crystallization   总被引:2,自引:0,他引:2  
X-ray crystallography is currently the most successful method for determining the three-dimensional structure of membrane proteins. Nevertheless, growing the crystals required for this technique presents one of the major bottlenecks in this area of structural biology. This is especially true for the alpha-helical type membrane proteins that are of particular interest due to their medical relevance. To address this problem we have undertaken a detailed analysis of the crystallization conditions from 121 alpha-helical membrane protein structures deposited in the Protein Data Bank. This information has been analyzed so that the success of different parameters can be easily compared for different membrane protein families. Concurrent with this analysis, we also present the new sparse matrix crystallization screen MemGold.  相似文献   

13.
14.
The tetratricopeptide repeat (TPR) is a 34-amino acid alpha-helical motif that occurs in over 300 different proteins. In the different proteins, three to sixteen or more TPR motifs occur in tandem arrays and function to mediate protein-protein interactions. The binding specificity of each TPR protein is different, although the underlying structural motif is the same. Here we describe a statistical approach to the design of an idealized TPR motif. We present the high-resolution X-ray crystal structures (to 1.55 and 1.6 A) of designed TPR proteins and describe their solution properties and stability. A detailed analysis of these structures provides an understanding of the TPR motif, how it is repeated to give helical arrays with different superhelical twists, and how a very stable framework may be constructed for future functional designs.  相似文献   

15.
The binding of peptides or proteins to a bilayer membrane is often coupled with a random coil-->alpha-helix transition. Knowledge of the energetics of this membrane-induced folding event is essential for the understanding of the mechanism of membrane activity. In a recent study [Wieprecht et al., J. Mol. Biol. 294 (1999) 785-794], we have developed an approach which allows an analysis of the energetics of membrane-induced folding. We have systematically varied the helix content of the amphipathic peptide magainin-2-amide by synthesizing analogs where two adjacent amino acid residues were substituted by their corresponding D-enantiomers and have measured their binding to small unilamellar vesicles (SUVs). Correlation of the binding parameters with the helicities allowed the evaluation of the thermodynamic parameters of helix formation. Since SUVs (30 nm in diameter) are characterized by a non-ideal lipid packing due to their high membrane curvature, we have now extended our studies to large unilamellar vesicles (LUVs) (100 nm in diameter) with a lipid packing close to planar membranes. While the free energy of binding was similar for SUVs and LUVs, the binding enthalpies and entropies were distinctly different for the two membrane systems. The thermodynamic parameters of the coil-helix transition were nevertheless not affected by the vesicle size. Helix formation at the membrane surface of LUVs (SUVs) was characterized by an enthalpy change of -0.8 (-0.7) kcal/mol per residue, an entropy change of-2.3 (-1.9) cal/mol K per residue, and a free energy change of -0.12 (-0.14) kcal/mol per residue. Helix formation accounted for approximately 50% of the free energy of binding underlining its major role as a driving force for membrane-binding.  相似文献   

16.
ArfGAP1 promotes GTP hydrolysis in Arf1, a small G protein that interacts with lipid membranes and drives the assembly of the COPI coat in a GTP-dependent manner. The activity of ArfGAP1 increases with membrane curvature, suggesting a negative feedback loop in which COPI-induced membrane deformation determines the timing and location of GTP hydrolysis within a coated bud. Here we show that a central sequence of about 40 amino acids in ArfGAP1 acts as a lipid-packing sensor. This ALPS motif (ArfGAP1 Lipid Packing Sensor) is also found in the yeast homologue Gcs1p and is necessary for coupling ArfGAP1 activity with membrane curvature. The ALPS motif binds avidly to small liposomes and shows the same hypersensitivity on liposome radius as full-length ArfGAP1. Site-directed mutagenesis, limited proteolysis and circular dichroism experiments suggest that the ALPS motif, which is unstructured in solution, inserts bulky hydrophobic residues between loosely packed lipids and forms an amphipathic helix on highly curved membranes. This helix differs from classical amphipathic helices by the abundance of serine and threonine residues on its polar face.  相似文献   

17.
Multiple amphipathic alpha-helical candidate domains have been identified in exchangeable apolipoproteins by sequence analysis and indirect experimental evidence. The distribution of charged residues can differ within and between these apolipoproteins. Segrest et al. (Segrest, J. P., H. DeLoof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah. 1990. Proteins. 8:103-117.) argued that these differences are correlated with lipid affinity. A mathematically defined motif for the particular charge distribution associated with high lipid affinity (class A) is proposed. Primary sequence data from protein segments proposed previously to have an amphipathic alpha-helical structure are scanned. Counting formulas are presented for determining the conditional probability that the match between an observed charge distribution and the proposed motif would occur by chance. Because the preselected helical segments are short (the modal length is 22) and the motif definition imposes multiple constraints on the acceptable distributions, the computer-based algorithm is quite feasible computationally. 19 of the 20 segments previously assigned to class A match the motif sufficiently well (the remaining one is borderline), while very few others "erroneously" pass the screening test. These results confirm the original assignments of the candidate domains and, thus, support the hypothesis that there is a distinguishable subset of helixes having high lipid affinity. This counting approach is applicable to a growing subset of protein sequence analysis problems in which the segment lengths are short and the motif is complex.  相似文献   

18.
Aiming at contributing to the development of potential atheroprotective agents, we report on the concept and design of two peptide models, which mimic the amphipathic helices of apoA-I and incorporate Met into their sequences to validate its role as oxidant scavenger: Ac-ESK(Palm)KELSKSW(10)SEM(13)LKEK(Palm)SKS-NH(2) (model 1 [W(10), M(13)]) and Ac-ESK(Palm)KELSKSM(10)SEW(13)LKEK(Palm)SKS-NH(2) (model 2 [M(10), W(13)]). Hydrophobic residues of both models cover about the half of the surface, while the positively and negatively charged residues constitute two separate clusters on the hydrophilic face. Palmitoyl groups were introduced into the Lys-N(epsilon)H(2) groups at positions 3 and 17 to contribute to the amphipathic character of the peptides and stabilize the nonpolar face of the helix. Conformational study by the combined application of 2D-NMR and molecular dynamics simulations, CD, FTIR, and fluorescence spectroscopy revealed that model 1 adopts helical conformation and Met is well exposed to the microenvironment. Model 2 that derives from model 1 by exchanging W(10) (model 1) with M(10) and M(13) (model 1) with W(13) also displays helical characteristics, while Met is rather shielded. Oxidation experiments indicated that model 1 exhibits a 2-fold more potent antioxidant activity towards LDL oxidation, compared to model 2, confirming the role of Met, when is devoid of steric hindrances, as oxidant scavenger for the protection of LDL.  相似文献   

19.
20.
The search for antibiotics with a new mode of action led to numerous studies on antibacterial peptides. Most of the studies were carried out with l-amino acid peptides possessing amphipathic alpha-helix or beta-sheet structures, which are known to be important for biological activities. Here we compared the effect of significantly altering the sequence of an amphipathic alpha-helical peptide (15 amino acids long) and its diastereomer (composed of both l- and d-amino acids) regarding their structure, function, and interaction with model membranes and intact bacteria. Interestingly, the effect of sequence alteration on biological function was similar for the l-amino acid peptides and the diastereomers, despite some differences in their structure in the membrane as revealed by attenuated total reflectance Fourier-transform infrared spectroscopy. However, whereas the all l-amino acid peptides were highly hemolytic, had low solubility, lost their activity in serum, and were fully cleaved by trypsin and proteinase K, the diastereomers were nonhemolytic and maintained full activity in serum. Furthermore, sequence alteration allowed making the diastereomers either fully, partially, or totally protected from degradation by the enzymes. Transmembrane potential depolarization experiments in model membranes and intact bacteria indicate that although the killing mechanism of the diastereomers is via membrane perturbation, it is also dependent on their ability to diffuse into the inner bacterial membrane. These data demonstrate the advantage of the diastereomers over their all l-amino acid counterparts as candidates for developing a repertoire of new target antibiotics with a potential for systemic use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号