首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We cloned and sequenced the glutathione reductase gene (gor) of an oxygen-tolerant Streptococcus mutans, and constructed a gor-disruption mutant by homologous recombination. The gor gene consisted of 1,350 bp, coding for a protein of 450 amino acid residues. The deduced amino acid sequence of the S. mutans gor gene product showed extensive similarity with those of glutathione reductases from prokaryotes and eukaryotes. Although the mutant could grow aerobically, it showed no growth in the presence of 2 mM diamide, a thiol-specific oxidant. In contrast, growth of the wild-type strain was not significantly inhibited by 2 mM diamide, and glutathione reductase activity was increased 2.2-fold under these conditions. In addition, the level of glutathione reductase activity in the wild-type strain was increased 3.6-fold upon exposure to air, and the elevated level of the enzyme was retained throughout the aerobic growth. Thus, glutathione reductase may be important in protection of S. mutans against oxidative stress.  相似文献   

2.
The thiol-containing tripeptide glutathione is an important cellular constituent of many eukaryotic and prokaryotic cells. In addition to its disulfide reductase activity, glutathione is known to protect cells from many forms of physiological stress. This report represents the first investigation into the role of glutathione in the Gram-positive pathogen Streptococcus pneumoniae. We demonstrate that pneumococci import extracellular glutathione using the ABC transporter substrate binding protein GshT. Mutation of gshT and the gene encoding glutathione reductase (gor) increases pneumococcal sensitivity to the superoxide generating compound paraquat, illustrating the importance of glutathione utilization in pneumococcal oxidative stress resistance. In addition, the gshT and gor mutant strains are hypersensitive to challenge with the divalent metal ions copper, cadmium, and zinc. The importance of glutathione utilization in pneumococcal colonization and invasion of the host is demonstrated by the attenuated phenotype of the gshT mutant strain in a mouse model of infection.  相似文献   

3.
A chimeric gene consisting of a gene from Escherichia coli thatencodes glutathione reductase (GR), the 35S promoter of cauliflowermosaic virus and the terminator sequences of the gene for nopalinesynthase, was introduced into tobacco (Nicotiana tabacum SRI)cells via a Ti plasmid vector. Expression of the bacterial genein transformed plants and their descendants was confirmed byimmunochemical analysis. GR activity in leaf extracts variedamong transgenic plants, ranging from about 1.0 to 3.5 timesthe control level. These transgenic plants exhibited lower susceptibilityto paraquat than control plants in terms of the extent of visiblefoliar damage, a result that suggests that GR may play an importantrole in the detoxification of active oxygen in the cytoplasmicmatrix of plant cells. However, the transgenic plants were nomore resistant to ozone than were the controls, both in termsof the extent of visible foliar damage and with respect to photosyntheticactivity. (Received January 28, 1991; Accepted May 9, 1991)  相似文献   

4.
To investigate the possible mechanisms of glutathione reductase (GR) in protecting against oxidative stress, we obtained transgenic tobacco (Nicotiana tabacum) plants with 30–70% decreased GR activity by using a gene encoding tobacco chloroplastic GR for the RNAi construct. We investigated the responses of wild type and transgenic plants to oxidative stress induced by application of methyl viologen in vivo. Analyses of CO2 assimilation, maximal efficiency of photosystem II photochemistry, leaf bleaching, and oxidative damage to lipids demonstrated that transgenic plants exhibited enhanced sensitivity to oxidative stress. Under oxidative stress, there was a greater decrease in reduced to oxidized glutathione ratio but a greater increase in reduced glutathione in transgenic plants than in wild type plants. In addition, transgenic plants showed a greater decrease in reduced ascorbate and reduced to oxidized ascorbate ratio than wild type plants. However, there were neither differences in the levels of NADP and NADPH and in the total foliar activities of monodehydroascorbate reductase and dehydroascorbate reductase between wild type and transgenic plant. MV treatment induced an increase in the activities of GR, ascorbate peroxidase, superoxide dismutase, and catalase. Furthermore, accumulation of H2O2 in chloroplasts was observed in transgenic plants but not in wild type plants. Our results suggest that capacity for regeneration of glutathione by GR plays an important role in protecting against oxidative stress by maintaining ascorbate pool and ascorbate redox state.  相似文献   

5.
Glutathione reductase was purified from pea seedlings using a procedure that included 2′,5′-ADP Sepharose, fast protein liquid chromatography (FPLC)-anion exchange, and FPLC-hydrophobic interaction chromatography. The purified glutathione reductase was resolved into six isoforms by chromatofocusing. The isoform eluting with an isoelectric point of 4.9 accounted for 18% of the total activity. The five isoforms with isoelectric points between 4.1 and 4.8 accounted for 82% of the activity. Purified glutathione reductase from isolated, intact chloroplasts also resolved into six isoforms after chromatofocusing. The isoform eluting at pH 4.9 constituted a minor fraction of the total activity. By comparing the chromatofocusing profile of the seedling extract with that of the chloroplast extract, we inferred that the least acidic isoform was extraplastidic and that the five isoforms eluting from pH 4.1 to 4.8 were plastidic. Both the plastidic (five isoforms were pooled) and extraplastidic glutathione reductases had a native molecular mass of 114 kD. The plastidic glutathione reductase is a homodimer with a subunit molecular mass of 55 kD. Both glutathione reductases had optimum activity at pH 7.8. The Km for the oxidized form of glutathione (GSSG) was 56.0 and 33.8 μm for plastidic and extraplastidic glutathione reductase, respectively, at 25°C. The Km for NADPH was 4.8 and 4.0 μm for plastidic and extraplastidic isoforms, respectively. Antiserum raised against the plastidic glutathione reductase recognized a 55-kD polypeptide from purified antigen on western blots. In addition to the 55-kD polypeptide, another 36-kD polypeptide appeared on western blots of leaf crude extracts and the purified extraplastidic isoform. The lower molecular mass polypeptide might represent GSSG-independent enzyme activity observed on activity-staining gels of crude extracts or a protein that has an epitope similar to that in glutathione reductase. Fumigation with 75 nL L−1 ozone for 4 h on 2 consecutive days had no significant effect on glutathione reductase activity in peas (Pisum sativum L.). However, immunoblotting showed a greater level of glutathione reductase protein in extracts from ozone-fumigated plants compared with that in control plants at the time when the target concentration was first reached, approximately 40 min from the start of the fumigation, and 4 h on the first day of fumigation.  相似文献   

6.
The effect of water stress on glutathione reductase and catalase activities was evaluated in leaf blades of field-grown winter wheat (Triticum aestivum L.). Wheat was sown at two seeding rates under both irrigated and dryland conditions. Flag leaves from dryland plants sown at 60 kilograms/hectare showed no change in either glutathione reductase or catalase activities per unit leaf area, while leaves from the basal portion of the canopy exhibited a 273% increase in glutathione reductase activity and a 60% increase in catalase activity. Glutathione reductase activity in dryland plants sown at 120 kilograms/hectare increased 25% in flag leaves and 225% in basal leaves. No change in catalase activity was observed in either flag or basal leaves from these same plants. The increase in glutathione reductase activity in response to water stress was observed when activity was expressed on either a per unit leaf area, protein, or chlorophyll basis. No change in catalase activity was detected when enzyme activity was expressed on a protein basis.  相似文献   

7.
Internode stem fragments of the poplar hybrid Populus tremula x Populus alba were transformed with a bacterial gene (gshl) for [gamma]-glutamylcysteine synthetase ([gamma]-ECS) targeted to the cytosol. Lines overexpressing [gamma]-ECS were identified by northern analysis, and the transformant with the highest enzyme activity was used to investigate the control of glutathione synthesis. Whereas foliar [gamma]-ECS activity was below the limit of detection in untransformed plants, activities of up to 8.7 nmol mg-1 protein min-1 were found in the transformant, in which the foliar contents of [gamma]-glutamylcysteine ([gamma]-EC) and glutathione were increased approximately 10- and 3-fold, respectively, without affecting either the reduction state of the glutathione pool or the foliar cysteine content. A supply of exogenous cysteine to leaf discs increased the glutathione content from both transformed and untransformed poplars, and caused the [gamma]-EC content of the transformant discs to increase still further. The following conclusions are drawn: (a) the native [gamma]-ECS of untransformed poplars exists in quantities that are limiting for foliar glutathione synthesis; (b) foliar glutathione synthesis in untransformed poplars is limited by cysteine availability; (c) in the transformant interactions between glutathione synthesis and cysteine synthesis operate to sustain the increased formation of [gamma]-EC and glutathione; and (d) the foliar glutathione content of the transformant is restricted by cysteine availability and by the activity of glutathione synthetase.  相似文献   

8.
We studied the response of glutathione‐ and ascorbate‐related antioxidant systems of the two tomato cultivars to Pseudomonas syringae pv. tomato infection. In the inoculated susceptible A 100 cultivar a substantial decrease in reduced glutathione (GSH) content, oxidised glutathione accumulation and GSH redox ratio decline as well as glutathione peroxidase activity increase were found. The enhanced glutathione reductase activity was insufficient to keep the glutathione pool reduced. A transiently increased dehydroascorbic acid (DHA) content and ascorbic acid (AA) redox ratio decrease together with ascorbate peroxidase activity suppression were observed. Adversely to the progressive reduction in GSH pool size, AA content tended to increase but the changes were more modest than those of GSH. By contrast, in interaction with the resistant Ontario cultivar the glutathione pool homeostasis was maintained throughout P. syringae attack and no significant effect on the ascorbate pool was observed. Moreover, in the resistant interaction there was a significantly higher constitutive and pathogen‐induced glutathione‐S‐transferase (GST) activity. The relationship between GST activity and DHA content found in this study indicates that this enzyme could also act as dehydroascorbate reductase. These results reflect the differential involvement of GSH and AA in tomato‐P. syringae interaction and, in favour of the former, they clearly indicate the role of GSH and GSH‐utilizing enzymes in resistance to P. syringae. The maintenance of glutathione pool homeostasis and GST induction appear to contribute to tissue inaccessibility to bacterial attack.  相似文献   

9.
Leaves of two barley (Hordeum vulgare L.) isolines, Alg-R, which has the dominant Mla1 allele conferring hypersensitive race-specific resistance to avirulent races of Blumeria graminis, and Alg-S, which has the recessive mla1 allele for susceptibility to attack, were inoculated with B. graminis f. sp. hordei. Total leaf and apoplastic antioxidants were measured 24 h after inoculation when maximum numbers of attacked cells showed hypersensitive death in Alg-R. Cytoplasmic contamination of the apoplastic extracts, judged by the marker enzyme glucose-6-phosphate dehydrogenase, was very low (less than 2%) even in inoculated plants. Dehydroascorbate, glutathione, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase, and dehydroascorbate reductase were present in the apoplast. Inoculation had no effect on the total foliar ascorbate pool size or the redox state. The glutathione content of Alg-S leaves and apoplast decreased, whereas that of Alg-R leaves and apoplast increased after pathogen attack, but the redox state was unchanged in both cases. Large increases in foliar catalase activity were observed in Alg-S but not in Alg-R leaves. Pathogen-induced increases in the apoplastic antioxidant enzyme activities were observed. We conclude that sustained oxidation does not occur and that differential strategies of antioxidant response in Alg-S and Alg-R may contribute to pathogen sensitivity.  相似文献   

10.
Plant growth and productivity are adversely affected by various abiotic stress factors. In our previous study, we used Avicennia marina, a halophytic mangrove, as a model plant system for isolating genes functioning in salt stress tolerance. A large scale random EST sequencing from a salt stressed leaf tissue cDNA library of one month old A. marina plants resulted in identification of a clone showing maximum homology to Monodehydroascorbate reductase (Am-MDAR). MDAR plays a key role in regeneration of ascorbate from monodehydroascorbate for ROS scavenging. In this paper, we report the cellular localization and the ability to confer salt stress tolerance in transgenic tobacco of this salt inducible Am-MDAR. A transit peptide at the N-terminal region of Am-MDAR suggested that it encodes a chloroplastic isoform. The chloroplastic localization was confirmed by stable transformation and expression of the Am-MDAR-GFP fusion protein in tobacco. Transgenic tobacco plants overexpressing Am-MDAR survived better under conditions of salt stress compared to untransformed control plants. Assays of enzymes involved in ascorbate–glutathione cycle revealed an enhanced activity of MDAR and ascorbate peroxidase whereas the activity of dehyroascorbate reductase was reduced under salt stressed and unstressed conditions in Am-MDAR transgenic lines. The transgenic lines showed an enhanced redox state of ascorbate and reduced levels of malondialdehyde indicating its enhanced tolerance to oxidative stress. The results of our studies could be used as a starting point for genetic engineering of economically important plants tolerant to salt stress.  相似文献   

11.
Activity of glutathione reductase has been related to stress tolerance; however, these enzyme assays are generally conducted at 25°C. Foliage temperature varies greatly in the field in response to soil water availability and ambient conditions and this may affect enzyme response. This study was conducted to determine the effect of changing foliage temperature on glutathione reductase activity of wheat under field conditions. Wheat leaf glutathione reductase was purified and the temperature response of the enzyme was determined at 2.5°C intervals between 12.5 and 45°C. These data, in conjunction with continuous measurements of field-grown wheat foliage temperatures, were used to compare the temperature-related changes in potential glutathione reductase activities in water stressed and control plants. Assuming saturating substrate levels, the results indicate that early in the season the daily potential enzyme activity of the irrigated and stressed plants could never have reached the daily activity predicted from the 25°C (room temperature) measurements. Later in the season, the daily potential activity of the irrigated plants was lower, and the daily potential activity of the stressed plants was higher, than the activities predicted from the 25°C determinations. These results suggest that a better understanding of the regulation of plant metabolism will be obtained by linking continuous temperature measurements of plant foliage with enzyme responses to temperature.  相似文献   

12.
An important pathway by which plants detoxify heavy metals is through sequestration with heavy-metal-binding peptides called phytochelatins or their precursor, glutathione. To identify limiting factors for heavy-metal accumulation and tolerance, and to develop transgenic plants with an increased capacity to accumulate and/or tolerate heavy metals, the Escherichia coli gshII gene encoding glutathione synthetase (GS) was overexpressed in the cytosol of Indian mustard (Brassica juncea). The transgenic GS plants accumulated significantly more Cd than the wild type: shoot Cd concentrations were up to 25% higher and total Cd accumulation per shoot was up to 3-fold higher. Moreover, the GS plants showed enhanced tolerance to Cd at both the seedling and mature-plant stages. Cd accumulation and tolerance were correlated with the gshII expression level. Cd-treated GS plants had higher concentrations of glutathione, phytochelatin, thiol, S, and Ca than wild-type plants. We conclude that in the presence of Cd, the GS enzyme is rate limiting for the biosynthesis of glutathione and phytochelatins, and that overexpression of GS offers a promising strategy for the production of plants with superior heavy-metal phytoremediation capacity.  相似文献   

13.
Glutathione reductase (EC 1.6.4.2) was purified from intact pea (Pisum sativum) chloroplasts by a method which includes affinity chromatography on ADP-agarose. Fractions from the affinity column which had glutathione reductase activity consisted of polypeptides of 60 and 32 kilodaltons. Separation of the proteins by electrophoresis on native gels showed that glutathione reductase activity was associated with 60 kilodalton polypeptides and not with the 32 kilodalton polypeptides. Antibodies to spinach whole leaf glutathione reductase (60 kilodaltons) cross-react with the chloroplast 60 kilodalton glutathione reductase but not the 32 kilodalton polypeptides. In the absence of dithiothreitol the 60 kilodalton polypeptides showed a shift in apparent molecular weight on sodium dodecyl sulfate gels to 72 kilodaltons. Dithiothreitol did not alter the activity of the chloroplast enzyme. Chloroplast glutathione reductase is relatively insensitive to NADPH.  相似文献   

14.
With the objective of studying the role of glutathione reductase (GR) in the accumulation of cysteine and methionine, we generated transgenic tobacco and Arabidopsis lines overexpressing the cytosolic AtGR1 and the plastidic AtGR2 genes. The transgenic plants had higher contents of cysteine and glutathione. To understand why cysteine levels increased in these plants, we also used gr1 and gr2 mutants. The results showed that the transgenic plants have higher levels of sulfite, cysteine, glutathione and methionine, which are downstream to adenosine 5′ phosphosulfate reductase (APR) activity. However, the mutants had lower levels of these metabolites, while the sulfate content increased. A feeding experiment using 34SO42– also showed that the levels of APR downstream metabolites increased in the transgenic lines and decreased in gr1 compared with their controls. These findings, and the results obtained from the expression levels of several genes related to the sulfur pathway, suggest that GR plays an essential role in the sulfur assimilation pathway by supporting the activity of APR, the key enzyme in this pathway. GR recycles the oxidized form of glutathione (GSSG) back to reduce glutathione (GSH), which serves as an electron donor for APR activity. The phenotypes of the transgenic plants and the mutants are not significantly altered under non‐stress and oxidative stress conditions. However, when germinating on sulfur‐deficient medium, the transgenic plants grew better, while the mutants were more sensitive than the control plants. The results give substantial evidence of the yet unreported function of GR in the sulfur assimilation pathway.  相似文献   

15.
16.
Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4–5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.  相似文献   

17.
In spruce (Picea abies) needles glutathione and glutathione reductase show a periodic seasonal variation with significantly increased levels during the winter. It is proposed that glutathione and glutathione reductase play an important role for the winter hardiness of leaves from evergreen plants.  相似文献   

18.
19.
Growth promoting potential of Bacillus subtilis (BS) in drought stressed Abelmoschus esculentus (L.) Moench (okra) was assessed by measuring the chlorophyll stability index (CSI), chlorophyll a (Chl-a) fluorescence, leaf osmotic potential and lipid peroxidation by malondialdehyde content, emission of reactive oxygen species (ROS), osmolyte content and the activity of non-enzyme and enzyme antioxidants. BS treatment significantly increased the leaf osmotic potential, osmolyte production and the activity of non-enzyme and enzyme antioxidants under drought stress. BS treatment mitigated the drought-induced reduction in Chl a fluorescence and CSI. Concomitant increase in total sugar, proline, non-enzyme antioxidants [glutathione and ascorbate] and enzyme antioxidants like superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, monodehydroascorbate reductase and dehydroascorbate reductase modulate the intracellular ROS concentration in okra to resist the stress induced oxidative damage in BS treated plants led to fast recovery and less photodamage.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00982-8.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号