首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transport of ascorbate into cultured bovine retinal pigment epithelial (RPE) cells is reported. Primary or subcultured RPE cells were incubated in the presence of 10-500 microM L-[carboxyl-14C]-ascorbate for various periods of time. Accumulation of ascorbate into RPE cells followed a saturable active transport with a Km of 125 microM and a Vmax of 28 pmole/micrograms DNA/min. RPE intracellular water was calculated to be 0.8 pL/cell, and the transported cellular ascorbate concentration was 7.5 +/- 0.8 mM. Replacement of 150 mM NaCl in the incubation media with choline-Cl strongly inhibited (80 +/- 8%) ascorbate uptake into cultured RPE cells. Although the depletion of cellular ATP by 2,4-dinitrophenol and the inhibition of Na+-K+-ATPase by ouabain reduced ascorbate transport into RPE significantly, active transport of ascorbate was not entirely inhibited by these metabolic inhibitors. The ascorbate analogue, D-isoascorbate, competitively inhibited ascorbate transport into cultured RPE with a Ki of 12.5 mM. Cells grown in the presence of 5 to 50 mM alpha-D-glucose in the growth media did not differ in their ability to transport ascorbate. In contrast, the presence of alpha-D-glucose or its nonmetabolizable analogues, 3-0-methyl-glucose, alpha-methyl-glucose, and 2-deoxy-glucose, but not L-glucose or beta-D-fructose, in the incubation media inhibited ascorbate transport. myo-Inositol (10 or 20 mM) also inhibited ascorbate transport into RPE cells. The active uptake of ascorbate into cultured RPE cells was primarily coupled to the movement of sodium ion down its electrochemical gradient. A bifunctional, cotransport carrier possessing an ascorbate-binding site and a sodium-binding site may be involved in the ascorbate uptake system. The inhibition of ascorbate uptake by sugars appeared to be heterologous in nature, occurring between two distinct carrier systems, both of which were dependent on the sodium ions.  相似文献   

2.
Transport of 3-O-methylglucose by rat thymocytes occurs by facilitated diffusion and follows a biphasic time course. The half-times of the two phases of uptake are 0.8 min and 20 to 30 min; the rapid phase contributes 10 to 20% of the total 3-O-methylglucose taken up at equilibrium. Cells incubated under anaerobic conditions for 1 hour undergo a 3- to 4-fold increase in the initial rate of 3-O-methylglucose uptake. The relative contribution of the rapid phase of uptake increases nearly 4-fold in anaerobically incubated cells, although the half-time of the rapid phase remains the same. Anaerobiosis also reduces the half-time of the slow phase of uptake by a factor of three. In the absence of exogenous glucose, anaerobiosis reduces cellular ATP by 97% after 1 hour at 37 degrees. However, full stimulation of transport activity does not occur in cells with such low levels of ATP. When anaerobically incubated cells are re-exposed to oxygen, ATP synthesis proceeds and transport activity increases by 100% within 5 to 10 min. Adding 1 mM 2,4-dinitrophenol at the time the anaerobic cells are reexposed to oxygen completely blocks the subsequent ATP synthesis and the associated increase in transport activity. Cells incubated aerobically in the presence of 1 mM 2,4-dinitrophenol show a 90% reduction in ATP levels and a 2-fold increase in the rate of 3-O-methylglucose uptake. An additional 70% increase in transport activity is observed when the cells are washed free of uncoupler and incubated an additional 10 min. The results suggest that transport activity is stimulated when cellular ATP levels decline but that the stimulation process requires some minimal level of ATP for full expression.  相似文献   

3.
2,4-dinitrophenol (DNP) compromises ATP production within the cell by disrupting the mitochondrial electron transport chain. The resulting loss of ATP leads to an increase in glucose uptake for anaerobic generation of ATP. In L6 skeletal muscle cells, DNP increases the rate of glucose uptake by twofold. We previously showed that DNP increases cell surface levels of glucose transporter 4 (GLUT4) and hexose uptake via a Ca2+-sensitive and conventional protein kinase C (cPKC)-dependent mechanism. Recently, 5' AMP-activated protein kinase (AMPK) has been proposed to mediate the stimulation of glucose uptake by energy stressors such as exercise and hypoxia. Changes in Ca2+ and cPKC have also been invoked in the stimulation of glucose uptake by exercise and hypoxia. Here we examine whether changes in cytosolic Ca2+ or cPKC lead to activation of AMPK. We show that treatment of L6 cells with DNP (0.5 mM) or hyperosmolar stress (mannitol, 0.6 M) increased AMPK activity by 3.5-fold. AMPK activation peaked by 10-15 min prior to maximal stimulation of glucose uptake. Intracellular Ca2+ chelation and cPKC inhibition prior to treatment with DNP and hyperosmolarity significantly reduced cell surface GLUT4 levels and hexose uptake but had no effect on AMPK activation. These results illustrate a break in the relationship between AMPK activation and glucose uptake in skeletal muscle cells. Activation of AMPK does not suffice to stimulate glucose uptake in response to DNP and hyperosmolarity.  相似文献   

4.
Both glycine and leucine transport in rat red blood cells have been studied. The glycine uptake showed two different components, one sodium-dependent and another diffusion-like process. In contrast, leucine uptake was sodium independent. Both, Na+-dependent glycine and the overall leucine uptake in red blood cells showed a saturable pattern. Kinetic parameters in reticulocytes were: i) glycine: apparent Km 0.16 mM; Vmax 100.2 nmol/ml ICW/min; ii) leucine: apparent Km 2.11 mM; Vmax 3.88 mol/ml ICW/min. The erythrocytes kinetic parameters were: i) glycine: apparent Km 0.17 mM; Vmax 9.47 nmol/ml ICW/min; leucine; apparent Km 4.77 mM; Vmax 7.42 mol/ml ICW/min. The Kd values (sodium independent glycine uptake) were similar in both kind of cells, but the importance of this component in total glycine uptake in erythrocytes was much higher than in reticulocytes. Our results confirm that rat red blood cells have both saturable leucine and Na+-dependent glycine uptake, but some important changes occur during cell maturation.  相似文献   

5.
The hydrolysis of various oligopeptides in solution by intact Moniliformis moniliformis was examined using paper chromatographic analysis of the incubation medium. In the presence of transport inhibitors, the respective peptide sub-units and/or amino acid residues accumulated in the bathing medium. Only peptides with serine, methionine, leucine or alanine at the NH2-terminal end of the peptide were hydrolysed. There was no hydrolysis when these amino acids were located internally or at the COOH-terminus indicating genuine aminopeptidase activity of the class, alpha-aminoacylpeptide hydrolase. Hydrolysis was negligible when the NH2-terminus was arginine, aspartic acid, glutamic acid, glycine, histidine, lysine, phenylalanine, proline, tryptophan, tyrosine, or valine. In separate experiments, mediated uptake of 0.1 mM 3H-leucine by the worms in 2 min was inhibited 100% by 5 mM unlabelled leucine or tri-serine, but only partially inhibited by 5 mM Ser-Gly (66%), 10 mM Ser-Gly (74%), 5 mM Leu-Leu (69%), 10 mM Leu-Leu (70%), 5 mM Leu-Gly (58%) or 5 mM Met-Met (69%). Because the inhibitions produced by 5 mM Leu-Leu plus 5 mM Met-Met (79%) or 5 mM Leu-Leu plus 5 mM Ser-Gly (76%) were not additive, a single enzyme is indicated. The name serine aminopeptidase is proposed because of its preference for serine.  相似文献   

6.
In conditions of glucose starvation, the maximum velocity of the mediated transport of nonmetabolized and metabolized amino acids, uridine, adenosine, and sucrose across the plasma membrane is stimulated by a factor of two by the addition of 1 mM adenosine 3':5'-monophosphate to Schizosaccharomyces pombe 972h- wild strain, to the glucose-super-repressed and derepressed mutants COB5 and COB6, and to Saccharomyces cerevisiae strain IL 216-IA. The mediated uptake of 2-D-deoxyglucose and the apparently nonmediated uptake of guanosine are not stimulated by the cyclic nucleotide. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate is also efficient, whereas theophylline, guanosine 3':5'-monophosphate, 5'-AMP, ATP, and adenosine are ineffective. The cellular ATP content of glycerol-grown S. pombe COB5 is about 10 nmol per mg of protein and is not decreased by further incubation in the starvation medium. The addition of 100 mM glucose markedly enhances transport without any increase of the cellular ATP content. The addition of antimycin A or Dio-9 decreases markedly both cellular ATP content and transport. The addition of 2.5 mM glucose to antimycin A-containing medium restores both transport is not necessarily of mitochondrial origin. The uptake of 2-D-deoxyglucose is unaffected by the respiratory inhibitors. Stimulation of uptake by cyclic adenosine 3':5'-monophosphate occurs only in glucose-deprived cells. The addition of 10 mM glucose elicits the disappearance of the stimulation and prevents the 30% decrease of the cellular adenosine 3':5'-monophosphate content produced by glucose starvation. Adenosine 3':5'-'monophosphate does not enhance the steady state ATP level but requires cellular ATP produced either by endogenous respiration or, in the absence of respiration blocked by antimycin A, by further addition of 2.5 mM glucose. Stimulation of active uptake by adenosine 3':5'-monophosphate does not require protein synthesis because the addition of cycloheximide or anisomycin does not prevent the stimulation of L-leucine uptake. In the absence of respiration, Dio-9, and ATPase inhibitor, suppresses instantaneously the cellular ejection of protons as well as the uptake of uridine and amino acids. It abolishes also the adenosine 3':5'-monophosphate-stimulated transport. In the presence of antimycin A, specific mitochondrial ATPase inhibitors such as venruricidin A do not inhibit metabolite uptakes and their stimulation by adenosine 3':5'-monophosphate. These results suggest that in these conditions, the target of Dio-9 is not the mitochondrial ATPase but a plasma membrane proton-translocating function generating an electrochemical gradient required for active transport. That adenosine 3':5'-monophosphate enhances the Dio-9-sensitive proton extrusion supports the view that the cyclic nucleotide might modulate the plasma membrane ATPase.  相似文献   

7.
1. The tumour cells were starved in a solution lacking Na(+) and then transferred to a Ringer solution containing 2mm-sodium cyanide, 150m-equiv. of Na(+)/l. and 10m-equiv. of K(+)/l. Such cells were depleted of ATP and contained an endogenous pool of various amino acids equivalent to a 26mm solution. 2. At 4min. after the transfer the cellular Na(+) content had increased by about 100% and roughly an equivalent amount of K(+) had left the cells. 3. Under these conditions [(14)C]glycine was absorbed from an 11mm solution and reached the same cellular concentration by about 4min. The pool size increased by approximately the same amount (DeltaGly), so glycine did not simply exchange with the endogenous components. 4. After 4min. with glycine, the cells contained about 20% more Na(+) (DeltaNa(+)) than the control and about 10% less K(+) (DeltaK(+)). The mean values of DeltaNa(+)/DeltaGly and DeltaK(+)/DeltaGly from five experiments were respectively 0.90+/-0.11 and 0.62+/-0.11equiv./mole. 5. A further indication that these two ratios were not equal was that the cells absorbed more water than the movement of glycine itself required. The excess of water was osmotically equivalent to 0.95+/-0.16equiv. of solute/mole of glycine absorbed. 6. The variation of DeltaNa(+)/DeltaGly with the duration of the incubation was consistent with the stimulated uptake of Na(+) being linked to the actual transport of glycine. The same may apply to the movement of K(+), though the time-dependence was not examined in that case. 7. The observations were analysed in terms of a model in which both K(+) and Na(+) moved with a glycine-carrier system without ATP being involved. The analysis supported the idea that the spontaneous movements of the ions through the system might concentrate glycine in the cells significantly by purely physical means (Christensen's hypothesis).  相似文献   

8.
This study was undertaken to examine the mechanism by which metabolic inhibition reduces amino acid active transport in ehrlich ascites tumor cells. At 37 degrees C the metabolic inhibitor combination 0.1 mM 2,4-dinitrophenol (DNP) + 10 mM 2- deoxy-D-glucose (DOG) reduced the cell ATP concentration to 0.10- 0.15 mM in less than 5 min. This inhibition was associated with a 20.6 percent +/- 6.4 percent (SD) decrease in the initial influx of α-aminoisobutyric acid (AIB), and a two- to fourfold increase in the unidirectional efflux. These effects could be dissociated from changes in cell Na(+) or K(+) concentrations. Cells incubated to the steady state in 1.0-1.5 mM AIB showed an increased steady-state flux in the presence of DNP + DOG. Steady- state fluxes were consistent with trans-inhibition of AIB influx and trans-stimulation of efflux in control cells, but trans- stimulation of both fluxes in inhibited cells. In spite of the reduction of the cell ATP concentration to less than 0.15 mM and greatly reduced transmembrane concentration gradients of Na(+) and K(+), cells incubated to the steady state in the presence of the inhibitors still established an AIB distribution ration 13.8 +/- 2.6. The results are interpreted to indicate that a component of the reduction of AIB transport produced by metabolic inhibition is attributable to other actions in addition to the reduction of cation concentration gradients. Reduction of cell ATP alone is not responsible for the effects of metabolic inhibition, and both the transmembrane voltage and direct coupling to substrate oxidation via plasma-membrane-bound enzymes must be considered as possible energy sources for amino acid active transport.  相似文献   

9.
Leucine promotes glucose uptake in skeletal muscles of rats   总被引:2,自引:0,他引:2  
Soleus muscles isolated from normal rats were incubated to evaluate whether or not leucine promotes glucose uptake under insulin-free conditions, using a labeled 2-deoxyglucose uptake assay. Glucose uptake was promoted by 2mM leucine. A metabolite of leucine, alpha-ketoisocaproic acid (alpha-KIC), also exhibited a similar stimulatory effect, although this was not as potent as leucine. Stimulation of glucose uptake by leucine was completely canceled by pre-treatment with either 10 microM LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3-kinase), or 6 microM GF109203X, a specific inhibitor of protein kinase C (PKC). No significant change was observed by pre-treatment with 1 microM rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR). These results suggest that leucine stimulates glucose transport in skeletal muscle via PI3-kinase and PKC pathways independently of the mammalian target of mTOR. They also suggest that leucine stimulates glucose transport by an insulin-independent mechanism.  相似文献   

10.
A variety of leucine-containing peptides (LCP), Phe-Leu, Gly-Leu, Pro-Leu, Ala-Leu, Ala-Leu-Lys, Leu-Phe-Ala, Leu-Leu-Leu, and Leu-Gly-Gly, inhibited the growth of a prototrophic strain of Escherichia coli K-12 at concentrations between 0.05 and 0.28 mM. Toxicity requires normal uptake of peptides. When peptide transport was impaired by mutations, strains became resistant to the respective LCP. Inhibition of growth occurred immediately after the addition of LCP, and was relieved when 0.4 mM isoleucine was added. The presence of Gly-Leu in the medium correlated with the inhibition of growth, and the bacteria began to grow at the normal rate 70 min after Gly-Leu became undetectable. Disappearance of the peptide corresponded with the appearance of free leucine and glycine in the medium. The concentration of leucine inside the LCP-treated bacteria was higher than that in the leucine-treated and the control cultures. We suggest that entry of LCP into the cells via peptide transport systems circumvents the regulation of leucine transport, thereby causing abnormality high concentrations of leucine inside the cells. This accumulation of leucine interferes with the biosynthesis of isoleucine and inhibits the growth of the bacteria.  相似文献   

11.
Experiments to elucidate the mechanism by which Pneumocystis carinii transports glutamine, leucine, and serine were performed in this study. Uptake of all three radiolabeled amino acids exhibited first-order, saturation kinetics as extracellular substrate concentrations were increased, thus ruling out simple diffusion and indicating carrier-mediated transport. Kinetic analyses of amino acid uptake and the results of competitive inhibition experiments suggested that leucine, serine, and glutamine were taken up via a common transporter system. The uptake of serine was examined in greater detail to characterize the nature of the carrier. Serine uptake was not affected by N, N'-dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl hydrazone, ouabain, gramicidin, valinomycin, sodium azide, salicylhydroxamine acid (SHAM), iodoacetate, iodoacetate plus SHAM, KCN, and azide. Thus serine uptake did not require sodium or energy from ATP, an electrochemical proton gradient or a membrane potential across the cell surface (i.e., proton-motive force). Serine uptake was dependent on glucose in the extracellular compartment. In the presence of glucose, serine uptake was inhibited by chloramphenicol but not cycloheximide. The results from these experiments are most consistent with facilitated diffusion as the mechanism. After 30 min of incubation, most of the radioactivity was in the cellular soluble fraction. In most cases, incorporation into the extractable total lipids and the remaining particulate cellular components were detectable after this incubation period.  相似文献   

12.
Glucocorticoids inhibit glucose utilization by fat cells. The possibility that this effect results from altered glucose transport was investigated using an oil-centrifugation technique which allows a rapid (within 45 s) estimation of glucose or 3-O-methylglucose uptake by isolated fat cells. At high concentration (greater than 25 muM), dexamethasone inhibited glucose uptake within 1 min of its addition to fat cells. Efflux of 3-O-methylglucose was also impaired by 0.1 mM dexamethasone. However, diminished glucose uptake was not a specific effect of glucocorticoids; high concentrations (0.1 mM) of 17beta-estradiol, progesterone, and deoxycorticosterone produced a similar response in adipocytes. At a more physiologic steroid concentration (0.1 muM), glucocorticoids inhibited glucose uptake in a time-dependent manner (maximum effect in 1 to 2 hours). This effect was specific for glucocorticoids since, under these conditions, glucose uptake was not changed by the non-glucocorticoid steroids. Lineweaver-Burk analysis showed that 0.1 muM dexamethasone treatment produced a decrease in Vmax for glucose uptake but did not change the Ku. Hexokinase activity and ATP levels were not altered by this treatment, suggesting that processes involved in glucose phosphorylation were not affected. Dexamethasone treatment also caused a reduction in uptake of 3-O-methylglucose when assayed using a low sugar concentration (0.1 mM). At a high concentration (10 mM), uptake of the methyl sugar was only slightly less than normal in treated cells. Stimulation by insulin markedly enhanced uptake of glucose and 3-O-methylglucose by both treated and untreated cells. At a low hexose concentration (0.1 mM) and in the presence of insulin, sugar uptake by dexamethasone-treated cells was slightly less than control cells. Stimulation by insulin did however completely overcome the alteration in hexose uptake when larger concentrations of sugars (greater than 5 mM) were used. There was no detectable change in total protein synthesis during incubation of fat cells with dexamethasone. However, actinomycin C blocked the inhibitory effect of dexamethasone on glucose uptake. Cycloheximide, which caused a small inhibition in glucose uptake, prevented the full expression of the inhibitory effect of dexamethasone on glucose transport. These results indicate that dexamethasone alters the facilitated transport of glucose and, secondly, suggest that synthesis of RNA and protein is needed for glucocorticoid action.  相似文献   

13.
When adipocytes were exposed to [3H]leucine for times ranging from 5 to 180 s, leucine was found to enter cells rapidly and equilibrate with the cell interior within 5 s. After an additional 15-30 s [3H]leucine was incorporated into nascent protein, and the rate of incorporation was linear for up to 6 h in both control and insulin-treated cells. Since treatment of adipocytes with 10 ng/ml insulin enhanced the rate of leucine incorporation 2-3-fold with minimal or no effect on the rate of protein degradation or leucine uptake, we conclude that the predominant effect of insulin is on enhancement of protein synthesis. To assess the time required for insulin to stimulate protein synthesis, we preincubated cells with 10 ng/ml of insulin for various times from 2 to 30 min and then measured [3H]leucine incorporation into protein during a 4-min assay. These results revealed that the insulin stimulation of protein synthesis is rapid (t 1/2 of 4.4 min), but 9-fold slower than insulin activation of glucose transport (t 1/2 less than 0.5 min under identical conditions). In contrast to the rapidity of insulin activation, we found that deactivation proceeded at much slower rates (t 1/2 of 32 and 21 min for protein synthesis and glucose transport, respectively). Desensitization of the glucose transport system has previously been shown to occur after adipocytes are exposed to high glucose and insulin. To examine the specificity of desensitization, we treated cells for 6 h with 20 mM glucose and 25 ng/ml insulin and then examined insulin sensitivity and maximal insulin responsiveness of both the glucose transport and protein synthesis systems. After treatment, the glucose transport was markedly insulin-resistant (60% loss in maximal insulin responsiveness and a marked loss in insulin sensitivity), whereas the protein synthesis system exhibited neither diminished insulin responsiveness nor loss of insulin sensitivity. In fact, insulin sensitivity actually increased, as indicated by the finding that less insulin was required to stimulate protein synthesis (insulin ED50 values of 0.25 and 18 ng/ml at 0 and 6 h of treatment). From these studies we conclude that desensitization of the glucose transport system by glucose and insulin treatment appears to be specific for this particular effector system and does not reflect a state of generalized cellular insulin resistance.  相似文献   

14.
The cellular uptake of D-aspartic acid (D-Asp) as a model compound for glutamic acid transport was studied in rat hippocampal slices. D-Asp is accumulated by both Na(+)-dependent and Na(+)-independent processes in hippocampal slices, and both processes are dependent on temperature. The Na(+)-dependent uptake is assumed to be high in affinity (apparent Km = 0.17 mM), but low in capacity, whereas the Na(+)-independent uptake is much lower in affinity (Km = 2.86 mM), but higher in capacity. L-Aspartic acid, L-glutamic acid, dihydrokainic acid, and threo-3-hydroxy-DL-aspartic acid markedly inhibited the uptake of D-Asp with Na+ in the medium, whereas D-glutamic acid, glycine, and L-lysine had no significant effect. The Na(+)-dependent uptake of D-Asp was significantly reduced under "hypoglycemic," "anoxic," and "ischemic" conditions, whereas the Na(+)-independent uptake was unaffected. Metabolic inhibitors such as NaCN and ICH2COOH significantly inhibited the Na(+)-dependent uptake, but not the Na(+)-independent uptake. These results suggest that the Na(+)-dependent component of D-Asp transport in rat hippocampal cells is inactivated under ischemic conditions, whereas the Na(+)-independent component is unaffected.  相似文献   

15.
Human embryonic fibroblasts accumulate Ca2+ in the presence of extracellular ATP and Mg2+, the uptake being maximal at 3 mM ATP. Iodoacetic acid, oligomycin and temperatures of 2 degrees C all inhibit the ATP-potentiated uptake suggesting that an active process may be involved in the transport of Ca2+ into these cells under certain conditions.  相似文献   

16.
To probe the mechanism by which intracellular ATP, Na+, and Cl- influence the activity of the NaK2Cl cotransporter, we measured bumetanide-sensitive (BS) 86Rb fluxes in the osteosarcoma cell line UMR- 106-01. Under physiological gradients of Na+, K+, and Cl-, depleting cellular ATP by incubation with deoxyglucose and antimycin A (DOG/AA) for 20 min at 37 degrees C reduced BS 86Rb uptake from 6 to 1 nmol/mg protein per min. Similar incubation with 0.5 mM ouabain to inhibit the Na+ pump had no effect on the uptake, excluding the possibility that DOG/AA inhibited the uptake by modifying the cellular Na+ and K+ gradients. Loading the cells with Na+ and depleting them of K+ by a 2-3- h incubation with ouabain or DOG/AA increased the rate of BS 86Rb uptake to approximately 12 nmol/mg protein per min. The unidirectional BS 86Rb influx into control cells was approximately 10 times faster than the unidirectional BS 86Rb efflux. On the other hand, at steady state the unidirectional BS 86Rb influx and efflux in ouabain-treated cells were similar, suggesting that most of the BS 86Rb uptake into the ouabain-treated cells is due to K+/K+ exchange. The entire BS 86Rb uptake into ouabain-treated cells was insensitive to depletion of cellular ATP. However, the influx could be converted to ATP-sensitive influx by reducing cellular Cl- and/or Na+ in ouabain-treated cells to impose conditions for net uptake of the ions. The BS 86Rb uptake in ouabain-treated cells required the presence of Na+, K+, and Cl- in the extracellular medium. Thus, loading the cells with Na+ induced rapid 86Rb (K+) influx and efflux which, unlike net uptake, were insensitive to cellular ATP. Therefore, we suggest that ATP regulates a step in the turnover cycle of the cotransporter that is required for net but not K+/K+ exchange fluxes. Depleting control cells of Cl- increased BS 86Rb uptake from medium-containing physiological Na+ and K+ concentrations from 6 to approximately 15 nmol/mg protein per min. The uptake was blocked by depletion of cellular ATP with DOG/AA and required the presence of all three ions in the external medium. Thus, intracellular Cl- appears to influence net uptake by the cotransporter. Depletion of intracellular Na+ was as effective as depletion of Cl- in stimulating BS 86Rb uptake.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
The uptake of L-lysine was examined in isolated renal cortical tubule fragments from adult and 1-week-old dogs. Lysine uptake by adult tubules was initially more rapid than that by the immature tubules. This uptake by mature tubules reached a steady state after 30 min of incubation, while the newborn tubules still had not reached a steady state by 90 min of incubation. Because a steady state of lysine uptake was not attained with the immature tubules, their uptake of lysine exceeded that of the adult after 60 min of incubation. Kinetic studies revealed that lysine was taken up by one saturable transport system with a Km of 0.56 mM and Vmax of 6.18 mmol/liter intercellular fluid per 5 min in the adult and one saturable transport system in the 1-week-old with a Km of 0.38 mM and Vmax of 3.66 mmol/l intracellular fluid per 5 min. Lysine also entered the renal tubule cells in both age groups via a diffusional pathway with a kd of 0.35 min-1 in the adult and 0.30 min-1 in the newborn. Cystine competitively inhibited lysine uptake by adult dog tubules with a Ki of 0.61 mM. The other dibasic amino acids, ornithine and arginine, also inhibited lysine uptake in both the adult and the newborn.  相似文献   

18.
Unidirectional leucine fluxes were measured in isolated rabbit retina maintained under steady state conditions in medium resembling CSF but with leucine varied from 2 to 20,000 microM. At physiological leucine concentration (11 microM), 1/2 time for outward transport was 88 s and intracellular fluid was cleared of isotopically labelled leucine at 2.3 ml/g dry wt./min; 1/2 time for inward transport was 16 s and interstitial fluid was cleared at 7.5 ml/g dry wt./min. The rate of leucine influx corresponded quite well with its rate of disappearance from the intracellular fluid, over a wide range of concentrations. Exchange diffusion was demonstrated for transport in both directions. There was competition by other amino acids, but no interaction between Na+ and leucine transport could be demonstrated. Kinetic analysis indicated the presence of more than one transport system for leucine. There was an unexpected fall in the efflux coefficient, with reduction in leucine concentration at the lower end of the concentration range, for which an explanation is proposed. Under control conditions, 1/2 time for efflux of intracellular 24Na+ was about 0.9 min. With intracellular Na+ increased 4 fold, 1/2 time for efflux was slightly reduced. Problems encountered in measuring fluxes in organized tissue are discussed.  相似文献   

19.
Rat brain capillaries exhibit concentrative uptake of L-proline. The uptake is mediated by two saturable systems, one with a Km of 0.11 mM and another with a Km of 5.9 mM. Entry also occurred by diffusion, especially at high substrate concentrations. The saturable high-affinity system is sodium-dependent, with a Km for sodium of 36 mM. Proline uptake is not inhibited by lysine, but is inhibited by phenylalanine, glycine, and leucine. alpha-Methylaminoisobutyric acid (MeAIB), a model for sodium-requiring transport systems, is a competitive inhibitor of the low-Km system. b-2-Aminobicyclo-[2,2,1]-heptane-2-carboxylic acid (BCH), a model for nonsodium-dependent transport, however, also inhibited proline uptake.  相似文献   

20.
Xia JH  Saglio P 《Plant physiology》1990,93(2):453-459
The relationship between changes in H+ flux and sugar transport in maize Zea mays L. DEA root tips have been investigated using two methods for controlling the cellular nucleotide level: (a) incubation in the presence of a glucose analog, the 2-deoxyglucose, which decreased the ATP level to less than 15% of its initial value within 60 minutes without changing the ADP and AMP levels; (b) an hypoxic treatment which also decreased the ATP level but with a concomitant rise in ADP and AMP. In both cases the rate of hexose transport was not modified until ATP had dropped to 70% of its initial value; then it decreased with the cellular ATP level. The residual uptake rate at very low ATP concentrations still represented 50% of the maximum rate with the dGlc treatment but only the diffusion rate in anoxia. H+ efflux was abolished in anoxia but not by the 2-deoxyglucose treatment, in spite of a lower cellular ATP concentration. Our results are consistent with an inhibition of H+-ATPase activity in anoxia by the high levels of cellular ADP and AMP, and provide in vivo evidence that sugar uptake is dependent upon the proton motive force rather than cellular ATP concentration. The absence of stimulation of H+ extrusion by ferricyanide in either normoxic or hypoxic conditions suggests that a redox system does not appear to contribute to H+ secretion under the conditions of this investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号