首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The milk proteins alpha-lactalbumin and beta-lactoglobulin have been isolated from bovine whey by fractional precipitation with polyethylene glycol (PEG) and hydrophobic partitioning in aqueous PEG-hydroxypropylstarch two-phase systems using PEG-bound palmitate as hydrophobic ligand. The possible use of this combination for large scale purification of these whey proteins is discussed.  相似文献   

2.
Aqueous two-phase extraction for downstream processing of amyloglucosidase   总被引:1,自引:0,他引:1  
A polymer/salt aqueous two-phase system has been successfully employed for separation and purification of amyloglucosidase. The effects of system pH, molecular weight of polymer and composition of the two-phase system on amyloglucosidase partition behaviour in polyethylene glycol (PEG 4000, 6000)/disodium hydrogen phosphate were investigated. Experimental data are explained based on Kim's theoretical model for the prediction of biomolecule partitioning in a PEG/salt system.  相似文献   

3.
《Process Biochemistry》2014,49(12):2305-2312
The partitioning of proteases expressed by Penicillium restrictum from Brazilian Savanna in an inexpensive aqueous two-phase system composed of poly (ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied. The effects of PEG molecular weight and concentration, as well as NaPA concentration and the concentration of fermented broth on protease partitioning were studied. Partitioning into the top PEG-rich phase was increased in systems with smaller PEG-molecular weight, higher NaPA concentration and lower PEG concentration. For most systems studied, purification has been achieved by directing the biomolecule partition to the opposite phase of the other proteins, providing the enzyme purification. The highest partition coefficient was obtained using 20 wt% NaPA, 4 wt% PEG 2000 g mol−1 and 45 wt% fermented broth, leading to a purification factor of 1.98 and partition coefficient of 37.73. The system showed high mass balances and yield, indicating enzyme stability and applicability for industrial processes. The partitioning results using the PEG/NaPA/NaCl system show that this method could be used to purify or concentrate protease from fermented broth.  相似文献   

4.
A novel approach for the isolation and purification of penicillin acylase (PA), which couples aqueous two-phase partitioning and enzyme immobilization has been investigated.A PA yield of 90% was achieved by treating E. coli cells with 4% butyl acetate, freeze-thawing step, and pressure homogenization. PA purification (93% recovery) was achieved by (1) removing cell debris via precipitation with polyethylene glycol (PEG 2000); (2) aqueous two-phase partitioning using a PEG 2000 + phosphate system (87% recovery).An in situ enzyme immobilization approach, using oxirane acrylic or aldehyde-agarose beads dispersed in the PEG-rich phase, was explored for the conversion of penicillin G to 6-aminopenicillanic acid. An appropriate immobilization reaction time was found. The catalytic performance of the enzyme, when immobilized, was found not to be affected by recycling of the phase-forming components.  相似文献   

5.
The effect of potassium thiocyanate on the partitioning of lysozyme and BSA in polyethylene glycol 2000/ammonium sulfate aqueous two-phase system has been investigated. As a result of the addition of potassium thiocyanate to the PEG/ammonium sulfate system, the PEG/mixed salts aqueous two-phase system was formed. It was found that the potassium thiocyanate could alter the pH difference between the two phases, and, thus, influence the partition coefficients of the differently charged proteins. The relationship between partition coefficient of the proteins and pH difference between two phases has been discussed. It was proposed that the pH difference between two phases could be employed as the measurement of electrostatic driving force for the partitioning of charged proteins in polyethylene 2000/ammonium sulfate aqueous two-phase system.  相似文献   

6.
Summary Precipitation with PEG and partitioning in PEG/dextran aqueous two-phase systems are applied to the purification of protein C, a human plasma protein with a key role in anti-coagulation. Tandem application of precipitation followed by partitioning yields a purification factor for protein C greater than that using either process individually. The results are discussed using the hypothesis that the mechanism of solvation of protein C by PEG is similar, while that for total plasma proteins is different, in the two processes.  相似文献   

7.
The interaction of molecular characteristics of proteins with the physicochemical properties of PEG-phosphate aqueous two-phase systems has been studied. This has involved characterization of protein molecular weight, charge, and hydrophobicity and study of PEG molecular weight and concentration, phosphate concentration, and pH. System characterization has been conducted in the context of limited stage fractionation procedures for protein recovery from baker's yeast. Results are presented which show that the degree of purification achieved is dependent on macromolecular surface properties rather than system operating conditions. A simple conceptual model of partitioning in PEG-phosphate aqueous two-phase systems is presented which is applicable in the rational design of fractionation procedures and serves to limit the amount of empirical experimentation necessary for the establishment of practical operations.  相似文献   

8.
This work discusses the application of an aqueous two-phase system for the purification of lipases produced by Bacillus sp. ITP-001 using polyethylene glycol (PEG) and potassium phosphate. In the first step, the protein content was precipitated with ammonium sulphate (80% saturation). The enzyme remained in the aqueous solution and was dialyzed against ultra-pure water for 18 h and used to prepare an aqueous two-phase system (PEG/potassium phosphate). The use of different molecular weights of PEG to purify the lipase was investigated; the best purification factor (PF) was obtained using PEG 20,000g/mol, however PEG 8000 was used in the next tests due to lower viscosity. The influence of PEG and potassium phosphate concentrations on the enzyme purification was then studied: the highest FP was obtained with 20% of PEG and 18% of potassium phosphate. NaCl was added to increase the hydrophobicity between the phases, and also increased the purification factor. The pH value and temperature affected the enzyme partitioning, with the best purifying conditions achieved at pH 6.0 and 4°C. The molecular mass of the purified enzyme was determined to be approximately 54 kDa by SDS-PAGE. According to the results the best combination for purifying the enzyme is PEG 8000g/mol and potassium phosphate (20/18%) with 6% of NaCl at pH 6.0 and 4°C (201.53 fold). The partitioning process of lipase is governed by the entropy contribution.  相似文献   

9.
For various reasons extraction of proteins from plant material is difficult. In particular phenolic compounds and polyanionic cell-wall mucilages render conventional procedures of extraction and purification much more difficult. In this respect, aqueous polymer two-phase systems are presented as a powerful technique in extraction of vanadate-dependent bromoperoxidases from the brown macroalga Laminaria digitata, a seaweed extremely rich in mucilages. Little bromoperoxidase activity was obtained when fresh thallus material was extracted in Tris buffer. Extraction from freeze-dried and powdered material was more efficient but only satisfactory when partitioning in an aqueous polymer two-phase system was employed. Among several two-phase systems tested, one composed of poly(ethylene glycol) (PEG 1550) and potassium carbonate proved most successful (phase system-1). A rapid and efficient extraction procedure was developed with special regard for suitability in large scale processes. Staining for catalytic activity after PAGE revealed a pattern of several bromoperoxidase isoforms. Bromoperoxidases extracted in phase system-1 were fractionated into two groups of isoforms by partitioning in a second system (phase system-2) indicating that isoforms from both groups differ significantly in surface properties. Subsequently, one purification step by hydrophobic interaction chromatography was sufficient to remove residual non-peroxidase proteins as well as remaining polysaccharides from bromoperoxidases of both groups. Thus, consideration of aqueous two-phase systems as a technique for extraction and purification of plant proteins can be recommended, whenever inconveniant amounts of phenolic compounds, mucilages or pigments are present.  相似文献   

10.
The partitioning behaviour of endo-polygalacturonase (endo-PG) and total protein from a clarified Kluyveromyces marxianus fermentation broth in polyethylene glycol (PEG)-ammonium sulfate and PEG-potassium phosphate (pH=7) aqueous two-phase systems was experimentally investigated. Both the enzyme and total protein partitioned in the bottom phase for these two kinds of systems. The enzyme partitioning coefficient can be lower than 0.01 in PEG8000-(NH4)2SO4 ATPS with a large phase volume ratio and a moderate tie-line length, which implies the possibility of concentration operation using aqueous two phase partitioning. An ion-exchange separation of high purification efficiency was applied to analyze the clarified and dialyzed fermentation broth. A total purification factor of only 2.3 was obtained, which indicated the high enzyme protein content in the total protein of the fermentation broth. Consequently, the main purpose for separating endo-PG is concentration rather than purification. A separation scheme using an aqueous two-phase extraction process with polymer recycling and a dialysis was proposed to recover endo-PG from the fermentation supernatant of K. marxianus for commercial purpose. A high enzyme recovery up to 95% and a concentration factor of 5 to 8 with a purification factor of about 1.25 were obtained using the single aqueous two-phase extraction process. More than 95% polymer recycled will not affect the enzyme recovery and purification factor. Dialysis was used mainly to remove salts in the bottom phase. The dialysis step has no enzyme loss and can further remove small bulk proteins. The total purification factor for the scheme is about 1.7.  相似文献   

11.
Transgenic plants hold many promises as viable production hosts for therapeutic recombinant proteins. Many efforts have been devoted to increase the expression level of the proteins, but the efforts for developing economic processes to purify those proteins are lacking. In this report, aqueous two-phase extraction (ATPE) was investigated as an alternative for the separation of an acidic recombinant protein, β-glucuronidase (rGUS), from transgenic tobacco. Screening experiments by fractional factorial designs showed that PEG concentration and ionic strength of the system significantly affected the partitioning of native tobacco proteins and GUS. Response surface methodology was used to determine an optimized aqueous two-phase system for the purification of rGUS from transgenic tobacco. In a 13.4% (w/w) PEG 3400/18% (w/w) potassium phosphate system, 74% of the rGUS was recovered in the top PEG-rich phase while more than 90% of the native tobacco proteins were removed in the interphase and the bottom phase. A purification factor of about 20 was achieved in this process. The most important impurity from tobacco, Rubisco, was largely removed from the rGUS in the recovered phase.  相似文献   

12.
Affinity partitioning of lactate dehydrogenase (LDH) was studied in polyethylene glycol (PEG) /salt and PEG / hydroxypropyl starch (PES) aqueous two-phase systems, using free triazine dyes as their affinity ligands. The free dyes showed one-sided partition to the top PEG-rich phase and thus enhanced the affinity partitioning effect in the systems. A two-step affinity extraction process has been discussed for large scale purification of LDH from rabbit muscle.Hu Lin is one of the cooperator of the experiment.  相似文献   

13.
The partitioning of alpha-1-antitrypsin was assayed in biphasic aqueous systems containing potassium phosphate and two polyethyleneglycols of molecular mass 600 and 1000, respectively. In order to isolate the alpha-1-antitrypsin from serum plasma, the partitioning behaviour of human serum albumin, its principal contaminant, was also studied. Several aqueous two-phase systems with different partitioning properties were obtained by varying the PEG1000/PEG600 mass proportion. In systems with PEG1000/PEG600 mass ratio of 8, the optimal difference between the partition coefficients of both proteins was found. Under such conditions, a satisfactory purification was carried out by a three-step extraction procedure. By applying this method the alpha-1-antitrypsin specific activity increased severalfold (nearly 10 times) with a yield of 43%.  相似文献   

14.
Aqueous two-phase extraction for protein recovery from corn extracts   总被引:1,自引:0,他引:1  
Corn has been used as an expression host for several recombinant proteins with potential for large-scale production. Cost-effective downstream initial recovery, separation and concentration remain a challenge. Aqueous two-phase (ATP) partitioning has been used to recover and concentrate proteins from fermentation broths and offers advantages for integration of those steps with biomass removal. To examine the applicability of ATP partitioning to recombinant protein purification from corn endosperm and germ, ATP system parameters including poly(ethylene glycol) (PEG) molecular weight (MW), phase-forming salt, tie line length (TLL), and pH were manipulated to control partitioning of extracted native proteins from each fraction. Moderate PEG MW, reduction of phase ratio, and added NaCl effected complete recovery of the hydrophobic model protein lysozyme in the top phase with ca. 5x enrichment and illustrates a favorable match of recombinant protein characteristics, expression host, and separation method. Furthermore, integration of protein extraction with the partitioning reduced the load of contaminating host proteins relative to the more traditional separate steps of extraction followed by partitioning. Performance of the integrated partitioning was hindered by endosperm solids loading, whereas for germ, which has ca. 35x higher aqueous soluble protein, the limit was protein solubility. For more hydrophilic model proteins (the model being cytochrome c), effective separation required further reduction of PEG MW to effect more partitioning of host proteins to the top phase and enrichment of the model protein in the lower phase. The combination of PEG MW of 1450 with 8.5 wt.% NaCl addition (Na(2)SO(4) as the phase-forming salt) provided for complete recovery of cytochrome c in the lower phase with enrichment of 9x (germ) and 5x (endosperm). As a result of lower-phase recovery, the advantage of simultaneous removal of solids is lost. The lower solubility of native endosperm proteins results in higher purity for the same enrichment.  相似文献   

15.
In this study we show that proteins can be partitioned and separated in a novel aqueous two-phase system composed of only one polymer in water solution. This system represents an attractive alternative to traditional two-phase systems which uses either two polymers (e.g., PEG/dextran) or one polymer in high-salt concentration (e.g., PEG/salt). The polymer in the new system is a linear random copolymer composed of ethylene oxide and propylene oxide groups which has been hydrophobically modified with myristyl groups (C(14)H(29)) at both ends (HM-EOPO). This polymer thermoseparates in water, with a cloud point at 14 degrees C. The HM-EOPO polymer forms an aqueous two-phase system with a top phase composed of almost 100% water and a bottom phase composed of 5-9% HM-EOPO in water when separated at 17-30 degrees C. The copolymer is self-associating and forms micellar-like structures with a CMC at 12 microM (0.01%). The partitioning behavior of three proteins (lysozyme, bovine serum albumin, and apolipoprotein A-1) in water/HM-EOPO two-phase systems has been studied, as well as the effect of various ions, pH, and temperature on protein partitioning. The amphiphilic protein apolipoprotein A-1 was strongly partitioned to the HM-EOPO-rich phase within a broad-temperature range. The partitioning of hydrophobic proteins can be directed with addition of salt. Below the isoelectric point (pI) BSA was partitioned to the HM-EOPO-rich phase and above the pI to the water phase when NaClO(4)was added to the system. Lysozyme was directed to the HM-EOPO phase with NaClO(4), and to the water phase with Na-phosphate. The possibility to direct protein partitioning between water and copolymer phases shows that this system can be used for protein separations. This was tested on purification of apolipoprotein A-1 from human plasma and Escherichia coli extract. Apolipoprotein A-1 could be recovered in the HM-EOPO-rich phase and the majority of contaminating proteins in the water phase. By adding a new water/buffer phase at higher pH and with 100 mM NaClO(4), and raising the temperature for separation, the apolipoprotein A-1 could be back-extracted from the HM-EOPO phase into the new water phase. This novel system has a strong potential for use in biotechnical extractions as it uses only one polymer and can be operated at moderate temperatures and salt concentrations and furthermore, the copolymer can be recovered.  相似文献   

16.
The effect of pH and salt concentration on the partitioning behavior of bovine serum albumin (BSA) and cytochrome c in an aqueous two-phase polymer system containing a novel pH-responsive copolymer that mimics the structure of proteins and poly(ethylene glycol) (PEG) was investigated. The two-phase system has low viscosity. Depending on pH and salt concentration, the cytochrome c was found to preferentially partition into the pH-responsive copolymer-rich (bottom) phase under all conditions of pH and salt concentrations considered in the study. This was caused by the attraction between the positively charged protein and negatively charged copolymer. BSA partitioning showed a more complex behavior and partitioned either to the PEG phase or copolymer phase depending on the pH and ionic strength. Extremely high partitioning levels (partition coefficient of 0.004) and very high separation ratios of the two proteins (up to 48) were recorded in the new systems. This was attributed to strong electrostatic interactions between the proteins and the charged copolymer.  相似文献   

17.
Aqueous two-phase systems are composed of aqueous solutions of either two water-soluble polymers, usually polyethylene glycol (PEG) and dextran (Dx), or a polymer and a salt, usually PEG and phosphate or sulfate. Partitioning of proteins in such systems provides a powerful method for separating and purifying mixtures of biomolecules by extraction. If one of the phase forming polymers is a crosslinked gel, then the solution-controlled gel sorption may be considered as a modification of aqueous two-phase extraction. Since PEG/dextran systems are widely used in aqueous two-phase extraction and dextran gels (Sephadex) are common chromatographic media, we choose a PEG/dextran gel system as a model system in this study. The partitioning behavior of pure bovine serum albumin (BSA) in PEG/dextran gel systems is investigated to see the effects of variations in PEG and NaCl concentrations on the partition coefficient K. By making use of the Box-Wilson experimental design, K is shown to be maximized at 9.8 (%, w/w) PEG and 0.2 M NaCl concentrations, respectively, as 182.  相似文献   

18.
Detergent/polymer aqueous two-phase systems are studied as a fast, mild and efficient general separation method for isolation of labile integral membrane proteins. Mechanisms for phase behaviour and protein partitioning of both membrane-bound and hydrophilic proteins have been examined in a large number of detergent/polymer aqueous two-phase systems. Non-ionic detergents such as the Triton series (polyoxyethylene alkyl phenols), alkyl polyoxyethylene ethers (C(m)EO(n)), Tween series (polyoxyethylene sorbitol esters) and alkylglucosides form aqueous two-phase systems in mixtures with hydrophilic polymers, such as PEG or dextran, at low and moderate temperatures. Phase diagrams for these mixtures are shown and phase behaviour is discussed from a thermodynamic model. Membrane proteins, such as bacteriorhodopsin and cholesterol oxidase, were partitioned strongly to the micelle phase, while hydrophilic proteins, BSA and lysozyme, were partitioned to the polymer phase. The partitioning of membrane protein is mainly determined by non-specific hydrophobic interactions between detergent and membrane protein. An increased partitioning of membrane proteins to the micelle phase was found with an increased detergent concentration difference between the phases, lower polymer molecular weight and increased micelle size. Partitioning of hydrophilic proteins is mainly related to excluded volume effects, i.e. increased phase component size made the hydrophilic proteins partition more to the opposite phase. Addition of ionic detergent to the system changed the partitioning of membrane proteins slightly, but had a strong effect on hydrophilic proteins, and can be used for enhanced separation between hydrophilic proteins and membrane protein.  相似文献   

19.
This study describes the application of aqueous two-phase partition using polyethylene glycol (PEG)-potassium phosphate systems for the direct recovery of proteins, and aggregates thereof, from mammalian brain tissue homogenates. Investigation of established methodologies for the purification of prion proteins (PrP) from bovine brain affected with transmissible spongiform encephalopathy (BSE) has identified an alternative purification regime based on aqueous two-phase partition. This circumvents energy-intensive and rate-limiting unit operations of ultracentrifugation conventionally used for isolation of PrP. Selectivity of various PEG-phosphate systems varied inversely with polymer molecular mass. The maximum protein recovery from bovine brain extracts was obtained with systems containing PEG 300. Manipulation of the aqueous environment, to back-extract protein product from the PEG-rich top phase into the phosphate-rich lower phase, enabled integration of ATPS with conventional hydrophobic interaction chromatography (HIC) which selectively removes obdurate contaminating proteins (i.e. ferritin).  相似文献   

20.
Isolation of plasmid DNA from cell lysates by aqueous two-phase systems   总被引:1,自引:0,他引:1  
This work presents a study of the partitioning of a plasmid vector containing the cystic fibrosis gene in polyethylene glycol (PEG)/salt (K2HPO4) aqueous two-phase systems (ATPS). The plasmid was extracted from neutralized alkaline lysates using PEG with molecular weights varying from 200 to 8000. The effects of the lysate mass loaded to the ATPS (20, 40, and 60% w/w) and of the plasmid concentration in the lysate were evaluated. The performance of the process was determined by qualitative and quantitative assays, carefully established to overcome the strong interference of impurities (protein, genomic DNA, RNA), salt, and PEG. Plasmid DNA partitioned to the top phase when PEG molecular weight was lower than 400. The bottom phase was preferred when higher PEG molecular weights were used. Aqueous two-phase systems with PEG 300, 600, and 1000 were chosen for further studies on the basis of plasmid and RNA agarose gel analysis and protein quantitation. The recovery yields were found to be proportional to the plasmid concentration in the lysate. The best yields (>67%) were obtained with PEG 1000. These systems (with 40 and 60% w/w of lysate load) were able to separate the plasmid from proteins and genomic DNA, but copartitioning of RNA with the plasmid was observed. Aqueous two-phase systems with PEG 300 concentrated both plasmid and proteins in the top phase. The best system for plasmid purification used PEG 600 with a 40% (w/w) lysate load. In this system, RNA was found mostly in the interphase, proteins were not detected in the plasmid bottom phase and genomic DNA was reduced 7.5-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号