共查询到20条相似文献,搜索用时 15 毫秒
1.
Chromosomal evolution of South American Columbiformes (Aves) 总被引:1,自引:2,他引:1
E. J. De Lucca 《Genetica》1984,62(3):177-185
Karyotypes are compared of 14 species of Brazilian Columbiformes (family Columbidae): Claravis pretiosa (2n=74), Columba cayennensis (2n=76), Columba picazuro (2n=76), Columba speciosa (2n=76), Columbina minuta (2n=76), Columbina passerina (2n=76), Columbina picui (2n=76), Columbina talpacoti (2n=76), Geotrygon montana (2n=86), Leptotila rufaxilla (2n=76), Leptotila verreauxi (2n=78), Scardafella squammata (2n=78), Uropelia campestris (2n=68) and Zenaida auriculata (2n=76). The macrochromosomes of each species were analysed by conventional Giemsa staining, cytobiometrically and with G-and C-banding.All species studied are characterized by typical bird karyotypes with a few pairs of macrochromosomes and many microchromosomes.The morphology and relative length of the Z chromosome are nearly the same in all species, but the W chromosome shows variation. The G-band patterns of the first pair in Columbiformes show a large positive band distally in the long arm, common to all species of the order. The constitutive heterochromatin is restricted to the centromeres of the macro- and microchromosomes. The W is the most heterochromatic chromosome in all species studied.Studies of relative lengths, arm ratios and G- and C-banding patterns showed that in Columbiformes pairs 3, 4 and 5 are the most stable. The types of rearrangements distinguishing between species vary among the genera: pericentric inversions in Columba; fusions and translocations in Uropelia; centric fissions in Geotrygon; fusions, translocations, para and pericentric inversions in Columbina, Leptotila, Zenaida and Scardafella.On the basis of the karyological findings the phylogenetic relationships of the Brazilian Columbiformes are discussed.This work was supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (Plano Integrado de Genética-Processo No. 22.1375/77 and 40.0499/80). 相似文献
2.
We give the haploid chromosome numbers of 173 species or subspecies of Riodinidae as well as of 17 species or subspecies of neotropical Lycaenidae for comparison. The chromosome numbers of riodinids have thus far been very poorly known. We find that their range of variation extends from n =?9 to n =?110 but numbers above n =?31 are rare. While lepidopterans in general have stable chromosome numbers, or variation is limited at most a subfamily or genus, the entire family Riodinidae shows variation within genera, tribes and subfamilies with no single modal number. In particular, a stepwise pattern with chromosome numbers that are about even multiples is seen in several unrelated genera. We propose that this variation is attributable to the small population sizes, fragmented populations with little migration, and the behavior of these butterflies. Small and isolated riodinid populations would allow for inbreeding to take place. Newly arisen chromosomal variants could become fixed and contribute to reproductive isolation and speciation. In contrast to the riodinids, the neotropical Lycaenidae (Theclinae and Polyommatinae) conform to the modal n =?24 that characterizes the family. 相似文献
3.
Chromosomal breakage in leukocytes of South American Indians 总被引:4,自引:0,他引:4
4.
A cytogenetic study of almost all the Malagasy lemurs, of several representative Lorisiforms and one representative each of Tupaiiforms and Tarsiforms is reported. A phylogenic tree was constructed for all species exceptTarsius syrichta, which could not be related to either Prosimians or Simians. Three branches emerge, independentely or after a short common trunk, from the ancestral karyotype of all the Primates. One branch leads to the Lorisiforms, another to the Lemuriforms and the third to the Tupaïa. The chromosomal evolution of the Lorisiforms which gave rise to the Galagidae and the Lorisidae is of a populational mode, while among the Lemuriforms 4 modes of speciation have occurred: populational for the Indriidae, dichotomic for the Lepilemuridae, bushy for the Lemuridae and a catenary one for the Hapelemurs. 相似文献
5.
Rodentia is the most species-rich mammalian order and includes several important laboratory model species. The amount of new information on karyotypic and phylogenetic relations within and among rodent taxa is rapidly increasing, but a synthesis of these data is currently lacking. Here, we have integrated information drawn from conventional banding studies, recent comparative painting investigations and molecular phylogenetic reconstructions of different rodent taxa. This permitted a revision of several ancestral karyotypic reconstructions, and a more accurate depiction of rodent chromosomal evolution. 相似文献
6.
7.
Chromosomal evolution in Cervidae 总被引:3,自引:0,他引:3
On the basis of chromosome data obtained on 30 species and 20 subspecies of Cervidae, a report is submitted on the karyosystematics of this family. The primitive karyotype of Cervidae may be inferred to be composed of 35 acrocentric pairs (2n = 70 FN = 70). During the phyletic evolution of this family different types of chromosome rearrangements were probably selected and the group may have differentiated karyologically into three branches: (1) the Cervinae that fixed a centric fusion resulting in a metacentric pair of autosomes (2n = 68, FN = 70), as shown by the basic karyotype of Cervus elaphus, and where Robertsonian fusions are the preeminent type of chromosome rearrangement; (2) the Odocoileinae, in which pericentric inversions and Robertsonian fusions were favored, yielding first a submetacentric X and then a submetacentric autosome pair. The most representative karyotype is 2n = 70, FN = 74--as in Odocoileus hemionus; and (3) the Muntiacinae, in which centric and tandem fusions were the most common chromosome rearrangements. While Muntiacus reevesi has a karyotype 2n = 46, FN = 46, the chromosome number drops down to 2n = 6 in the females of the M. muntjak vaginalis subspecies group and M. rooseveltorum. Therefore, while the karyotypes are conserved within the subfamilies Cervinae and Odocoileinae; the subfamily Muntiacinae appears to be the most chromosomally diversified group. The few karyological data on the Moschus berezovskii suggest that the Moschinae should be placed in a separate family, the Moschidae. 相似文献
8.
Chromosome numbers for 26 different species of the generaPiper, Peperomia andPothomorphe (Piperaceae) are reported. The basic chromosome numbers are 2n = 26, x = 13 (Piper, Pothomorphe) and 2n = 22, x = 11 (Peperomia), polyploid series are characteristic forPiper andPeperomia. Piper has the smallest chromosomes and prochromosomal interphase nuclei,Peperomia the largest ones and mostly reticulate to euchromatic nuclei.Pothomorphe is intermediate in both characters. The karyomorphological differences betweenPothomorphe andPiper underline their generic separation. Interspecific size variation of chromosomes occurs inPiper andPeperomia. Infraspecific polyploidy was observed inPiper betle. C-banding reveals different patterns of heterochromatin (hc) distribution between the genera investigated. The genome evolution is discussed. 相似文献
9.
Wing pattern evolution and the origins of mimicry among North American admiral butterflies (Nymphalidae: Limenitis) 总被引:3,自引:0,他引:3
Mullen SP 《Molecular phylogenetics and evolution》2006,39(3):747-758
The evolution of wing pattern diversity in butterflies has emerged as a model system for understanding the origins and maintenance of adaptive phenotypic novelty. Admiral butterflies (genus Limenitis) are an attractive system for studying wing pattern diversity because mimicry is common among the North American species and hybrid zones occur wherever mimetic and non-mimetic wing pattern races meet. However, the utility of this system has been limited because the evolutionary relationships among these butterflies remain unclear. Here I present a robust species-level phylogeny of Limenitis based on 1911 bp of two mitochondrial genes (COI and COII) and 904 bp of EF1-alpha for all five of the Nearctic species/wing pattern races, the majority of the Palearctic species, and three outgroup genera; Athyma, Moduza (Limenitidini), and Neptis (Limenitidinae: Neptini). Maximum-likelihood and Bayesian analyses indicate that the North American species are a well-supported, monophyletic lineage that is most closely related to the widespread, Palearctic, Poplar admiral (L. populi). Within North America, the Viceroy (L. archippus) is the basal lineage while the relationships among the remaining species are not well resolved. A combined maximum-likelihood analysis, however, indicates that the two western North America species (L. lorquini and L. weidemeyerii) are sister taxa and closely related to the wing pattern subspecies of the polytypic Limenitis arthemis species complex. These results are consistent with (1) an ancestral host-shift to Salicaceae by the common ancestor of the Poplar admiral and the Nearctic admiral lineage, (2) a single colonization of the Nearctic, and (3) a subsequent radiation of the North American forms leading to at least three independent origins of mimicry. 相似文献
10.
11.
Ivanete de Oliveira Furo Rafael Kretschmer Patrícia C. O’Brien Malcolm A. Ferguson-Smith Edivaldo Herculano Corrêa de Oliveira 《PloS one》2015,10(6)
Most species of macaws, which represent the largest species of Neotropical Psittacidae, characterized by their long tails and exuberant colours, are endangered, mainly because of hunting, illegal trade and habitat destruction. Long tailed species seem to represent a monophyletic group within Psittacidae, supported by cytogenetic data. Hence, these species show karyotypes with predominance of biarmed macrochromosomes, in contrast to short tailed species, with a predominance of acro/telocentric macrochromosomes. Because of their similar karyotypes, it has been proposed that inversions and translocations may be the main types of rearrangements occurring during the evolution of this group. However, only one species of macaw, Ara macao, that has had its genome sequenced was analyzed by means of molecular cytogenetics. Hence, in order to verify the rearrangements, we analyzed the karyotype of two species of macaws, Ara chloropterus and Anodorhynchus hyacinthinus, using cross-species chromosome painting with two different sets of probes from chicken and white hawk. Both intra- and interchromosomal rearrangements were observed. Chicken probes revealed the occurrence of fusions, fissions and inversions in both species, while the probes from white hawk determined the correct breakpoints or chromosome segments involved in the rearrangements. Some of these rearrangements were common for both species of macaws (fission of GGA1 and fusions of GGA1p/GGA4q, GGA6/GGA7 and GGA8/GGA9), while the fissions of GGA 2 and 4p were found only in A. chloropterus. These results confirm that despite apparent chromosomal similarity, macaws have very diverse karyotypes, which differ from each other not only by inversions and translocations as postulated before, but also by fissions and fusions. 相似文献
12.
Regina Maria de Souza Barros Cleusa Yoshiko Nagamachi Julio Cesar Pieczarka 《Chromosoma》1990,99(6):440-447
We studied the karyotype of specimens ofCallithrix emiliae (Callithricidae, Primates) from Rondonia, Brazil. Comparison with the karyotype ofCallithrix jacchus showed that, even though these two species show many karyotypic similarities, they differ by a Robertsonian translocation, a paracentric inversion and large-scale addition of heterochromatin. TheC. emiliae species appears to be in an active phase of chromosome evolution by the addition of constitutive heterochromatin. 相似文献
13.
14.
15.
Graomys griseoflavus is a South American phyllotine rodent having a remarkable Robertsonian polymorphism which may have produced reproductive isolation between 2n=42–41 and 2n=38–34 karyomorphs. Analysis of nucleolar organizer region (NOR) locations both by silver staining (Ag-NOR) and in situ hybridization revealed that 2n=42 individuals exhibit highly variable Ag-NOR patterns, while specimens of the 2n=38–34 karyomorphic group showed a single Ag-NOR pattern. The latter animals underwent two NOR deletions in reference to the 2n=42 karyomorphs, one of which would be the consequence of a Robertsonian fusion and the other would be produced by the unequal crossing-over mechanism. The differential NOR homogenization supports the hypothesis that G. griseoflavus karyomorphs are evolving separately towards the acquisition of separate species status. 相似文献
16.
H. Weiss-Schneeweiss T. F. Stuessy S. Siljak-Yakovlev C. M. Baeza J. Parker 《Plant Systematics and Evolution》2003,241(3-4):171-184
The genus Hypochaeris (Asteraceae, Lactuceae) contains ten species in Europe, three in Asia, and approximately 50 in South America. Previous cytotaxonomic studies have shown two groups of taxa: (1) European species with different basic chromosome numbers and differentiated karyotypes, and (2) South American species with x=4 and uniform asymmetric and bimodal karyotypes. Karyotypic data are synthesized for South American species of Hypochaeris with new information for six Chilean species: H. acaulis, H. apargioides, H. palustris, H. spathulata, H. tenuifolia and H. thrincioides. Four main groups can be distinguished based on presence and localization of secondary constrictions – SCs (bearing Nucleolar Organizer Regions – NORs) on chromosomes 2 and 3, and 18S–25S and 5S rDNA loci number, localization, and activity. We propose karyotypic evolution of South American Hypochaeris (x=4) from H. maculata-like (x=5) European ancestors. The original South American karyotype would have possessed two SCs, one on the long arm of chromosome 2, and the other on the short arm of chromosome 3 (in terminal position). Further evolution would have involved inversion within the short arm of chromosome 3 and inactivation/loss of the SC on chromosome 2. 相似文献
17.
Chromosomal features and evolution of Bromeliaceae 总被引:2,自引:0,他引:2
New cytological information and chromosome counts are presented for 19 taxa of 15 genera of the Bromeliaceae, among them, data for 15 taxa and five genera are reported for the first time. The basic number x = 25 is confirmed and polyploidy seems to be the main evolutionary mechanism in Bromeliaceae. Most of the analyzed species presented 2n = 50. Polyploids have been detected in Deinacanthon urbanianum with 2n = ca.160 and Bromelia laciniosa with 2n = ca.150. In Deuterocohnia lorentziana we observed individuals with two different ploidy levels (2n = 50 and 2n = 100) growing together in the same pot. Ayensua uaipanensis showed the uncommon number 2n = 46. After triple staining with CMA3/Actinomycin/DAPI one or two CMA+/DAPI− bands could be observed in the studied species (Aechmea bromeliifolia, Greigia sphacelata and Ochagavia litoralis). The role of these features in the evolution of the family is discussed, revealing new aspects of the evolution of the Bromeliaceae. 相似文献
18.
The karyotypes have been determined of 16 of the 32 species of the genus Varanus, including animals from Africa, Israel, Malaya and Australia. A constant chromosome number of 2n = 40 was observed. The karyotype is divided into eight pairs of large chromosomes and 12 paris of microchromosomes. A series of chromosomal rearrangements have become established in both size groups of the karyotype and are restricted to centromers shifts, probably caused by pericentric inversion. Species could be placed in one of six distinct karyotype groups which are differentiated by these rearrangements and whose grouping does not always correspond with the current taxonomy. An unusual sex chromosome system of the ZZ/ZW type was present in a number of the species examined. The evolutionary significance of these chromosomal rearrangements, their origin and their mode of establishment are discussed and related to the current taxonomic groupings. The most likely phylogenetic model based on chromosome morphology, fossil evidence and the current distribution of the genus Varanus is presented. 相似文献
19.
Stefan Kirsch Juanjo Pasantes Andreas Wolf Nadia Bogdanova Claudia Münch Arseni Markoff Petra Pennekamp Michael Krawczak Bernd Dworniczak Werner Schempp 《BMC evolutionary biology》2009,9(1):14-1
Correction to Kirsch S, Pasantes J, Wolf A, Bogdanova N, Münch C, Pennekamp P, Krawczak M, Dworniczak B, Schempp W: Chromosomal evolution of the
PKD1
gene family in primates. BMC Evolutionary Biology 2008, 8 :263 (doi:10.1186/1471-2148-8-263) 相似文献
20.
Bergmann's rule predicts larger body sizes in species living in higher latitudes and altitudes. This rule appears to be valid for endotherms, but its relevance to ectotherm vertebrates has largely been debated. In squamate reptiles (lizards and snakes), only one study, based on Liolaemus species of the boulengeri clade, has provided phylogenetic evidence in favour of Bergmann's clines. We reassessed this model in the same lizard clade, using a more representative measure of species body size and including a larger number of taxa in the sample. We found no evidence to support Bergmann's rule in this lineage. However, these non-significant results appear to be explained only by the inclusion of further species rather than by a different estimation of body size. Analyses conducted on the 16 species included in the previous study always revealed significant relationships between body size and latitude-altitude, whereas, the enlarged sample always rejected the pattern predicted by Bergmann's rule. 相似文献