首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research on the molecular systematics of higher taxa in the butterfly family Nymphalidae (Lepidoptera) is only just beginning. Outgroup selection is difficult at the moment due to the lack of consensus on the basal relationships of the major groups in Nymphalidae. We identify four major clades in the Nymphalidae based on a cladistic analysis of one mitochondrial gene sequence (COI, 1450 bp) and two nuclear gene sequences (EF-1alpha, 1064 bp, and wingless, 412-415 bp) from 54 exemplar species sampled from all currently recognized subfamilies. The COI data set was found to be highly incongruent with the nuclear data sets and a Partitioned Bremer Support analysis shows that the COI data set largely undermines support for most clades. Transitions at the third codon positions of the COI data set were highly saturated, but analyzing the combined data set with the COI third positions removed did not change the results. The major clades we found are termed the danaine clade (including Danainae), the satyrine clade (including Charaxinae, Satyrinae, Calinaginae, and Morphinae), the heliconiine clade (including Heliconiinae and Limenitidinae excluding Biblidini, Cyrestini, Pseudergolini, and Coeini) and the nymphaline clade (including Nymphalinae, Apaturinae, and Coeini, Cyrestini, Pseudergolini, and Biblidini from Limenitidinae). The heliconiine and nymphaline clades are sister groups, while the most parsimonious explanation for the combined data set places the danaine clade as the most basal large group of Nymphalidae. Our results give one of the strongest hypotheses for the subfamilial relationships within Nymphalidae. We were able to resolve the polyphyletic nature of Limenitidinae, which we recommend to be split into three subfamilies: Limenitidinae, Biblidinae, and Cyrestinae. The tribe Coeini belongs in Nymphalinae.  相似文献   

2.
Phylogeny of the Nymphalidae (Lepidoptera)   总被引:9,自引:0,他引:9  
A generic-level phylogeny for the butterfly family Nymphalidae was produced by cladistic analysis of 234 characters from all life stages. The 95 species in the matrix (selected from the 213 studied) represent all important recognized lineages within this family. The analysis showed the taxa grouping into six main lineages. The basal branch is the Libytheinae, with the Danainae and Ithomiinae on the next branch. The remaining lineages are grouped into two main branches: the Heliconiinae-Nymphalinae, primarily flower-visitors (but including the fruit-attracted Coeini); and the Limenitidinae (sensu strictu), Biblidinae, and the satyroid lineage (Apaturinae, Charaxinae, Biinae, Calinaginae, Morphinae, Brassolinae, and Satyrinae), primarily fruit-attracted. Data partitions showed that the two data sets (immatures and adults) are very different, and a partitioned Bremer support analysis showed that the adult characters are the main source of conflict in the nodes of the combined analysis tree. This phylogeny includes the widest taxon coverage of any morphological study on Nymphalid butterflies to date, and supports the monophyly and relationships of most presently recognized subgroups, providing strong evidence for the presently accepted phylogenetic scheme.  相似文献   

3.
We describe the chromosome numbers of a monophyletic group of Satyroid subfamilies of primary fruit-attracted butterflies from South America: Charaxinae, Morphinae (including Brassolini) and Satyrinae. The charaxines do not have a distinct modal number. Their chromosome numbers are in the range n  = 6–50, with n  = 7–9, n  = 12, n  = 16, n  = 19–21, n  = 26, and n  = 28–31 being the most common numbers. Within the Morphinae, the Morphini have a modal n  = 28 and the Brassolini a modal n  = 29, with few exceptions. The Neotropical satyrines, in particular the basal species, have a weak modal n  = 29, which is a strong modal number in Palearctic satyrines. The African satyrines have an equally strong modal n  = 28. Most Neotropical satyrines have, like charaxines, chromosome numbers lower than the weak modal n  = 29, and often half this modal, but there are genera with stable numbers among the satyrines and charaxines. Evidently, the Neotropical satyroids descend from basal Nymphalidae with the typical lepidopteran modal number of n  = 31, which have also given rise to the Heliconiini with modal n  = 31 and 21 and Ithomiinae with modal numbers of n  = 14–15.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society, 2007, 92 , 467–481.  相似文献   

4.
Karyological information on Cytisus species indicates at least two chromosome numbers for most of the taxa. This instability is, a striking karyological feature of Cytisus . Chromosome numbers of taxa in Sect. Spartopsis and Sect. Alburnoides, both well represented in Morocco and the Iberian Peninsula, are presented here. We provide the first data on chromosome numbers for the Moroccan taxa: C. grandiflorus subsp. barbarus , and subsp. haplophyllus (n = 23, 2 n = 46) , C. maurus (2 n = 48), C. megalanthus ( n = 23), C. arboreus subsp. arboreus , subsp. baeticus , and subsp. catalaunicus (2 n = 50), C. valdesii ( n = 23 ). New populations from the Iberian Peninsula have been counted: C. grandiflorus subsp. grandiflorus (2 n = 46), C. scoparius subsp. scoparius ( n = 23) , C. striatus subsp. eriocarpus ( n = 23, 2 n = 46), C. multiflorus (n = 23), C. oromediterraneus ( n = 23, 24). Our data confirm the instability of the chromosome number in Cytisus . The presence of B chromosomes in C. valdesii and C. megalanthus , as well in other species, is discussed in relation to this instability and previous data. We suggest that instability of the chromosome number within a taxon, and even in the same population, may be related to the breakage of A chromosomes and the appearance of B chromosomes.  相似文献   

5.
Chromosome numbers are given for 1011 populations of 242 species, representing the full range of taxa (49 of the about 52 presently recognized genera) in the Neotropical Nymphalid butterfly subfamily Ithomiinae (prime movers for mimicry rings), including many additional geographical subspecies from 47 regions from Mexico and the Caribbean islands throughout all tropical South American countries to southern Brazil. Twelve Neotropical Danainae (in 3 genera), all but one with n=29-31, and the Australian Tellervo (n=32) served as sister groups for comparison. The numbers range near-continuously from n=5 to n=120 with modal values (33-84 counts) at n=12-18, and only 16 and 26 counts at the usual modal number of all butterfly groups, n=30-31. Superimposition of these changes in karyotype on a cladistic phylogeny of the subfamily indicates possible early halving of the complement to n about 14-15, followed by much variation in each genus and tribe. While at least 17 species in 15 genera show stable karyotypes over much of the Neotropics, at least 40 species show large geographical variation in number of chromosomes, rarely accompanied by any evidence for reduction in fertility or incipient speciation. The evolutionary opportunism of the members of this subfamily probably accompanies their known population biology and community ecology: they are common, shade-loving, highly gregarious (occurring in small multispecies "pockets" in deep forest) and often migratory as a community when the environment becomes unfavorable (too hot or dry).  相似文献   

6.
Woodroaches of the genus Cryptocercus are subsocial and xylophagous cockroaches, distributed in North America and Asia. Studies on male chromosome number in Nearctic species have shown that diploid numbers vary from 2n=37 to 2n=47; numbers from Palearctic species were heretofore unknown. Two hypotheses have been proposed to explain the varying number of chromosomes among Nearctic species: the serial reduction hypothesis, and the parallel scenario. We performed phylogenetic analyses of the COII gene in these species and found evidence for the topology (47(45(43(39,37), which is congruent with the serial reduction hypothesis. We also determined chromosome numbers for the first time in Palearctic species, and found Cryptocercus primarius and Cryptocercus relictus to have relatively low chromosome numbers (2n=17-21) compared to their Nearctic relatives. Finally, our study determined the phylogenetic position of Cryptocercus primarius among other Asian taxa.  相似文献   

7.
The palatability and the ability of neotropical butterflies to escape after being detected, attacked and captured by wild kingbirds ( Tyrannus melancholicus Vieillot), was investigated by the release of 668 individuals of 98 butterfly species close to the birds, during their usual feeding activities. Most of the butterflies were attacked and eaten. Only the troidine swallowtails ( Parities and Battus ; Papilionidae) were consistently rejected on taste and elicited aversive behaviours in birds. Most other aposematic and/or mimetic species in the gehera Danaus and Lycorea (Danainae), Dione, Eueides and Heliconius (Heliconiinae), Hypothyris, Mechanitis and Melinaea (Ithomfinae), Biblis, Callicore and Diaethria (Limenitidinae) were generally eaten. Cryptic and non-mimetic species were always attacked and, if captured, they were also eaten. All Apaturinae, Charaxinae, Nymphalinae, Hesperidae, most Limenitidinae, Heliconiinag ( Agraulis, Dryas, Dryadula and Philaethria ) and Papilionidae ( Eurytides, Heraclides and Protesilaus ) were in this group. Results indicate that the learning process in kingbirds may demand a large mortality in prey populations, even among species generally accepted as unpalatable and aposematic. They also support the assertion that escaping ability and unpalatability evolved in butterflies as alternative strategies to avoid predation by birds. Mimetic relationships among several species are discussed. Evidence for the evolution of aposematism not related to unpalatability, but to escaping ability, was found for two hard-to-catch Morpho species.  相似文献   

8.
Karyological information about Iberian Genista species is limited because of their wide geographical distribution. It is a major factor in the understanding of a genus whose genetic evolution is mostly related to aneuploidy and euploidy. The chromosome numbers of the following taxa have been counted: G. carpetana subsp. carpetana (n = 20), G. cinerascens (n = 12), G. micrantha (n = 18), G. mugronensis subsp. rigidissima (n = 18), G. ramosissima (2n = 48) and G. tinctoria (n = 24). The previously-assumed uniformity of chromosome number (n = 24) for all the subspecies of G. cinerea is supported here by data from subspp. murcica and speciosa. In G. florida, a new chromosome number, n = 23, has been found for both subspecies (florida and polygaliphylla). A discussion of the discrepancies between these data and previous ones is included. A new level of ploidy has been found in G. tuurnefortii subsp. tournefortii (n = 32). The data stress the necessity of obtaining chromosomal information from a number of plants of a taxon before its characteristic number is clear, and indicate that more chromosomal data will help the understanding of the cytological diversity within taxa in Genista.  相似文献   

9.
Cytological observations on eleven species of Ophioglossum revealed low gametic ( n ) chromosome numbers of 30, 34 and 60 in populations of O.eliminatum , contrasting with an earlier report of n = 90 in the same species. The rest of the species is based on n =120.Cytologically studied species of Ophioglossum exhibit a range of chromosome numbers from n = 30 in O.eliminatum to n =720 in O.reticulatum. The weighted highest common factor (HGF) from all the reported chromosome numbers in twelve species was found to be 30. This number is proposed as the palaeobasic chromosome number for the genuS. Reported chromosome numbers which are not multiples of 30 were subjected to sequential analysis, yielding three distinct ultimate base numbers, 4, 5 and 6, which can produce n = 30 in seven different ways. The neobasic number, n= 120, appears to have arisen through various combinations and permutations of these, theoretically 2401 routes; only a relatively few of these routes exist today, suggesting that extreme selection has been exerted against the majority, and further suggesting that Ophioglossum represents an evolutionary dead end through repeated cycles of polyploidy and is possibly at the verge of extinction. The stoichiometric model of evolution, which derives the various chromosome numbers possessed by the twelve species from the basic and ultimate basic chromosome numbers, is used to explain chromosomal evolution in the genus.  相似文献   

10.
Chromosome counts are reported for 32 taxa (31 species and 1 subspecies) belonging to 10 genera of Commelinaceae from seven African and Asiatic countries. Counts for 13 species and 1 subspecies are recorded for the first time. Published chromosome numbers for Anhicopsis and Polyspatha are confirmed. It is suggested that Pdisota, Pollia and Stanfieldidla each has a single basic number (x = 20, 16 and 11, respectively). The known cytological diversity in Floscopa is extended. The third continental African species of Coleolrype is found to have the same chromosome number (2n = 36) as the other two. The preponderance of the basic number x = 15 in Commelina is supported. The uncommon basic number x = 13 is reported in four taxa of Cyanotis together with karyotypic differences. The basic number x = 6 is found in a second species of Murdannia . Karyotypic data in addition to chromosome numbers are presented for 24 of the 32 taxa investigated. Karyotypes are found to be useful in assessing relationships in the family, and evolutionary trends in the karyotype are noted.  相似文献   

11.
Chromosome numbers are reported for 112 collections of Cactaceae, including 102 collections of Opuntia. Reports are presented for 33 species in five genera and a total of 36 taxa. Two specimens were sterile. Emphasis was given to the documentation of intraspecific ploidy-level consistencies and differences, because of the current poor state of knowledge about the populational integrity of chromosome numbers in Trans-Pecos cacti and because information about ploidy levels is taxonomically significant particularly in certain genera of Cactaceae. First reports are presented for six taxa, including Opuntia aureispina (2n = 11 II), O. tortispina (2n = 33 II), and Ancistrocactus tobuschii (2n = 11 II). Chromosome numbers are now known for all but one or two of the ~104 currently recognized cactus taxa in Trans-Pecos Texas.  相似文献   

12.
? Premise of the study: The taxonomy of cultivated potatoes has been highly controversial, with estimates of species numbers ranging from 3 to 17. Ploidy level has been one of the most important taxonomic characters to recognize cultivated potato species, containing diploid (2n = 2x = 24), triploid (2n = 3x = 36), tetraploid (2n = 4x = 48), and pentaploid (2n = 5x = 60) cultivars. We tested the environmental associations of different ploidy levels in cultivated potato species that traditionally have been recognized as Linnaean taxa to see whether, in combination with prior morphological, molecular, and crossing data, some of the ploidy variants can be recognized as distinct taxa. ? Methods: We summarize 2780 chromosome counts of landrace cultivated potatoes, provide georeferences to 2048 of them, and analyze these data for 20 environmental variables at 10-min resolution using the randomForest algorithm to explore associations with taxa and ploidy variants. ? Key results: Except for the S. tuberosum Chilotanum Group and extreme northern and southern range extensions of the Andigenum Group, it is impossible to find distinct habitats for the ploidy variants of the S. tuberosum Andigenum Group. ? Conclusions: Our distributional and ecological data, in combination with prior results from morphology, microsatellites, and crossing data, provide yet additional data to support a major reclassification of cultivated potato species. A rational, stable, and universally accepted taxonomy of this major crop plant will greatly aid all users of wild and cultivated potatoes from breeders to gene bank managers to ecologists and evolutionary biologists.  相似文献   

13.
Rubus is a taxonomically difficult group and cytological data are expected hopefully to gain insight into the relationships of the genus. In this study the chromosome numbers and karyotypes of 18 taxa from sect. Idaeobatus and 10 taxa from sect. Malachobatus were investigated. Among them, the chromosome numbers of 10 taxa and karyotypes of 26 taxa were reported for the first time and mixoploidy was observed new in the genus. The chromosomes are small in size with a length of less than 3 µm and metacentric (about 90%) or submetacentric. All taxa have karyotypes of “1A” except R. cockburnianus, R. innominatus and R. ellipticus var. obcordatus, which have karyotypes of “2A”. No aneuploids were found in all the 28 taxa studied. Plants of sect. Idaeobatus have diploids with 2n=2x=14, except R. idaeopsis (2n=3x=21) and R. parvifolius (A mixoploid of 2n=2x=14 and 2n=4x=28). However, plants of sect. Malachobatus have tetraploids with 2n=4x=28, except for R. buergeri with 2n=8x=56. In addition, conspicuous karyotype differences existed within the 18 taxa belonging to 11 of 7 subsections in sect. Idaeobatus, and the differences between some species within subsections are greater than that between subsections, while uniform karyotypes within subsections and variable karyotypes between subsections were observed in six of 13 subsections in sect. Malachobatus represented by 10 taxa. Systematic values of the cytological data were discussed for some cases when applicable to the two sections.  相似文献   

14.
The chromosome complement and the C-banded karyotypes of specimens of Geoplana marginata auct. and of Issoca rezendei (Schirch) were investigated. The diploid and fundamental numbers of the two species were identical (2n = 14; FN = 28). Their karyotypes were similar except for the morphology of chromosome pair 6. Their C-banding patterns differed in quantity and localization of the constitutive heterochromatin. The similarity in karyotypes of these species support the hypothesis, proposed earlier on morphological grounds, that the genera Geoplana Stimpson and Issoca Froehlich are closely related. G. marginata and I. rezendei are the first land planarian species of the Neotropical Region to have their karyotypes described.  相似文献   

15.
Chromosome numbers for 14 taxa of indigenous Thai Rubiaceae are presented. They include first counts for 3 genera: Aphaenandra (A. uniflora), Prismatomeris (P. tetrandra subsp. malayana) and Tarennoidea (T. wallichii) ; all show diploidy on x=11. The remaining counts are first counts for species: Argostemma diversifolium, A. neurocalyx and A. pictum, Coptosapelta flavenscens, Gardenia saxtilis, Ixora sp., Morinda sp., Mussaenda sanderiana, Oxyceros horridus, Rothmannia wittii (first count for an Asiatic species of the genus) (all diploid on x=11), and Canthium sp. (tetraploid on x=11). The poor state of karyological knowledge of indigenous Thai Rubiaceae is discussed, and a table including all relevant known chromosome counts is presented. Chromosome data are only known for 38 genera (ca. 41% of all Rubiaceae genera occurring in Thailand); chromosome numbers are often only available for one or few taxa of each genus [in sum, for only about 50 (or for roughly 10% of all) taxa]. Of only 14 genera (ca. 15%), chromosomes were counted from Thai material (for the others, counts originate from elsewhere, i.e. refer to more widely distributed taxa also extending into Thailand).  相似文献   

16.
Chromosome numbers are presented for the first time for 30 accessions of nine south-eastern South American Lupinus species. Chromosome numbers of 2 n = 32 and 34 were found for L. bracteolaris (three out of five accessions with 2 n = 32) and L. linearis (two out of three accessions with 2 n = 32), and of 2 n = 36 for L. gibertianus , L. lanatus, L. magnistipulatus , L. multiflorus , L. rubriflorus , L. reitzii and L. uleanus . All the South American species examined have relatively low chromosome numbers when compared with most of the Old World and North American species. Our results, where 2 n = 36 is the rule, are in sharp contrast to the data for North American Lupinus species and reveal the following: (1) low chromosome numbers are the rule, at least in the southern part of eastern South America; (2) cytologically, the eastern South American species form a group distinct from the North American taxa; (3) high levels of polyploidy have not played as important a role in evolution and speciation in eastern South America as in North America; (4) the predominance of low chromosome numbers in eastern South American species and the existence of similar numbers in two of the six rough-seeded Old World species support the hypothesis that in the evolution of the genus the eastern South American species branched off first, followed by the rough-seeded group.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Socety , 2002, 139 , 395–400.  相似文献   

17.
The karyotypes of salmonid fishes including taxa in the three subfamilies Coregoninae, Thymallinae and Salmoninae are described. This review is an update of the (Hartley, 1987) review of the chromosomes of salmonid fishes. As described in the previous review, the karyotypes of salmonid fishes fall into two main categories based on chromosome numbers: the type A karyotypes have diploid numbers close to 80 with approximately 100 chromosome arms (2n = 80, NF = 100), and the type B karyotypes have diploid numbers close to 60 with approximately 100 chromosome arms (2n = 60, NF = 100). In this paper we have proposed additional sub categories based on variation in the number of chromosome arms: the A' type with NF = 110-120, the A" type with NF greater than 140, and the B' type with NF less than 80. Two modes of chromosome evolution are found in the salmonids: in the Coregoninae and the Salmoninae the chromosomes have evolved by centric fusions of the Robertsonian type decreasing chromosome numbers (2n) while retaining chromosome arm numbers (NF) close to that found in the hypothetical tetraploid ancestor so that most extant taxa have either type A or type B karyotypes. In the Thymallinae, the chromosomes have evolved by inversions so that chromosome arm numbers (NF) have increased but chromosome numbers (2n) close to the karyotype of the hypothetical tetraploid ancestor have been retained and all taxa have type A' karyotypes. Most of the taxa with type B karyotypes in the Coregoninae and Salmoninae are members of the genus Oncorhynchus, although at least one example of type B karyotypes is found in all of the other genera. These taxa either have an anadromous life history or are found in specialized lacustrine environments. Selection for increases or decreases in genetic recombination as proposed by Qumsiyeh, 1994 could have been involved in the evolution of chromosome number in salmonid fishes.  相似文献   

18.
胡秀  吴福川  刘念 《广西植物》2011,31(2):175-180
采用压片法对中国姜花属十八个分类群进行了体细胞染色体计数,对白姜花减数分裂终变期I的染色体数目和形态进行了观察。结果显示:包括白姜花在内的十九个分类群中有六个二倍体,一个三倍体,十二个四倍体,其中十二个分类群的体染色体数目为首次报道,显示中国姜花属植物具有较高比例的多倍体类型;姜花属的染色体基数为n=17,染色体组可能是多倍体起源的。  相似文献   

19.
The relative importance of dispersal and vicariance in the diversification of taxa has been much debated. Within butterflies, a few studies published so far have demonstrated vicariant patterns at the global level. We studied the historical biogeography of the genus Junonia (Nymphalidae: Nymphalinae) at the intercontinental level based on a molecular phylogeny. The genus is distributed over all major biogeographical regions of the world except the Palaearctic. We found dispersal to be the dominant process in the diversification of the genus. The genus originated and started diversifying in Africa about 20 Ma and soon after dispersed into Asia possibly through the Arabian Peninsula. From Asia, there were dispersals into Africa and Australasia, all around 5 Ma. The origin of the New World species is ambiguous; the ancestral may have dispersed from Asia via the Beringian Strait or from Africa over the Atlantic, about 3 Ma. We found no evidence for vicariance at the intercontinental scale. We argue that dispersal is as important as vicariance, if not more, in the global diversification of butterflies.  相似文献   

20.
The physical location of the 25S-26S rDNA sequences was examined in 11 taxa of nine species of Boronia. In diploid species, two rDNA sites were detected in Boronia clavata (2n = 14), Boronia pinnata 'White' (2n = 22), and Boronia chartacea (2n = 32); four in Boronia megastigma (2n = 14) and Boronia denticulata (2n = 18); six in Boronia pinnata 'Pink' (2n = 22); and eight in Boronia molloyae (2n = 16). Eleven sites were found in Boronia heterophylla 'Red' and 'Near White' (2n = 15), but only two active nucleolar organizer regions (NORs) were observed. In polyploid species, Boronia pilosa (2n = 44) had four rDNA sites, while Boronia coerulescens (2n = 72) had six. Most of the rDNA sequences were terminal, but a few were interstitial. There were also differences in signal intensity indicating that the gene copies between and within rDNA sites might be different. The result suggests that considerable chromosome rearrangements have occurred during Boronia cyto-evolution, leading to variation among Boronia taxa in rDNA copy number, site number, and location. These changes together with dysploid reduction during cyto-evolution have made the Boronia genome considerably diverse in chromosome number, genome organization, and chromosome structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号