首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic deprivation of nutrients is rare in normal tissues, however large areas of tumor are nutrient-starved and hypoxic due to a disorganized vascular system. Some cancers show an inherent ability to tolerate severe growth conditions. Therefore, we screened chemical compounds to identify cytotoxic agents that function preferentially in nutrient-deprived conditions. We found that AG1024, a specific inhibitor of insulin-like growth factor-1 receptor tyrosine kinase (IGF-1R), showed preferential cytotoxicity to human pancreatic cancer cells in nutrient-deprived conditions relative to cells in nutrient-sufficient conditions. The cytotoxicity of I-OMe-AG538 (another specific inhibitor of IGF-1R kinase) was also enhanced in nutrient-deprived cells. In addition, AG1024 and I-OMe-AG538 potently inhibited IGF-1R activation to nutrient-deprived cells. In contrast, conventional chemotherapeutic drugs, as well as inhibitors of PDGFR and EGFR kinases, elicited weak cytotoxicity. These data indicate that nutrient-deprived human pancreatic cancer cells have increased sensitivity to inhibition of IGF-1R activation. IGF-1R inhibitors offer a promising strategy for anticancer therapeutic approaches that are oriented toward tumor microenvironment.  相似文献   

2.
Because insulin-like growth factor-1 (IGF-1) and its receptor play a pivotal role in many cancers, it is an attractive target for the design of inhibitors. Here we present a new family of bioisostere inhibitors, based on the structure of AG 538. AG 538 is a substrate-competitive inhibitor of the IGF-1 receptor (IGF-1R), with an IC50 = 61 nM in a cell-free kinase assay (Blum, G., Gazit, A., and Levitzki, A. (2000) Biochemistry 39, 15705-15712). AG 538 is a low molecular weight compound containing two catechol rings, which are sensitive to oxidation in cells. We have therefore prepared and examined catechol bioisosteres of AG 538. These AG 538 bioisosteres possess similar biological properties to AG 538; they inhibit IGF-1R by a substrate-competitive mechanism and are non-competitive vis à vis ATP. They inhibit IGF-1R kinase activity in the sub-micromolar concentration range in cell-free assays. IGF-1 induced IGF-1R autophosphorylation; IRS-1 phosphorylation and protein kinase B activation are inhibited at a low micromolar concentration range when applied to intact cells. These inhibitors also block the formation of colonies in soft agar by prostate and breast cancer cells. The ability to replace catechol groups with a moiety that is more stable in cells may aid in developing non-catechol-containing substrate-competitive inhibitors targeted toward IGF-1R and possibly against other protein-tyrosine kinases.  相似文献   

3.
Competitive hormone binding studies with membrane and partially purified receptors from Xenopus laevis oocytes revealed that the oocyte possesses high affinity (KD = 1-3 nM) binding sites for both insulin growth factors 1 and 2 (IGF-1 and IGF-2), but not for insulin. Consistent with these findings, IGF-1 activates hexose uptake by Xenopus oocytes with a KA (3 nM) identical with its KD, while IGF-2 and insulin activate hexose uptake with KA values of 50 nM and 200-250 nM, respectively, suggesting activation mediated through an IGF-1 receptor. Both IGF-1 and insulin activate receptor beta-subunit autophosphorylation and, thereby, protein substrate (reduced and carboxyamidomethylated lysozyme, i.e. RCAM-lysozyme) phosphorylation with KA values comparable to their respective KD values for ligand binding and KA values for activation of hexose uptake. The autophosphorylated beta-subunit(s) of the receptor were resolved into two discrete components, beta 1 and beta 2 (108 kDa and 94 kDa, respectively), which were phosphorylated exclusively on tyrosine and which exhibited similar extents of IGF-1-activated autophosphorylation. When added prior to autophosphorylation, RCAM-lysozyme blocks IGF-1-activated autophosphorylation and, thereby, IGF-1-activated protein substrate (RCAM-lysozyme) phosphorylation. Based on these findings, we conclude that IGF-1-stimulated autophosphorylation of its receptor is a prerequisite for catalysis of protein substrate phosphorylation by the receptor's tyrosine-specific protein kinase. The IGF-1 receptor kinase is implicated in signal transmission from the receptor, since anti-tyrosine kinase domain antibody blocks IGF-1-stimulated kinase activity in vitro and, when microinjected into intact oocytes, prevents IGF-1-stimulated hexose uptake.  相似文献   

4.
The type 1 insulin-like growth factor receptor (IGF-1R) is often overexpressed on tumor cells and is believed to play an important role in anchorage-independent proliferation. Additionally, cell culture studies have indicated that IGF-1R confers increased resistance to apoptosis caused by radiation or chemotherapeutic agents. Thus, inhibitors of the intracellular kinase domain of this receptor may have utility for the clinical treatment of cancer. As part of an effort to develop clinically useful inhibitors of IGF-1R kinase, a novel class of pyrrole-5-carboxaldehyde compounds was investigated. The compounds exhibited selectivity against the closely related insulin receptor kinase intrinsically and in cell-based assays. The inhibitors formed a reversible, covalent adduct at the kinase active site, and treatment of such adducts with sodium borohydride irreversibly inactivated the enzyme. Analysis of a tryptic digest of a covalently modified IGF-1R kinase fragment revealed that the active site Lys1003 had been reductively alkylated with the aldehyde inhibitor. Reductive alkylation of the insulin receptor kinase with one of these inhibitors led to a similarly inactivated enzyme which was examined by X-ray crystallography. The crystal structure confirmed the modification of the active site lysine side chain and revealed details of the key interactions between the inhibitor and enzyme.  相似文献   

5.
The insulin-like growth factor 1 (IGF1) receptor is closely related to the insulin receptor. However, the unique biological functions of IGF1 receptor make it a target for therapeutic intervention in human cancer. Using its isolated tyrosine kinase domain, we show that the IGF1 receptor is regulated by intermolecular autophosphorylation at three sites within the kinase activation loop. Steady-state kinetic analyses of the isolated phosphorylated forms of the IGF1 receptor kinase (IGF1RK) reveal that each autophosphorylation event increases enzyme turnover number and decreases Km for ATP and peptide. We have determined the 2.1 A-resolution crystal structure of the tris-phosphorylated form of IGF1RK in complex with an ATP analog and a specific peptide substrate. The structure of IGF1RK reveals how the enzyme recognizes peptides containing hydrophobic residues at the P+1 and P+3 positions and how autophosphorylation stabilizes the activation loop in a conformation that facilitates catalysis. Although the nucleotide binding cleft is conserved between IGF1RK and the insulin receptor kinase, sequence differences in the nearby interlobe linker could potentially be exploited for anticancer drug design.  相似文献   

6.
BACKGROUND: The insulin-like growth-factor-1 (IGF-1) receptor, which is widely expressed in cells that have undergone oncogenic transformation, is emerging as a novel target in cancer therapy. IGF-1-induced receptor activation results in autophosphorylation of cytoplasmic kinase domains and enhances their capability to phosphorylate downstream substrates. Structures of the homologous insulin receptor kinase (IRK) exist in an open, unphosphorylated form and a closed, trisphosphorylated form. RESULTS: We have determined the 2.1 A crystal structure of the IGF-1 receptor protein tyrosine kinase domain phosphorylated at two tyrosine residues within the activation loop (IGF-1RK2P) and bound to an ATP analog. The ligand is not in a conformation compatible with phosphoryl transfer, and the activation loop is partially disordered. Compared to the homologous insulin receptor kinase, IGF-1RK2P is trapped in a half-closed, previously unobserved conformation. Observed domain movements can be dissected into two orthogonal rotational components. CONCLUSIONS: Conformational changes upon kinase activation are triggered by the degree of phosphorylation and are crucially dependent on the conformation of the proximal end of the kinase activation loop. This IGF-1RK structure will provide a molecular basis for the design of selective antioncogenic therapeutic agents.  相似文献   

7.
IGF-1 receptor (IGF1R) is a transmembrane tyrosine kinase, which is indispensable for cellular growth and differentiation. Using a recombinant GST-tagged cytosolic fragment of IGF1R (GST-IGFK), we now show that oxidation by low doses (50 muM) of hydrogen peroxide markedly inhibits maximum phosphate incorporation in autophosphorylation and substrate phosphorylation assays. A similar inhibition was observed on the activity of intact IGF1R after treatment of T-47D cells. These results are in sharp contrast to the positive influence of hydrogen peroxide on the highly homologous insulin receptor kinase, which was assayed for comparison. This reciprocal influence of physiologically relevant doses of hydrogen peroxide may have important implications on signal transduction of the closely related receptors for insulin and IGF-1.  相似文献   

8.
We have extended these observations to examine the role of polylysine on the divalent metal ion requirement for ligand-stimulated protein kinase activity and the transmembrane signaling mechanism of both the human placenta insulin and insulin-like growth factor 1 (IGF-1) receptors. Polylysine (0.2-1 microM) was found to activate maximally the alpha 2 beta 2 heterotetrameric insulin receptor autophosphorylation and exogenous substrate protein kinase activity 25-50-fold in the presence of insulin without significantly affecting the basal protein kinase activity in the absence of insulin. The polylysine-dependent insulin stimulation of protein kinase activity required the presence of both magnesium and manganese but at relatively low divalent metal ion concentrations (0.1 mM) compared to the typical 2-10 mM Mg/Mn used in the standard in vitro kinase assays. The stimulation of the insulin receptor kinase by insulin in the presence of polylysine occurred primarily due to an increase in Vmax with no significant effect on the Km for ATP. In addition, autophosphorylated insulin receptors which are protein kinase-active and insulin-independent at high metal ion concentrations still displayed the polylysine-dependent insulin stimulation of protein kinase activity to the same extent as nonphosphorylated insulin receptors at low Mg/Mn (0.1 mM) concentrations. Surprisingly, polylysine was completely unable to stimulate the IGF-1-dependent protein kinase activity of the homologous human placenta IGF-1 receptor. These data suggest that the insulin receptor tyrosine-specific protein kinase activity may be regulated by unique endogenous basic proteins that are distinct from those which modify the IGF-1 receptor.  相似文献   

9.
Abstract

IGF-1 receptor (IGF1R) is a transmembrane tyrosine kinase, which is indispensable for cellular growth and differentiation. Using a recombinant GST-tagged cytosolic fragment of IGF1R (GST-IGFK), we now show that oxidation by low doses (50 μM) of hydrogen peroxide markedly inhibits maximum phosphate incorporation in autophosphorylation and substrate phosphorylation assays. A similar inhibition was observed on the activity of intact IGF1R after treatment of T-47D cells. These results are in sharp contrast to the positive influence of hydrogen peroxide on the highly homologous insulin receptor kinase, which was assayed for comparison. This reciprocal influence of physiologically relevant doses of hydrogen peroxide may have important implications on signal transduction of the closely related receptors for insulin and IGF-1.  相似文献   

10.
S R Hubbard 《The EMBO journal》1997,16(18):5572-5581
The crystal structure of the phosphorylated, activated form of the insulin receptor tyrosine kinase in complex with a peptide substrate and an ATP analog has been determined at 1.9 A resolution. The activation loop (A-loop) of the kinase undergoes a major conformational change upon autophosphorylation of Tyr1158, Tyr1162 and Tyr1163 within the loop, resulting in unrestricted access of ATP and protein substrates to the kinase active site. Phosphorylated Tyr1163 (pTyr1163) is the key phosphotyrosine in stabilizing the conformation of the tris-phosphorylated A-loop, whereas pTyr1158 is completely solvent-exposed, suggesting an availability for interaction with downstream signaling proteins. The YMXM-containing peptide substrate binds as a short anti-parallel beta-strand to the C-terminal end of the A-loop, with the methionine side chains occupying two hydrophobic pockets on the C-terminal lobe of the kinase. The structure thus reveals the molecular basis for insulin receptor activation via autophosphorylation, and provides insights into tyrosine kinase substrate specificity and the mechanism of phosphotransfer.  相似文献   

11.
The kinase activity of partially purified insulin receptor obtained from human placenta was studied. When autophosphorylation of the beta-subunit of the receptor was initiated by ATP prior to the addition of the exogenous substrate, both basal and insulin-stimulated kinase activity was increased. However, half-maximum effective insulin concentrations were unchanged. Insulin receptor autophosphorylation as stimulated by ATP and insulin failed to affect significantly 125I-insulin binding to partially purified insulin receptor from human placenta. It is concluded that autophosphorylation of the insulin receptors regulates its kinase activity but not its affinity for insulin. The catalytic subunit of cyclic AMP-dependent protein kinase failed to phosphorylate either subunit of the insulin receptor, and each kinase failed to affect the affinity of the other one. Thus no functional interaction between cyclic AMP-dependent protein kinase and insulin receptors was observed in the in vitro system.  相似文献   

12.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

13.
The kinetics of insulin-stimulated autophosphorylation of specific tyrosines in the beta subunit of the mouse insulin receptor and activation of receptor kinase-catalyzed phosphorylation of a model substrate were compared. The deduced amino acid sequence of the mouse proreceptor was determined to locate tyrosine-containing tryptic peptides. Receptor was first incubated with unlabeled ATP to occupy nonrelevant autophosphorylation sites, after which [32P]autophosphorylation at relevant sites and attendant activation of substrate phosphorylation were initiated with [gamma-32P]ATP and insulin. Activation of substrate phosphorylation underwent an initial lag of 10-20 s during which there was substantial 32P-autophosphorylation of tryptic phosphopeptides p2 and p3, but not p1. Following the lag, incorporation of 32P into p1 and the activation of substrate phosphorylation increased abruptly and exhibited identical kinetics. The addition of substrate to the receptor prior to ATP inhibits insulin-stimulated autophosphorylation, and consequently substrate phosphorylation. Insulin-stimulated autophosphorylation of the receptor in the presence of substrate inhibited primarily the incorporation of 32P into p1 and drastically inhibited substrate phosphorylation. From Edman radiosequencing of 32P-labeled p1, p2, and p3 and the amino acid sequence of the mouse receptor, the location of each phosphopeptide within the beta subunit was determined. Further characterization of these phosphopeptides revealed that p1 and p2 represent the triply and doubly phosphorylated forms, respectively, of the region within the tyrosine kinase domain containing tyrosines 1148, 1152, and 1153. The doubly phosphorylated forms contain phosphotyrosines either at positions 1148 and 1152/1153 or positions 1152 and 1153. These results indicate that insulin stimulates sequential autophosphorylation of tyrosines 1148, 1152 and 1153, and that the transition from the doubly to the triply phosphorylated forms is primarily responsible for the activation of substrate phosphorylation.  相似文献   

14.
Vascular endothelial growth factor is an important physiological regulator of angiogenesis. The function of this endothelial cell selective growth factor is mediated by two homologous tyrosine kinase receptors, fms-like tyrosine kinase 1 (Flt-1) and kinase domain receptor (KDR). Although the functional consequence of vascular endothelial growth factor binding to the Flt-1 receptor is not fully understood, it is well established that mitogenic signaling is mediated by KDR. Upon sequencing several independent cDNA clones spanning the cytoplasmic region of human KDR, we identified and confirmed the identity of a functionally required valine at position 848 in the ATP binding site, rather than the previously reported glutamic acid residue, which corresponds to an inactive tyrosine kinase. The cytoplasmic domain of recombinant native KDR, expressed as a glutathione S-transferase fusion protein, can undergo autophosphorylation in the presence of ATP. In addition, the kinase activity can be substantially increased by autophosphorylation at physiologic ATP concentrations. Mutation analysis indicates that both tyrosine residues 1054 and 1059 are required for activation, which is a consequence of an increased affinity for both ATP and the peptide substrate and has no effect on kcat, the intrinsic catalytic activity of the enzyme. KDR kinase catalyzes phosphotransfer by formation of a ternary complex with ATP and the peptide substrate. We demonstrate that tyrosine kinase antagonists can preferentially inhibit either the unactivated or activated form of the enzyme.  相似文献   

15.
Annexin II is secreted into the extracellular environment, where, via interactions with specific proteases and extracellular matrix proteins, it participates in plasminogen activation, cell adhesion, and tumor metastasis and invasion. However, mechanisms regulating annexin II transport across the cellular membrane are unknown. In this study, we used coimmunoprecipitation to show that Annexin-II was bound to insulin and insulin-like growth factor-1 (IGF-1) receptors in PC12 cells and NIH-3T3 cells overexpressing insulin (NIH-3T3(IR)) or IGF-1 receptor (NIH-3T3(IGF-1R)). Stimulation of insulin and IGF-1 receptors by insulin caused a temporary dissociation of annexin II from these receptors, which was accompanied by an increased amount of extracellular annexin II detected in the media of PC12, NIH-3T3(IR), and NIH-3T3(IGF-1R) cells but not in that of untransfected NIH-3T3 cells. Activation of a different growth factor receptor, the platelet-derived growth factor receptor, did not produce such results. Tyrphostin AG1024, a tyrosine kinase inhibitor of insulin and IGF-1 receptor, was shown to inhibit annexin II secretion along with reduced receptor phosphorylation. Inhibitors of a few downstream signaling enzymes including phosphatidylinositol 3-kinase, pp60c-Src, and protein kinase C had no effect on insulin-induced annexin II secretion, suggesting a possible direct link between receptor activation and annexin II secretion. Immunocytochemistry revealed that insulin also induced transport of the membrane-bound form of annexin II to the outside layer of the cell membrane and appeared to promote cell aggregation. These results suggest that the insulin receptor and its signaling pathways may participate in molecular mechanisms mediating annexin II secretion.  相似文献   

16.
The molecular process by which insulin binding to the receptor alpha-subunit induces activation of the receptor beta-subunit with ensuing substrate phosphorylation remains unclear. In this study, we aimed at approaching this molecular mechanism of signal transduction and at delineating the cytoplasmic domains implied in this process. To do this, we used antipeptide antibodies to the following sequences of the receptor beta-subunit: (i) positions 962-972 in the juxtamembrane domain, (ii) positions 1247-1261 at the end of the kinase domain, and (iii) positions 1294-1317 and (iv) positions 1309-1326, both in the receptor C terminus. We have previously shown that insulin binding to its receptor induces a conformational change in the beta-subunit C terminus. Here, we demonstrate that receptor autophosphorylation induces an additional conformational change. This process appears to be distinct from the one produced by ligand binding and can be detected in at least three different beta-subunit regions: the juxtamembrane domain, the kinase domain, and the C terminus. Hence, the cytoplasmic part of the receptor beta-subunit appears to undergo an extended conformational change upon autophosphorylation. By contrast, the insulin-induced change does not affect the juxtamembrane domain 962-972 nor the kinase domain 1247-1261 and may be limited to the receptor C terminus. Further, we show that the hormone-dependent conformational change is maintained in a kinase-deficient receptor due to a mutation at lysine 1018. Therefore, during receptor activation, the ligand-induced change could precede ATP binding and receptor autophosphorylation. We propose that insulin binding leads to a transient receptor form that may allow ATP binding and, subsequently, autophosphorylation. The second conformational change could unmask substrate-binding sites and stabilize the receptor in an active conformation.  相似文献   

17.
Phosphorylation of the adipocyte lipid-binding protein (ALBP) isolated from 3T3-L1 cells has been studied in vitro utilizing the wheat germ agglutinin-purified 3T3-L1 adipocyte insulin receptor and the soluble kinase domain of the human insulin receptor. Following insulin-stimulated, ATP-dependent autophosphorylation of the wheat germ agglutinin-purified receptor beta-subunit, ALBP was phosphorylated exclusively on tyrosine 19 in the sequence Glu-Asn-Phe-Asp-Asp-Tyr19, analogous to the substrate phosphorylation consensus sequence observed for several tyrosyl kinases. The concentration of insulin necessary for half-maximal receptor autophosphorylation (KIR0.5) was identical to that necessary for half-maximal ALBP phosphorylation (KALBP0.5), 10 nM. Kinetic analysis indicated that stimulation of ALBP phosphorylation by insulin was attributable to a 5-fold increase in the Vmax (to 0.33 fmol/min/fmol insulin-binding sites) while the Km for ALBP was largely unaffected. By utilizing the soluble kinase domain of the human receptor beta-subunit, the presence of oleate bound to ALBP increased the kcat/Km greater than 3-fold. Oleate dramatically inhibited autophosphorylation of the 38-kDa fragment of the soluble receptor kinase in a concentration dependent fashion (I0.5 approximately 4 microM). The 48-kDa kinase exhibited much less sensitivity to the effects of oleate (I0.5 approximately 190 microM). The inhibition of autophosphorylation of the 48-kDa soluble kinase by oleate was reversed by adding saturating levels of ALBP. These results demonstrate that in vitro the murine adipocyte lipid-binding protein is phosphorylated on tyrosine 19 in an insulin-stimulated fashion by the insulin receptor and that the presence of a bound fatty acid on ALBP increases the affinity of insulin receptor for ALBP. Inhibition of insulin receptor kinase activity by unbound fatty acids suggests that the end products of the lipogenic pathway may feedback inhibit the tyrosyl kinase and that fatty acid-binding proteins have the potential to modulate such interaction.  相似文献   

18.
Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the (1248)SFYYS(1252) motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling.  相似文献   

19.
We studied the inhibitory effect of non-phosphorylated and triphosphorylated synthetic peptides, corresponding to amino acids 1143-1155 of the insulin proreceptor (domain 1151) on autophosphorylation and kinase of the insulin receptor. Tyrosine-phosphorylated peptides were synthesized using the N-(9-fluorenylmethoxycarbonyl)-O-dibenzylphosphono-L- tyrosine. The triphosphorylated peptide (1151-P3) and the non-phosphorylated peptide (1151-NP), respectively, inhibited insulin receptor autophosphorylation by 65% and 70%, in a dose-dependent and additive manner. When the receptor was pre-phosphorylated for 1 min with [gamma-32P]ATP, 1151-P3 decreased autophosphorylation to 60% of maximum, whereas 1151-NP had no further effect. In both non-activated and preactivated receptors, 1151-P3 inhibition of receptor autophosphorylation was prevented by adding 2 mM vanadate. Kinase activity towards exogenous substrate poly(Glu4, Tyr) was dose-dependently inhibited by both analogues. This effect was independent of the state of receptor phosphorylation or the addition of vanadate. Since 1151-P3 inhibited the exogenous kinase without altering receptor endogenous autophosphorylation after the addition of vanadate, we investigated 1151-NP and 1151-P3 competition for the phosphorylation of a resin-immobilized 1151 peptide. While 1151-NP (at 2 mM) was highly competitive, inhibiting phosphate incorporation by 70%, 1151-P3 caused a four-fold increase in the phosphorylation of 1151-NP--resin. The receptor underwent conformational changes during autophosphorylation and an antibody directed against a peptide corresponding to amino acids 1314-1330 of the proreceptor (1322Ab) was previously shown to immunoprecipitate specifically the non-phosphorylated receptor forms. Nevertheless, the 1322Ab immunoprecipitated a fully autophosphorylated receptor in the presence of 1151-NP, but not of 1151-P3, thus suggesting a conformational change induced by the non-phosphorylated peptide. In conclusion, kinase inhibition was still observed after the addition of phosphate groups to three 1151-peptide tyrosines, but the peptide effect on receptor autophosphorylation, phosphorylation of homologous 1151-NP--resin and conformational changes induced in the receptor was altered dramatically. These data may provide a basis for further understanding the role of tyrosine phosphorylation in insulin receptor kinase activation or regulation.  相似文献   

20.
The most commonly detected polymorphism in human insulin receptor substrate-1 (IRS-1), a glycine to arginine change at codon 972 (G972R), is associated with an increased risk of Type 2 diabetes and insulin resistance. To determine the molecular mechanism by which this polymorphism may be linked to insulin resistance, we produced recombinant peptides comprising amino acid residues 925-1008 from IRS-1 that contain either a glycine or arginine at codon 972 and the two nearby tyrosine phosphorylation consensus sites (EY(941)MLM and DY(989)MTM), which are known binding sites for the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. The wild type peptide could be phosphorylated at these sites in vitro by purified insulin receptor. Introduction of the G972R polymorphism into the peptide reduced the amount of tyrosine phosphorylation by >60%. Pull-down experiments indicated that there was an association between the IRS-1-(925-1008) peptide and the insulin receptor that was markedly enhanced by the presence of the G972R polymorphism. The use of additional overlapping fragments localized this interaction to domains between residues 950-986 of IRS-1 and residues 966-1271 of the insulin receptor, containing the tyrosine kinase domain of the receptor. In addition, the IRS-1-(925-1008) G972R peptide acted as a competitive inhibitor of insulin receptor and insulin-like growth factor-1 receptor autophosphorylation. Taken together, these data indicate that the G972R naturally occurring polymorphism of IRS-1 not only reduces phosphorylation of the substrate but allows IRS-1 to act as an inhibitor of the insulin receptor kinase, producing global insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号