首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most starch hydrolases and related enzymes belong to the -amylase family which contains a characteristic catalytic (/)8-barrel domain. Currently known primary structures that have sequence similarities represent 18 different specificities, including starch branching enzyme. Crystal structures have been reported in three of these enzyme classes: the -amylases, the cyclodextrin glucanotransferases, and the oligo-1,6-glucosidases. Throughout the -amylase family, only eight amino acid residues are invariant, seven at the active site and a glycine in a short turn. However, comparison of three-dimensional models with a multiple sequence alignment suggests that the diversity in specificity arises by variation in substrate binding at the loops. Designed mutations thus have enhanced transferase activity and altered the oligosaccharide product patterns of -amylases, changed the distribution of -, - and -cyclodextrin production by cyclodextrin glucanotransferases, and shifted the relative -1,4:-1,6 dual-bond specificity of neopullulanase. Barley -amylase isozyme hybrids and Bacillus -amylases demonstrate the impact of a small domain B protruding from the (/)8-scaffold on the function and stability. Prospects for rational engineering in this family include important members of plant origin, such as -amylase, starch branching and debranching enzymes, and amylomaltase.Abbreviations CGTase cyclodextrin glucanotransferase - SBD starch binding domain - TAA taka-amylase A - TIM triose-phosphate isomerase. The mutations are described with the one-letter code, i.e. D164A is a mutant in which A in the mutant is substituted for D in the wild-type.  相似文献   

2.
Summary Aspergillus sp. K-27, isolated from soil, produced extracellular glucoamylase and -amylase using wheat starch as a carbon source, and its productivity was doubled by the addition of -methyl-d-glucoside to the medium. The crude enzyme preparation, which was found to be a mixture of 70% glucoamylase and 30% -amylase, well degraded not only cereal starches but also tuber and root starches, and the initial velocity for potato starch was 72% of that for corn starch.  相似文献   

3.
Summary Microorganisms which produce strong raw-starch degrading enzymes were isolated from soil using a medium containing a unique carbon source, -amylase resistant starch (-RS), which is insoluble in water and hardly digested with Bacillus amyloliquefaciens -amylase. Among the isolates, three strains showing high activities were characterized. Two of them, K-27 (fungus) and K-28 (yeast), produced -amylase and glucoamylase, and the final product from starch was only glucose. The third strain, K-2, was a bacterium and produced -amylase, which produced glucose and malto-oligosaccharides from starch. The enzyme preparation of these strains degraded raw corn starch rapidly.  相似文献   

4.
Classification and characterization of the rice α-amylase multigene family   总被引:18,自引:0,他引:18  
To establish the size and organization of the rice -amylase multigene family, we have isolated 30 -amylase clones from three independent genomic libraries. Partial characterization of these clones indicates that they fall into 5 hybridization groups containing a total of 10 genes. Two clones belonging to the Group 3 hybridization class have more than one gene per cloned fragment. The nucleotide sequence of one clone from Group 1, OSg2, was determined and compared to other known cereal -amylase sequences revealing that OSg2 is the genomic analog of the rice cDNA clone, pOS103. The rice -amylase genes in Group 1 are analogous to the -Amy1 genes in barley and wheat. OSg2 contains sequence motifs common to most actively transcribed genes in plants. Two consensus sequences, TAACA G A A and TATCCAT, were found in the 5 flanking regions of -amylase genes of rice, barley and wheat. The former sequence may be specific to -amylase gene while the latter sequence may be related to a CATC box found in many plant genes. Another sequence called the pyrimidine box ( T C CTTTT T C ) was found in the -amylase genes as well as other genes regulated by gibberellic acid (GA). Comparisons based on amino acid sequence alignment revealed that the multigene families in rice, barley and wheat shared a common ancestor which contained three introns. Some of the descendants of the progenitor -amylase gene appear to have lost the middle intron while others maintain all three introns.  相似文献   

5.
The amounts of a 160-kDa amylase and a 140-kDa -amylase (A. Burgess-Cassler and S. H. Imam, Curr. Microbiol. 23:207–213, 1991) secreted into culture medium by the starchutilizingLactobacillus amylovorus were enhanced by the use of cyclodextrin (CD) as the carbon source. The levels of total extracellular -amylase obtained with glucose as the carbon source could be boosted severalfold by use of CD. The best enhancer was -CD, and the rank order of best to least effective was -CD>-CD=-CD>glucose.Another amylase, a 65-kDa -amylase, which degraded para-nitrophenyl-(1,4)-d-glucopyranoside, was also detected in this study. The most effective enhancer in this case was -CD, and the rank order was -CD>-CD>-CD glucose. Despite its ability to degradep-nitrophenylated glucose, this enzyme did not convert maltose to glucose. It showed a cleared zone on starch zymograms and did degrade short maltodextrins to maltose. Neither this new -amylase nor the 140-kDa -amylase exhibited any detectable ring-decyclizing (cyclodextrinase) activity against -or -CD.Other extracellular amylases (not characterized here) appeared to be similarly enhanced by CDs. Although the precise mechanism by which this effect is accomplished remains undefined, CDs can be useful inducing agents, boosting the expression and/or secretion of otherwise low-level enzymes, either as additives to growth media or as sole carbon source.  相似文献   

6.
C. Duffus  R. Rosie 《Planta》1973,109(2):153-160
Summary The enzymes -amylase (-1, 4-glucan 4-glucanohydrolase, 3.2.1.1), -amylase (-1,4-glucan maltohydrolase, 3.2.1.2) and phosphorylase (-1,4-glucan: orthophosphate glucosyltransferase, 2.4.1.1) were assayed in whole grains of barley throughout the maturation period. -amylase and phosphorylase had peaks of activity between 25 and 30 days after anthesis. On the other hand the activity of -amylase in both the available and latent forms reached a maximum value at 35 days after anthesis which did not decrease thereafter. -amylase activity was also assayed throughout development in the endosperm, aleurone, testa pericarp and embryo. Latent -amylase reached a constant maximum value in endosperm at 35 days but available -amylase reached a peak of activity at 25 days and then declined to zero at 45 days. Only latent -amylase was associated with the aleurone layer and activity rose to a maximum value at 35 days. The testa pericarp had mainly latent -amylase whose activity fell from an early maximum at 21 days to zero at 35 days. No hydrolytic activity was associated with the embryo. The phosphorylase activity was low and mainly associated with the endosperm fraction.  相似文献   

7.
Glycosides, 1-O-benzyl--glucoside (BG) and 1- O-benzyl--maltoside (BM), were synthesized from soluble starch and benzyl alcohol by transglycosylation with an -amylase in a water system. BG was mostly obtained in a reaction mixture of pH 5.0, while BM was synthesized in pH 8.0. The synthesized glycosides had -configuration linkage between sugar and benzyl alcohol. The BG was rapidly hydrolyzed to benzyl alcohol and glucose by -glucosidase. The BM was hydrolyzed to BG and glucose below pH 5.0 by the -amylase used for its synthesis but it was not hydrolyzed above pH 8.0.  相似文献   

8.
α-Amylase and glucoamylase production by Schwanniomyces castellii   总被引:1,自引:0,他引:1  
A chromogenic substrate (Cibachron blue-amylose), and soluble starch and maltose were used to characterize the amylolytic system from Schwanniomyces castellii 3754. The strain was able to produce inducible -amylase (EC 3.2.1.1) and glucoamylase (EC 3.2.1.3) when grown on different C sources. The effect of the C source was slightly different for -amylase and glucoamylase production. Melezitose, maltose and soluble starch enhanced both -amylase and glucoamylase synthesis to nearly the same extent; amylose, trehalose and cellobiose particularly induced -amylase synthesis. The optimal pH for the release of both amylases was 5.5–7.0; maximal -amylase synthesis, on the other hand, was observed in the medium buffered at pH 6.0. The optimal pH for -amylase and glucoamylase activity was in the range of 4.5–7.2 and 4.2–5.5, respectively. Temperatures allowing maximal activity were 45°C for -amylase and 45–52°C for glucoamylase; a rapid decline of both activities was observed just above these temperatures.The species Schwanniomyces castellii (together with Schw. alluvius) is now considered to be synonymous with Schw. occidentalis var. occidentalis (Kreger-Van Rij 1984).  相似文献   

9.
To elucidate the nature of substrate specificity and intrinsic mechanism of hydroxylation of steroids, in the present work we carried out molecular cloning and heterologous expression of cDNA for three new forms of cytochrome P45017 from species of the Bovidae family (sheep, goat, and bison), which catalyze 17-hydroxylation of both progesterone (P4) or pregnenolone (P5) and 17,20-lyase reaction resulting in cleavage of side chain with formation of C19-steroids. Recombinant cytochromes P45017 were expressed in E. coli as derivatives, containing a six-His tag at the C-terminal sequence that simplifies purification of the cloned heme proteins using metal-affinity chromatography. Highly purified cytochromes P45017 were used for determination of enzyme activity and specificity in relation to progesterone, pregnenolone, 17-hydroxyprogesterone, and 17-hydroxypregnenolone with registration of the kinetics of reaction product formation using HPLC. It is shown that each form of cytochrome P45017 is characterized by a specific profile of enzyme activity and dependence of 17,20-lyase reaction on the presence of cytochrome b5 in the reaction mixture. The analysis of the activity of the known forms of cytochrome P45017 in view of the data obtained in the present work allows the division of known cytochromes P45017 into three main group: group A (pig, hamster, rat), cytochromes P45017 catalyze the reaction of 17-hydroxylation of both P4 and P5 steroids and the 17,20-lyase reaction of 17-hydroxyprogesterone and 17-hydroxypregnenolone; group B (human, bovine, sheep, goat, and bison), cytochromes P45017, which have no or have insignificant 17,20-lyase activity in relation to 17-hydroxyprogesterone; group C (guinea pig), cytochrome P45017 which either has no or has insignificant 17,20-lyase activity on transformation 17-hydroxypregnenolone to dehydroepiandrosterone.  相似文献   

10.
Summary Genes for -amylase, alcohol dehydrogenase, andEm, an ABA-regulated gene expressed late in embryogenesis, were localized on rice chromosomes by the analysis of primary trisomies. The validity of the mapping approach was confirmed usingAdh-1 as a control. TheAdh-1 gene has previously been assigned to chromosome 11 using conventional techniques. In this study we confirm this assignment and report an additional locus for alcohol dehydrogenase (Adh-2) on chromosome 9. The -amylase genes were located on chromosomes 1, 2, 6, 8, and 9 while theEm gene was mapped to chromosome 5. To facilitate trisomic analysis and correlation of cloned genes with bands observed on Southern blots, a nomenclature for the rice -amylase genes has been proposed. In addition to mapping nine cloned -amylase genes, we have identified two previously uncloned -amylase genes as part of this study. Polymorphism for -amylase genes belonging to each of the three subfamilies was observed between M202 and IR36. The maximum degree of polymorphism was found among genes belonging to the RAmy3 subfamily, which also has the most diverse group of genes.  相似文献   

11.
Summary Rye -Amy1, -Amy2, and -Amy3 genes were studied in the cross between inbred lines using wheat -amylase cDNA probes. The -Amy1 and -Amy2 probes uncovered considerable restriction fragment length polymorphism, whereas the -Amy3 region was much more conserved. The numbers of restriction fragments found and the F2 segregation data suggest that there are three -Amy1 genes, two or three -Amy2 genes, and three -Amy3 genes in rye. These conclusions were supported by a simultaneous study of -amylase isozyme polymorphism. The F2 data showed the three individual -Amy1 genes to span a distance of 3cM at the locus on chromosome 6RL. The genes were mapped relative to other RFLP markers on 6RL. On chromosome 7RL two -Amy2 genes were shown to be separated by 5 cM. Linkage data within -Amy3 on 5RL were not obtained since RFLP could be detected at only one of the genes.  相似文献   

12.
Variation of seed -amylase inhibitors was investigated in 1 154 cultivated and 726 non-cultivated (wild and weedy) accessions of the common bean, Phaseolus vulgaris L. Four -amylase inhibitor types were recognized based on the inhibtion by seed extracts of the activities of porcine pancreatic -amylase and larval -amylase and larval -amylase of the Mexican bean weevil, Zabrotes subfasciatus Boheman. Of the 1 880 accessions examined most (1 734) were able to inhibit porcine pancreatic -amylase activity, but were inactive against the Z. subfasciatus larval -amylase; 41 inhibited only the larval -amylase activity, 52 inhibited the activities of the two -amylases, and 53 did not inhibit the activity of either of the -amylases. The four different inhibitor types were designated as AI-1, AI2, AI-3, and AI-0, respectively. These four inhibitor types were identified by the banding patterns of seed glycoproteins in the range of 14–20 kDa by using SDSpolyacrylamide gel electrophoresis. Additionally, four different banding patterns were recognized in accessions with AI-1, and were designated as AI-1a, 1b, 1c, and 1d. Two different patterns of the accessions lacking an -amylase inhibitory activity were identified and designated as AI-0a and AI-0b. The largest diversity for seed -amylase inhibitors was observed in non-cultivated accessions collected from Mexico where all eight inhibitor types were detected. The possible relationships between the variation of seed -amylase inhibitors and bruchid resistance are discussed.  相似文献   

13.
Type IV collagen is a major component of the basement membrane (BM), which consists of six genetically distinct (IV) chains. In this study the expression of these six (IV) chains was demonstrated immunohistochemically. In addition, the 2(IV) and 5(IV) chains were analysed quantitatively by confocal laser scanning microscopy in human urogenital epithelial BM. The 1/2(IV) and 5/6(IV) chains were immunoreactive in the epithelial BM, whereas, 3/4(IV) chains were not. The quantitative analysis revealed that the amount of 2(IV) and 5(IV) chains differed in each urogenital epithelial BM. The content of 5(IV) chains in the epithelial BM of the bladder was differentially high, and that of the foreskin was differentially low. It is concluded that the elasticity of epithelial BM of the bladder may be structurally related to the high content of 5/6(IV) chains.  相似文献   

14.
Summary An 8-fold increase in -amylase production by pulsing of succinic acid to a chemostat culture ofBacillus licheniformis has been shown. The -amylase concentration was found to be at the highest value two doubling times after the addition, indicating that the effect may be due to regulatory control.  相似文献   

15.
Summary Strain Bacillus subtilis MS was constructed with 12–22 fold increase of -amylase production, caused by presence of multiple -amylase gene copies in the chromosome of industrial strain Bacillus subtilis CCM2722, as demonstrated by DNA hybridization. The enhanced production is a result of multiple integration of plasmid pTVA1, carrying a temperature sensitive origin of replication from pE194, and containing the -amylase gene and a modified transposon Tn917.  相似文献   

16.
Summary The -amylase formed in germinating barley has been separated into six isozymes by means of polyacrylamide gel electrophoresis. These isozymes do not appear from the beginning of germination but are formed gradually so that after six days all six -amylase isozymes are present.When gibberellic acid is added to the culture medium the production of the -amylase isozymes is accelerated considerably, whereas the addition of kinetin has no influence at all on the formation of the -amylase isozymes.The -amylase induced by gibberellic acid in the aleurone layers of isolated barley endosperms apparently consists of five isozymes, a number that does not change upon further incubation.The action of phytohormones such as gibberellic acid and kinetin on the formation of -amylase and its isozymes during the germination of barley is discussed.  相似文献   

17.
Thermal resistance of freeze-dried -amylase and -glucosidase in trehalose matrices (1 to 20 % w/v) stored at 90 °C and relative humidities (RH) between 0 and 44 % was studied. At RH values up to 33 %, 10 % (w/v) trehalose was necessary to retain at least 50 % of -amylase activity. For -glucosidase, 10 % (w/v) trehalose was effective only at 0 % RH. Ultrafiltration of the crude enzymatic fermentation extracts enhanced enzyme stability per se. However, ultrafiltration in combination with 1 % (w/v) trehalose retained 74 % of -glucosidase and 95 % of -amylase activities. © Rapid Science Ltd. 1998  相似文献   

18.
Production of -amylase by a strain of Bacillus amyloliquefaciens was investigated in a cell recycle bioreactor incorporating a membrane filtration module for cell separation. Experimental fermentation studies with the B. amyloliquefaciens strain WA-4 clearly showed that incorporating cell recycling increased -amylase yield and volumetric productivity as compared to conventional continuous fermentation. The effect of operating conditions on -amylase production was difficult to demonstrate experimentally due to the problems of keeping the permeate and bleed rates constant over an extended period of time. Computer simulations were therefore undertaken to support the experimental data, as well as to elucidate the dynamics of -amylase production in the cell recycle bioreactor as compared to conventional chemostat and batch fermentations. Taken together, the simulations and experiments clearly showed that low bleed rate (high recycling ratio) various a high level of -amylase activity. The simulated fermentations revealed that this was especially pronounced at high recycling ratios. Volumetric productivity was maximum at a dilution rate of around 0.4 h–1 and a high recycling ratio. The latter had to exceed 0.75 before volumetric productivity was significantly greater than with conventional chemostat fermentation.List of Symbols a proportionality constant relating the specific growth rate to the logarithm of G (h) - a 1 reaction order with respect to starch concentration - a 2 reaction order with respect to glucose concentration - B bleed rate (h–1) - C starch concentration (g/l) - C 0 starch concentration in the feed (g/l) - D dilution rate (h–1) - D E volumetric productivity (KNU/(mlh)) - e intracellular -amylase concentration (g/g cell mass) - E extracellular -amylase concentration (KNU/ml) - F volumetric flow rate (l/h) - G average number of genome equivalents of DNA per cell - k l intracellular equilibrium constant - k 2 intracellular equilibrium constant - k s Monod saturation constant (g/l) - k 3 excretion rate constant (h–1) - k d first order decay constant (h–1) - k gl rate constant for glucose production - k st rate constant for starch hydrolysis - k t1 proportionality constant for -amylase production (gmRNA/g substrate) - k 1 translation constant (g/(g mRNAh)) - KNU kilo Novo unit - m maintenance coefficient (g substrate/(g cell massh)) - n number of binding sites for the co-repressor on the cytoplasmic repressor - Q repression function K1/K2Q1.0 - R ratio of recycling - R s rate of glucose production (g/lh) - r c rate of starch hydrolysis (g/(lh)) - R eX retention by the filter of the compounds X: starch or -amylase - r intracellular -amylase mRNA concentration (g/g cell mass) - r C volumetric productivity of starch (g/lh) - r E volumetric productivity of intracellular -amylase (KNU/(g cell massh)) - r r volumetric productivity of intracellular mRNA (g/(g cell massh)) - r e volumetric productivity of extracellular -amylase (KNU/(mlh)) - r s volumetric productivity of glucose (g/(lh)) - r X volumetric productivity of cell mass (g/(lh)) - S 0 free reducing sugar concentration in the feed (g/l) - S extracellular concentration of reducing sugar (g/1) - t time (h) - V volume (l) - X cell mass concentration (g/l) - Y yield coefficient (g cell mass/g substrate) - Y E/S yield coefficient (KNU -amylase/g substrate) - Y E total amount of -amylase produced (KNU) - substrate uptake (g substrate/(g cell massh)) - specific growth rate of cell mass (h–1) - d specific death rate of cells (h–1) - m maximum specific growth rate of cell mass (h–1) This study was supported by Bioprocess Engineering Programme of the Nordic Industrial Foundation and the Center for Process Biotechnology, the Technical University of Denmark.  相似文献   

19.
Summary The amylase-protein amylase inhibitor system offers a unique model of specific and reversible protein-protein interaction. The monomeric and dimeric inhibitors, exhibiting closely related properties and interacting with the same amylase, also provide a convenient test to compare effects of monomer-monomer and monomerdimer interactions between enzyme and inhibitor proteins.TmL amylase, Tenebrio molitor L. larval -amylase; CP amylase, chicken pancreatic -amylase; 0.19, -amylase protein inhibitor from wheat kernel with gel electrophoretic mobility 0.19; 0.28, -amylase protein inhibitor from wheat kernel with gel electrophoretic mobility 0.28.  相似文献   

20.
Morniga M is a jacalin-related and mannose-specific lectin isolated from the bark of the mulberry (Morus nigra). In order to understand the function and application of this novel lectin, the binding property of Morniga M was studied in detail using an enzyme-linked lectinosorbent assay and lectin-glycan inhibition assay with extended glycan/ligand collection. From the results, it was found that the di-, tri-, and oligomannosyl structural units of N-glycans such as those of the bovine 1-acid glycoprotein (gp) and lactoferrin were the most active gps, but not the O-glycans or polysaccharides including mannan from yeast. The binding affinity of Morniga M for ligands can be ranked in decreasing order as follows: gps carrying multiple N-glycans with oligomannosyl residues >> N-glycopeptide with a single trimannosyl core > Tri-Man oligomer [Man1 6(Man 1 3) Man], Penta-Man oligomer [Man1 6(Man1 3)Man1 6(Man1 3) Man] Man 1 2, 3 or 6 Man > Man > GlcNAc, Glc >> L-Fuc, Gal, GalNAc (inactive), demonstrating the unique specificity of this lectin that may not only assist in our understanding of cell surface carbohydrate ligand-lectin recognition, but also provide informative guidelines for the application of this structural probe in biotechnological and clinical regimens, especially in the detection and purification of N-linked glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号