首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Formation of anhydrosugars in the chemical depolymerization of heparin.   总被引:77,自引:0,他引:77  
J E Shively  H E Conrad 《Biochemistry》1976,15(18):3932-3942
In the reactions used to break heparin down to mono- and oligosaccharides, androsugars are formed at two stages. The first of these is the well-known cleavage of heparin with nitrous acid to convert the N-sulfated D-glucosamines to anhydro-D-mannose residues; this reaction has been studied in detail. It is demonstrated here that only low pH (less than 2.5) reaction conditions favor the deamination of N-sulfated D-glucosamine residues; the reaction proceeds very slowly at pH 3.5 or above. On the other hand, N-unsubstituted amino sugars are deaminated at a maximum rate at pH 4 with markedly reduced rates at pH2 or pH6. At room temperature solutions of nitrous acid lose one-fourth to one-third of their capacity to deaminate amino sugars in 1 h at all pHs. A low pH nitrous acid reagent which will convert heparin quantitatively to its deamination products in 10 min at room temperature is described, and a comparison of the effectiveness of this reagent with other commonly used nitrous acid reagents is presented. It is also shown that conditions used for acid hydrolysis of heparin convert approximately one-fourth of the L-iduronosyluronic acid 2-sulfate residues to a 2,5-anhydrouronic acid. This product is an artifact of the reaction conditions, and its formation represents one of several pathways followed in the acid-catalyzed cleavage of the glycosidic bond of the sulfated L-idosyluronic acid residues.  相似文献   

2.
The disaccharide composition of heparins and heparan sulfates   总被引:7,自引:0,他引:7  
Heparin and heparan sulfate can be cleaved selectively at their N-sulfated glucosamine residues by direct treatment with nitrous acid at pH 1.5. These polymers can also be cleaved selectively at their N-acetylated glucosamine residues by first N-deacetylating with hydrazine and then treating the products with nitrous acid at pH 4. These procedures have been combined and optimized for the conversion of these glycosaminoglycan chains into their disaccharide units. A modified hydrazinolysis procedure in which the glycosaminoglycans were heated with hydrazine:water (70:30) containing 1% hydrazine sulfate gave rapid rates of N-deacetylation and minimal conversion of the uronic acid residues to their hydrazide derivatives. Under these conditions, N-deacetylation was complete in 4 h and the beta-eliminative cleavage of the polymer chains that occurs during hydrazinolysis (P. N. Shaklee and H. E. Conrad (1984) Biochem. J. 217, 187-197) was eliminated. Treatment of the N-deacetylated polymer with nitrous acid at pH 3 for 15 h at 25 degrees C then gave simultaneous cleavage at the N-unsubstituted glucosamine residues and the N-sulfated glucosamine residues. These deamination conditions minimized, but did not eliminate, the side reaction in which nitrous acid-reactive glucosamine residues undergo ring contraction without glucosaminide bond cleavage. Thus, the disaccharides were obtained in a yield of 90% of those originally present in the glycosaminoglycan chains. Since the ring contraction side reaction occurs randomly at the diazotized glucosamine residues, the disaccharides formed in the pH 3 nitrous acid reaction were recovered in proportions equal to those in the original glycosaminoglycan chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
This procedure allows analysis of hexosamine present in glycosaminoglycans under conditions of mild acid treatment. It utilizes the color complex formed by interaction of 3-methyl-2-benzothiazolone hydrazone hydrochloride (MBTH) and the 2,5-anhydrohexoses produced by deamination of hexosamines. Both glucosamine and galactosamine behave equivalently in this assay.  相似文献   

4.
We have analyzed the content of N-unsubstituted glucosamine in heparan sulfate from glypican-1 synthesized by endothelial cells during inhibition of (a) intracellular progression by brefeldin A, (b) heparan sulfate degradation by suramin, and/or (c) endogenous nitrite formation. Glypican-1 from brefeldin A-treated cells carried heparan sulfate chains that were extensively degraded by nitrous acid at pH 3.9, indicating the presence of glucosamines with free amino groups. Chains with such residues were rare in glypican-1 isolated from unperturbed cells and from cells treated with suramin and, surprisingly, when nitrite-deprived. However, when nitrite-deprived cells were simultaneously treated with suramin, such glucosamine residues were more prevalent. To locate these residues, chains were first cleaved at linkages to sulfated l-iduronic acid by heparin lyase and released fragments were separated from core protein carrying heparan sulfate stubs. These stubs were then cleaved off at sites linking N-substituted glucosamines to d-glucuronic acid. These fragments were extensively degraded by nitrous acid at pH 3.9. When purified proteoglycan isolated from brefeldin A-treated cells was incubated with intact cells, endoheparanase-catalyzed degradation generated a core protein with heparan sulfate stubs that were similarly sensitive to nitrous acid. We conclude that there is a concentration of N-unsubstituted glucosamines to the reducing side of the endoheparanase cleavage site in the transition region between unmodified and modified chain segments near the linkage region to the protein. Both sites as well as the heparin lyase-sensitive sites seem to be in close proximity to one another.  相似文献   

5.
Functional properties of heparan sulfate (HS) are generally ascribed to the sulfation pattern of the polysaccharide. However, recently reported functional implications of rare N-unsubstituted glucosamine (GlcNH(2)) residues in native HS prompted our structural characterization of sequences around such residues. HS preparations were cleaved with nitrous acid at either N-sulfated or N-unsubstituted glucosamine units followed by reduction with NaB(3)H(4). The labeled products were characterized following complementary deamination steps. The proportion of GlcNH(2) units varied from 0.7-4% of total glucosamine in different HS preparations. The GlcNH(2) units occurred largely clustered at the polysaccharide-protein linkage region in intestinal HS, also more peripherally in aortic HS. They were preferentially located within N-acetylated domains, or in transition sequences between N-acetylated and N-sulfated domains, only 20-30% of the adjacent upstream and downstream disaccharide units being N-sulfated. The nearest downstream (toward the polysaccharide-protein linkage) hexuronic acid was invariably GlcUA, whereas the upstream neighbor could be either GlcUA or IdoUA. The highly sulfated but N-unsubstituted disaccharide unit, -IdoUA2S-GlcNH(2)6S-, was detected in human renal and porcine intestinal HS, but not in HS from human aorta. These results are interpreted in terms of a biosynthetic mechanism, whereby GlcNH(2) residues are formed through regulated, incomplete action of an N-deacetylase/N-sulfotransferase enzyme.  相似文献   

6.
The substrate specificity of heparosan N-sulfate D-glucuronosyl 5-epimerase from a mouse mastocytoma was examined to determine the effects of N-acetyl and O-sulfate groups on substrate recognition by the enzyme. [5-3H]Glucuronosyl-labeled heparosan N-sulfate was prepared enzymatically and was modified chemically by partial N-desulfation and N-acetylation. After enzymatic release of tritium, the location of remaining label was determined by deaminative cleavage and analysis of resulting di-, tetra-, and higher oligosaccharides. This analysis indicated that a D-glucuronosyl residue is recognized as a substrate if it is linked at C-1 to an N-acetylated glucosamine residue and at C-4 to an N-sulfated unit. However, the reverse structure, in which the D-glucuronosyl moiety is bound at C-1 to an N-sulfated residue and at C-4 to N-acetylated glucosamine, is not a substrate. Similar studies with O-sulfated heparin intermediates showed that O-sulfate groups either at C-2 of the L-iduronosyl moieties or at C-6 of vicinal D-glucosaminyl moieties prevent 5-epimerization. These findings were confirmed by studies of the reverse reaction, in which tritium was incorporated from 3H2O into partially O-desulfated heparin and the location of incorporated radioactivity was determined. These and more direct experiments corroborated the previous conclusion that the L-iduronosyl moieties are formed after N-sulfation but before O-sulfation. Assessment of the influence of substrate size on the reaction further showed that a large substrate is preferred; an octasaccharide released tritium at a rate approximately 10% of that observed for the parent polysaccharide, and some release occurred also with smaller oligosaccharides.  相似文献   

7.
The capsular polysaccharide from E. Coli, strain K5 composed of ...-->4)beta-D-GlcA(1-->4)alpha-D-GlcNAc(1-->4)beta-D-GlcA (1-->..., chemically modified K5 polysaccharides, bearing sulfates at C-2 and C-6 of the hexosamine moiety and at the C-2 of the glucuronic acid residues as well as 2-O desulfated heparin were used as substrates to study the specificity of heparitinases I and II and heparinase from Flavobacterium heparinum. The natural K5 polysaccharide was susceptible only to heparitinase I forming deltaU-GlcNAc. N-deacetylated, N-sulfated K5 became susceptible to both heparitinases I and II producing deltaU-GlcNS. The K5 polysaccharides containing sulfate at the C-2 and C-6 positions of the hexosamine moiety and C-2 position of the glucuronic acid residues were susceptible only to heparitinase II producing deltaU-GlcNS,6S and deltaU,2S-GlcNS,6S respectively. These combined results led to the conclusion that the sulfate at C-6 position of the glucosamine is impeditive for the action of heparitinase I and that heparitinase II requires at least a C-2 or a C-6 sulfate in the glucosamine residues of the substrate for its activity. Iduronic acid-2-O-desulfated heparin was susceptible only to heparitinase II producing deltaU-GlcNS,6S. All the modified K5 polysaccharides as well as the desulfated heparin were not substrates for heparinase. This led to the conclusion that heparitinase II acts upon linkages containing non-sulfated iduronic acid residues and that heparinase requires C-2 sulfated iduronic acid residues for its activity.  相似文献   

8.
We have isolated from nitrous acid cleavage products of heparin two major octasaccharide fragments which bind with high affinity to human antithrombin. Octasaccharide S, with the predominant structure iduronic acid----N-acetylglucosamine 6-O-sulfate----glucuronic acid-----N-sulfated glucosamine 3,6-di-O-sulfate----iduronic acid 2-O-sulfate----N-sulfated glucosamine 6-O-sulfate----iduronic acid 2-O-sulfate----anhydromannitol 6-O-sulfate, is sensitive to cleavage by Flavobacterium heparinase as well as platelet heparitinase and binds to antithrombin with a dissociation constant of (5-15) X 10(-8) M. Octasaccharide R, with the predominant structure iduronic acid 2-O-sulfate----N-sulfated glucosamine 6-O-sulfate----iduronic acid----N-acetylglucosamine 6-O-sulfate----glucuronic acid----N-sulfated glucosamine 3,6-di-O-sulfate----iduronic acid 2-O-sulfate----anhydromannitol 6-O-sulfate, is resistant to degradation by both enzymes and binds antithrombin with a dissociation constant of (4-18) X 10(-7) M. The occurrence of a 15-17% replacement of N-sulfated glucosamine 3,6-di-O-sulfate with N-sulfated glucosamine 3-O-sulfate and a 10-12% replacement of iduronic acid with glucuronic acid in both octasaccharides indicates that these substitutions have little or no effect on the binding of the oligosaccharides to the protease inhibitor. When bound to antithrombin, both octasaccharides produce a 40% enhancement in the intrinsic fluorescence of the protease inhibitor and a rate of human factor Xa inhibition of 5 X 10(5) M-1 s-1 as monitored by stopped-flow fluorometry. This suggests that the conformation of antithrombin in the region of the factor Xa binding site is similar when the protease inhibitor is complexed with either octasaccharide.  相似文献   

9.
Cell lines, selected from two independent clones of an established mouse embryo cell line by their ability to grow as solid tumors in immunocompetent syngeneic hosts, were found to have the same alteration in anion exchange properties as was previously reported for simian virus 40 (SV40)-transformed subclones. One tumor cell line (219CT) and one SV40-transformed subclone (215CSC) were selected for further detailed comparison with their common parent clone (210C). Cellulose acetate electrophoresis at pH 1.0 showed that 215CSC heparan sulfate had a slight overall decrease in sulfation compared with heparan sulfate from 210C; however, no gross difference in sulfation could be detected between heparan sulfate from 219CT and 210C. Analysis of the products of deaminative cleavage of heparan sulfate by nitrous acid under conditions where cleavage occurs quantitatively at N-sulfated glucosamine residues showed that, although heparan sulfate from the three cell lines gave similar yields of O-sulfated disaccharides, both 215CSC and 219CT had only about half as many O-sulfate residues in higher molecular weight oligosaccharides compared to heparan sulfate from 210C. Enzymatic degradation of heparan sulfate with a mixture of enzymes from Flavobacterium heparinum showed that this common alteration in heparan sulfate from both 215CSC and 219CT resulted from a 30% decrease in glucosamine residues bearing 6-O-sulfate groups. As this decrease in 6-O-sulfate glucosamine residues occurs in regions of the chain containing relatively few sulfate groups, it is clear that certain sequences of charged groups present in heparan sulfate frm 210C will be found only rarely in heparan sulfate from 215CSC and 219CT. It is suggested that this will result in alterations of the interaction of heparan sulfate with other molecules in the microenvironment at the cell surface which may be important in the control of such phenomena as cell growth and adhesion.  相似文献   

10.
J A Cifonelli  J A King 《Biochemistry》1977,16(10):2137-2141
Structural properties of heparan sulfate preparations from hog mucosa and beef lung sources were obtained by application of Smith degradation and nitrous acid reactions. Products formed by these reactions indicated that most of the iduronic acid present in these mucopolysaccharides is ester sulfated, whereas N-sulfated glucosamine residues are ester sulfated much less frequently. Repeating units with sulfated iduronic acid found to occur almost entirely in single sequences. Futhermore, the iduronic acid moieties may be bound to either N-acetylated or N-sulfated glucosamine units, with these occuring at either end of the uronic acid unit.  相似文献   

11.
Metabolically 35S- or 3H-labeled heparan sulfate was isolated from murine Reichert's membrane, an extraembryonic basement membrane produced by parietal endoderm cells, and from the basement membrane-producing Engelbreth-Holm-Swarm mouse tumor. The polysaccharides were subjected to structural analysis involving identification of products formed on deamination of the polysaccharides with nitrous acid. The polysaccharide from Reichert's membrane contained N- and O-sulfate groups in approximately equal proportions. It bound almost quantitatively and with high affinity to antithrombin. A high proportion of antithrombin-binding sequence was also indicated by the finding that 3-O-sulfated glucosamine residues accounted for about 10% of the total O-sulfate groups. In contrast, at least 80% of the sulfate residues in the heparan sulfate isolated from the mouse tumor were N-substituents. Only a minor proportion of this polysaccharide bound with high affinity to antithrombin, and no 3-O-sulfated glucosamine residues were detected. These results are discussed in relation to the possible functional role of heparan sulfate in basement membranes.  相似文献   

12.
(1)H NMR spectroscopy has been established for the determination of uronate residues in glycosaminoglycans (GAGs) such as dermatan sulfate (DS), heparin (HP), and heparan sulfate (HS). Because of variation in the sulfonation positions in DS, HP, or HS, interpretation of spectra is difficult. Solvolysis was applied to remove O-sulfo groups from these GAG chains in dimethyl sulfoxide containing 10% methanol at 80 degrees C for 5 h. In the cases of HP and HS, N-sulfo groups on glucosamine residues were also removed under the same conditions. The resulting unsubstituted amino groups in HP and HS chains were re-N-acetylated using acetic anhydride to obtain homogeneous core structure with the exception of the variation of uronate residues. The contents of glucuronate and iduronate residues in the chemically modified DS, HP, and HS samples were analyzed by 600-MHz (1)H NMR spectroscopy. These methods were applied to compositional analysis of uronate residues in GAGs isolated from various sources.  相似文献   

13.
The antithrombin-binding region of heparin is a pentasaccharide sequence with the predominant structure -GlcNAc(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-Ido A(2-OSO3)- GlcNSO3(6-OSO3)-. By using the 3-O-sulfated glucosamine residue as a marker for the anti-thrombin-binding sequence, the location of this sequence within the heparin chain was investigated. Heparin with high affinity for antithrombin (HA-heparin) contains few N-acetyl groups located outside the antithrombin-binding region, and cleavage at such groups was therefore expected to be essentially restricted to this region. HA-heparin was cleaved at N-acetylated glucosamine units by partial deacetylation followed by treatment with nitrous acid at pH 3.9, and the resulting fragments with low affinity for anti-thrombin (LA-fragments) were recovered after affinity chromatography on immobilized antithrombin. The LA-fragments were further divided into subfractions of different molecular size by gel chromatography and were then analyzed with regard to the occurrence of the nonreducing terminal GlcA-GlcNSO3(3,6-di-OS-O3)- sequence. Such units were present in small, intermediate-sized as well as large fragments, suggesting that the antithrombin-binding regions were randomly distributed along the heparin chains. In another set of experiments, HA-heparin was subjected to limited, random depolymerization by nitrous acid (pH 1.5), and the resulting reducing terminal anhydromannose residues were labeled by treatment with NaB3H4. The molecular weight distributions of such labeled LA-fragments, determined by gel chromatography, again conformed to a random distribution of the antithrombin-binding sequence within the heparin chains. These results are in apparent disagreement with previous reports (Radoff, S., and Danishefsky, I. (1984) J. Biol. Chem. 259, 166-172; Rosenfeld, L., and Danishefsky, I. (1988) J. Biol. Chem. 263, 262-266) which suggest that the antithrombin-binding region is preferentially located at the nonreducing terminus of the heparin molecule.  相似文献   

14.
Oligosaccharides obtained from heparan sulphate by nitrous acid degradation were shown to be degraded sequentially by beta-D-glucuronidase or alpha-L-iduronidase followed by alpha D-N-acetylglucosaminidase. Structural analysis of the tetrasaccharide fraction showed the following. (1) N-Acetylglucosamine is preceded by a non-sulphated uronic acid residue that can be either D-glucuronic of L-iduronic acid, but followed by a glucuronic acid residue. (2) The N-acetylglucosamine in the major fraction is sulphated. (3) Very few if any of the uronic acid residues are sulphated (4). The results indicate that the area of the heparan sulphate chain where disaccharides containing N-acetylglucosamine and N-sulphated glucosamine residues alternate is higher in sulphate content than expected and that the sulphate groups are mainly located on the hexosamine units.  相似文献   

15.
Chen J  Duncan MB  Carrick K  Pope RM  Liu J 《Glycobiology》2003,13(11):785-794
Heparan sulfate 3-O-sulfotransferase transfers sulfate to the 3-OH position of a glucosamine to generate 3-O-sulfated heparan sulfate (HS), which is a rare component in HS from natural sources. We previously reported that 3-O- sulfotransferase isoform 5 (3-OST-5) generates both an antithrombin-binding site to exhibit anticoagulant activity and a binding site for herpes simplex virus 1 glycoprotein D to serve as an entry receptor for herpes simplex virus. In this study, we characterize the substrate specificity of 3-OST-5 using the purified enzyme. The enzyme was expressed in insect cells using the baculovirus expression approach and was purified by using heparin-Sepharose and 3',5'-ADP- agarose chromatographies. As expected, the purified enzyme generates both an antithrombin binding site and a glycoprotein D binding site. We isolated IdoUA-AnMan3S and IdoUA-AnMan3S6S from nitrous acid-degraded 3-OST-5-modified HS (pH 1.5), suggesting that 3-OST-5 enzyme sulfates the glucosamine residue that is linked to an iduronic acid residue at the nonreducing end. We also isolated a disaccharide with a structure of DeltaUA2S-GlcNS3S and a tetrasaccharide with a structure of DeltaUA2S-GlcNS-IdoUA2S-GlcNH23S6S from heparin lyases-digested 3-OST-5-modified HS. Our results suggest that 3-OST-5 enzyme sulfates both N-sulfated glucosamine and N-unsubstituted glucosamine residues. Taken together, the results indicate that 3-OST-5 has broader substrate specificity than those of 3-OST-1 and 3-OST-3. The unique substrate specificity of 3-OST-5 serves as an additional tool to study the mechanism for the biosynthesis of biologically active HS.  相似文献   

16.
Hydrazinolysis of heparin and other glycosaminoglycans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed.  相似文献   

17.
Heparan sulphate, heparin and dermatan sulphate were hydrolysed in 0.5M-H2SO4 at 100 degrees C. At intervals portions of the hydrolysate were removed and treated with HNO2 at pH 4.0 to cleave the glycosidic bonds of the N-unsubstituted hexosamine residues and to convert both free and combined hexosamines into anhydrohexoses. These hydrolysis/deamination mixtures were reduced with NaB3H4 and analysed by radiochromatography for alpha-L-iduronosylanhydrohexose, beta-D-glucuronosylanhydrohexose, and the free uronic acids and anhydrohexose. These data gave a kinetic profile of the cleavage of the alpha-L-iduronosyl and the beta-D-glucuronosyl bonds in these glycosaminoglycans. The beta-D-glucuronosyl bonds showed the expected resistance to acid hydrolysis, but the alpha-L-iduronosyl bonds were found to be as labile to acid as some neutral sugar glycosides. This unusual lability of alpha-D-iduronosyl-anhydromannitol and beta-D-glucuronosylanhydromannitol. The procedures used to follow the kinetics of glycosaminoglycan hydrolysis can also be sued to obtain quantitative analyses of L-iduronic acid, D-glucuronic acid and hexosamine in these polymers.  相似文献   

18.
Abstract The chemical structure of the lipid A moiety of the lipopolysaccharide of the type strain of Plesiomonas shigelloides was elucidated. It consists of a β-(1 → 6)-linked glucosamine disaccharide carrying phosphate groups at C-1 of the reducing and at C-4' of the non-reducing glucosamine. It contains a total of 6 residues of fatty acids, 2 amide-linked and 4 ester-linked. The amino groups of the backbone disaccharide are N -acylated by substituted 3-hydroxyacyl residues: at the reducing glucosamine by 3-O-(14:0)14:0; and at the non-reducing glucosamine by 3-O-(12:0)14:0.
Two residues of 3-hydroxytetradecanoic acid are linked to C-3 and C-3' of the glucosamine residues; the hydroxy groups of these ester-linked 3-hydroxytetradecanoic acids are unsubstituted. In free lipid A, the hydroxyl groups at C-4 and C-6' are unsubstituted, indicating that the 2-keto-3-deoxyoctonic acid (KDO) is linked to C-6' of the non-reducing glucosamine, as was shown with enterobacterial lipid A. The taxonomical significance of these structural details is discussed.  相似文献   

19.
Oligosaccharides with different affinities for antithrombin were isolated following partial deaminative cleavage of pig mucosal heparin with nitrous acid. The smallest high-affinity component obtained was previously identified as an octasaccharide with the predominant structure: (Formula: see text). The interaction of this octasaccharide, and of deca- and dodecasaccharides containing the same octasaccharide sequence, with antithrombin was studied by spectroscopic techniques. The near-ultraviolet difference spectra, circular dichroism spectra, and fluorescence enhancements induced by adding these oligosaccharides to antithrombin differed only slightly from the corresponding parameters measured in the presence of undegraded high-affinity heparin. Moreover, the binding constants obtained for the oligosaccharides and for high-affinity heparin were similar (1.0-2.9 X 10(7) M-1 at I = 0.3). In contrast, two hexasaccharides corresponding to units 1-6 and 3-8, respectively, of the above sequence showed about a 1000-fold lower affinity for antithrombin, and also induced considerably different spectral perturbations in antithrombin. Since the 1-6 hexasaccharide contains a reducing-terminal anhydromannose residue instead of the N-sulfated glucosamine unit 6 of the intact sequence, these results strongly support our previous conclusion that the N-sulfate group at position 6 is essential to the interaction with antithrombin. The low affinity of the hexasaccharide 3-8 provides further evidence that a pentasaccharide sequence 2-6 constitutes the actual antithrombin-binding region in the heparin molecule. Structural analysis of the various oligosaccharides revealed natural variants with an N-sulfate group substituted for the N-acetyl group at position 2. The preponderance of N-acetyl over N-sulfate groups at this position may be rationalized in terms of the mechanism of heparin biosynthesis, assuming that the D-gluco configuration of unit 3 is an essential feature of the antithrombin-binding region.  相似文献   

20.
A previous study identified a Chinese hamster ovary cell mutant, pgsE-606, which is defective in the N-sulfotransferase that catalyzes one of the initial polymer-modification reactions in the biosynthesis of heparan sulfate (Bame, K. J., and Esko, J. D. (1989) J. Biol. Chem. 264, 8059-8065). The structure of heparan sulfate generated by these cells reflects a 3-5-fold reduction in enzyme activity. The mutant produces heparan sulfate with half the content of N-sulfated glucosamine residues of that produced by wild-type cells and a more sparse distribution of N-sulfated residues. The present study demonstrates corresponding reductions in the proportion of 6-O-sulfated glucosamine residues (41% reduction) and the content of L-iduronic acid (51% reduction). The amount of 2-O-sulfated L-iduronic acid declines more dramatically (from 25% of total L-iduronic acid in the wild type to 8.4% in the mutant). Enzymatic assay of mixed O-sulfotransferases showed that the mutant has more activity than the wild type. Previous studies on the biosynthesis of heparin/heparan sulfate in cell-free systems point to a pivotal role of N-sulfation in determining the extent of the subsequent polymer-modification reactions. The present study shows that this concept also applies to heparan sulfate biosynthesis in the intact cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号