首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the systemic infection of plants by viruses, host factors play an important role in supporting virus multiplication. To identify and characterize the host factors involved in this process, we isolated an Arabidopsis thaliana mutant named RB663, in which accumulation of the coat protein (CP) of cucumber mosaic virus (CMV) in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in RB663 plants was controlled by a monogenic, recessive mutation designated cum2-1, which is located on chromosome III and is distinct from the previously characterized cum1 mutation. Multiplication of CMV was delayed in inoculated leaves of RB663 plants, whereas the multiplication in RB663 protoplasts was similar to that in wild-type protoplasts. This suggests that the cum2-1 mutation affects the cell-to-cell movement of CMV rather than CMV replication within a single cell. In RB663 plants, the multiplication of turnip crinkle virus (TCV) was also delayed but that of tobacco mosaic virus was not affected. As observed with CMV, the multiplication of TCV was normal in protoplasts and delayed in inoculated leaves of RB663 plants compared to that in wild-type plants. Furthermore, the phenotype of delayed TCV multiplication cosegregated with the cum2-1 mutation as far as we examined. Therefore, the cum2-1 mutation is likely to affect the cell-to-cell movement of both CMV and TCV, implying a common aspect to the mechanisms of cell-to-cell movement in these two distinct viruses.  相似文献   

2.
Cucumber mosaic virus (CMV) is known to systemically infect Arabidopsis thaliana ecotype Columbia plants. In order to identify the host factors involved in the multiplication of CMV, we isolated an A. thaliana mutant in which the accumulation of the coat protein (CP) of CMV in upper uninoculated leaves was delayed. Genetic analyses suggested that the phenotype of delayed accumulation of CMV CP in the mutant plants was caused by a single, nuclear and recessive mutation designated cum1-1, which was located on chromosome IV. The cum1-1 mutation did not affect the multiplication of tobacco mosaic virus, turnip crinkle virus or turnip yellow mosaic virus, which belong to different taxonomic groups from CMV. Accumulation of CMV CP in the inoculated leaves of cum1-1 plants was also delayed either when CMV virion or CMV virion RNA was inoculated. On the other hand, when cum1-1 and the wild-type Col-0 protoplasts were inoculated with CMV virion RNA by electroporation, the accumulations of CMV-related RNAs and the coat protein were similar. These results suggest that the cum1-1 mutation did not affect the uncoating of CMV virion and subsequent replication in an initially infected cell but affected the spreading of CMV within an infected leaf, possibly the cell-to-cell movement of CMV in a virus-specific manner.  相似文献   

3.
An antiviral defense role of AGO2 in plants   总被引:2,自引:0,他引:2  

Background

Argonaute (AGO) proteins bind to small-interfering (si)RNAs and micro (mi)RNAs to target RNA silencing against viruses, transgenes and in regulation of mRNAs. Plants encode multiple AGO proteins but, in Arabidopsis, only AGO1 is known to have an antiviral role.

Methodology/Principal Findings

To uncover the roles of specific AGOs in limiting virus accumulation we inoculated turnip crinkle virus (TCV) to Arabidopsis plants that were mutant for each of the ten AGO genes. The viral symptoms on most of the plants were the same as on wild type plants although the ago2 mutants were markedly hyper-susceptible to this virus. ago2 plants were also hyper-susceptible to cucumber mosaic virus (CMV), confirming that the antiviral role of AGO2 is not specific to a single virus. For both viruses, this phenotype was associated with transient increase in virus accumulation. In wild type plants the AGO2 protein was induced by TCV and CMV infection.

Conclusions/Significance

Based on these results we propose that there are multiple layers to RNA-mediated defense and counter-defense in the interactions between plants and their viruses. AGO1 represents a first layer. With some viruses, including TCV and CMV, this layer is overcome by viral suppressors of silencing that can target AGO1 and a second layer involving AGO2 limits virus accumulation. The second layer is activated when the first layer is suppressed because AGO2 is repressed by AGO1 via miR403. The activation of the second layer is therefore a direct consequence of the loss of the first layer of defense.  相似文献   

4.
5.
6.
7.
Qu F  Morris TJ 《Journal of virology》2000,74(3):1085-1093
The presence of translational control elements and cap structures has not been carefully investigated for members of the Carmovirus genus, a group of small icosahedral plant viruses with positive-sense RNA genomes. In this study, we examined both the 5' and 3' untranslated regions (UTRs) of the turnip crinkle carmovirus (TCV) genomic RNA (4 kb) as well as the 5' UTR of the coat protein subgenomic RNA (1.45 kb) for their roles in translational regulation. All three UTRs enhanced translation of the firefly luciferase reporter gene to different extents. Optimal translational efficiency was achieved when mRNAs contained both 5' and 3' UTRs. The synergistic effect due to the 5'-3' cooperation was at least fourfold greater than the sum of the contributions of the individual UTRs. The observed translational enhancement of TCV mRNAs occurred in a cap-independent manner, a result consistent with the demonstration, using a cap-specific antibody, that the 5' end of the TCV genomic RNA was uncapped. Finally, the translational enhancement activity within the 5' UTR of 1.45-kb subgenomic RNA was shown to be important for the translation of coat protein in protoplasts and for virulent infection in Arabidopsis plants.  相似文献   

8.
The RNA of satellite tobacco necrosis virus (STNV) is a monocistronic messenger that lacks both a 5′ cap and a 3′ poly(A) tail. The STNV trailer contains an autonomous translational enhancer domain (TED) that promotes translation in vitro by more than one order of magnitude when combined with the 5′-terminal 173 nt of STNV RNA. We now show that the responsible sequence within the 5′ region maps to the first 38 nt of the STNV RNA. Mutational analysis indicated that the primary sequence of the STNV 5′ 38 nt and TED is important for translation stimulation in vitro, but did not reveal a role for the complementarity between the two. Translation of chimeric STNV-cat RNAs in tobacco protoplasts showed that TED promotes translation in vivo of RNAs lacking a cap and/or a poly(A) tail. Similar to in vitro, TED-dependent translation in tobacco was stimulated further by the STNV 5′ 38 nt.  相似文献   

9.
Yuan X  Shi K  Simon AE 《Journal of virology》2012,86(8):4065-4081
The majority of the 3' untranslated region (UTR) of Turnip crinkle virus (TCV) was previously identified as forming a highly interactive structure with a ribosome-binding tRNA-shaped structure (TSS) acting as a scaffold and undergoing a widespread conformational shift upon binding to RNA-dependent RNA polymerase (RdRp). Tertiary interactions in the region were explored by identifying two highly detrimental mutations within and adjacent to a hairpin H4 upstream of the TSS that reduce translation in vivo and cause identical structural changes in the loop of the 3' terminal hairpin Pr. Second-site changes that compensate for defects in translation/accumulation and reverse the structural differences in the Pr loop were found in the Pr stem, as well as in a specific stem within the TSS and within the capsid protein (CP) coding region, suggesting that the second-site changes were correcting a conformational defect and not restoring specific base pairing. The RdRp-mediated conformational shift extended upstream through this CP open reading frame (ORF) region after bypassing much of an intervening, largely unstructured region, supporting a connection between 3' elements and coding region elements. These data suggest that the Pr loop, TSS, and H4 are central elements in the regulation of translation and replication in TCV and allow for development of an RNA interactome that maps the higher-order structure of a postulated RNA domain within the 3' region of a plus-strand RNA virus.  相似文献   

10.
11.
The genome of Red clover necrotic mosaic virus (RCNMV) in the genus Dianthovirus is divided into two RNA molecules of RNA1 and RNA2, which have no cap structure at the 5' end and no poly(A) tail at the 3' end. The 3' untranslated region (3' UTR) of RCNMV RNA1 contains an essential RNA element (3'TE-DR1), which is required for cap-independent translation. In this study, we investigated a cap-independent translational mechanism of RNA2 using a firefly luciferase (Luc) gene expression assay system in cowpea protoplasts and a cell-free lysate (BYL) prepared from evacuolated tobacco BY2 protoplasts. We were unable to detect cis-acting RNA sequences in RNA2 that can replace the function of a cap structure, such as the 3'TE-DR1 of RNA1. However, the uncapped reporter RNA2, RNA2-Luc, in which the Luc open reading frame (ORF) was inserted between the 5' UTR and the movement protein ORF, was effectively translated in the presence of p27 and p88 in protoplasts in which RNA2-Luc was replicated. Time course experiments in protoplasts showed that the translational activity of RNA2-Luc did not reflect the amount of RNA2. Mutations in cis-acting RNA replication elements of RNA2 abolished the cap-independent translational activity of RNA2-Luc, suggesting that the translational activity of RNA2-Luc is coupled to RNA replication. Our results show that the translational mechanism differs between two segmented genomic RNAs of RCNMV. We present a model in which only RNA2 that is generated de novo through the viral RNA replication machinery functions as mRNA for translation.  相似文献   

12.
Q Kong  J W Oh    A E Simon 《The Plant cell》1995,7(10):1625-1634
Many satellite RNAs (sat-RNAs) can attenuate or intensify the symptoms produced by their helper virus. Sat-RNA C, associated with turnip crinkle virus (TCV), was previously found to intensify the symptoms of TCV on all plants in which TCV produced visible symptoms. However, when the coat protein open reading frame (ORF) of TCV was precisely exchanged with that of cardamine chlorotic fleck virus, sat-RNA C attenuated the moderate symptoms of the chimeric virus when Arabidopsis plants were coinoculated with the chimeric virus. Symptom attenuation was correlated with a reduction in viral RNA levels in inoculated and uninoculated leaves. In protoplasts, the presence of sat-RNA C resulted in a reduction of approximately 70% in the chimeric viral genomic RNA at 44 hr postinoculation, whereas the sat-RNA wa consistently amplified to higher levels by the chimeric virus than by wild-type TCV. TCV with a deletion of the coat protein ORF also resulted in a similar increase in sat-RNA C levels in protoplasts, indicating that the TVC coat protein, or its ORF, downregulates the synthesis of sat-RNA C. These results suggest that the coat protein or its ORF is a viral determinant for symptom modulation by sat-RNA C, and symptom attenuation is at least partly due to inhibition of virus accumulation.  相似文献   

13.
Cross‐protection has been used successfully and commercially to control a range of virus diseases for which the selection of suitable mild strains of plant viruses is necessary. Turnip crinkle virus (TCV) is highly pathogenic on Arabidopsis plants and its silencing suppressor‐defective mutant, TCVΔCP, can induce highly localized RNA silencing which is differs from that of other protective strains. We found that TCVΔCP provides some protection against wild‐type TCV but lacks complete protection, and the relative locations of the protective virus and challenge virus affect the degree of cross‐protection. However, similar cross‐protection afforded by TCVΔCP is not observed in Nicotiana benthamiana plants. As expected, TCVΔCP pre‐infected Arabidopsis plants fail to protect against infection with the unrelated Cucumber mosaic virus, strain Fhy. It appears that cross‐protection afforded by TCVΔCP requires that the challenge virus be very similar in sequence, which is a characteristic of RNA silencing. In order to investigate whether the protection is associated with the highly localized RNA silencing, mutant plants involved in key silencing pathway genes of RNA silencing machinery, including dcl2, dcl4 and triple dcl2/dcl3/dcl4 mutants were used. The results demonstrate that cross‐protection afforded by TCVΔCP is dependent on host RNA silencing, and both DCL2 and DCL4 play important roles in this process.  相似文献   

14.
15.
Satellite RNAs usually lack substantial homology with their helper viruses. The 356-nucleotide satC of Turnip crinkle virus (TCV) is unusual in that its 3′-half shares high sequence similarity with the TCV 3′ end. Computer modeling, structure probing, and/or compensatory mutagenesis identified four hairpins and three pseudoknots in this TCV region that participate in replication and/or translation. Two hairpins and two pseudoknots have been confirmed as important for satC replication. One portion of the related 3′ end of satC that remains poorly characterized corresponds to juxtaposed TCV hairpins H4a and H4b and pseudoknot ψ3, which are required for the TCV-specific requirement of translation (V. A. Stupina et al., RNA 14:2379-2393, 2008). Replacement of satC H4a with randomized sequence and scoring for fitness in plants by in vivo genetic selection (SELEX) resulted in winning sequences that contain an H4a-like stem-loop, which can have additional upstream sequence composing a portion of the stem. SELEX of the combined H4a and H4b region in satC generated three distinct groups of winning sequences. One group models into two stem-loops similar to H4a and H4b of TCV. However, the selected sequences in the other two groups model into single hairpins. Evolution of these single-hairpin SELEX winners in plants resulted in satC that can accumulate to wild-type (wt) levels in protoplasts but remain less fit in planta when competed against wt satC. These data indicate that two highly distinct RNA conformations in the H4a and H4b region can mediate satC fitness in protoplasts.  相似文献   

16.
The DEAD-box proteins CYT-19 in Neurospora crassa and Mss116p in Saccharomyces cerevisiae are general RNA chaperones that function in splicing mitochondrial group I and group II introns and in translational activation. Both proteins consist of a conserved ATP-dependent RNA helicase core region linked to N and C-terminal domains, the latter with a basic tail similar to many other DEAD-box proteins. In CYT-19, this basic tail was shown to contribute to non-specific RNA binding that helps tether the core helicase region to structured RNA substrates. Here, multiple sequence alignments and secondary structure predictions indicate that CYT-19 and Mss116p belong to distinct subgroups of DEAD-box proteins, whose C-terminal domains have a defining extended α-helical region preceding the basic tail. We find that mutations or C-terminal truncations in the predicted α-helical region of Mss116p strongly inhibit RNA-dependent ATPase activity, leading to loss of function in both translational activation and RNA splicing. These findings suggest that the α-helical region may stabilize and/or regulate the activity of the RNA helicase core. By contrast, a truncation that removes only the basic tail leaves high RNA-dependent ATPase activity and causes only a modest reduction in translation and RNA splicing efficiency in vivo and in vitro. Biochemical analysis shows that deletion of the basic tail leads to weaker non-specific binding of group I and group II intron RNAs, and surprisingly, also impairs RNA-unwinding at saturating protein concentrations and nucleotide-dependent tight binding of single-stranded RNAs by the RNA helicase core. Together, our results indicate that the two sub-regions of Mss116p's C-terminal domain act in different ways to support and modulate activities of the core helicase region, whose RNA-unwinding activity is critical for both the translation and RNA splicing functions.  相似文献   

17.
The capped Small segment mRNA (SmRNA) of the Andes orthohantavirus (ANDV) lacks a poly(A) tail. In this study, we characterize the mechanism driving ANDV-SmRNA translation. Results show that the ANDV-nucleocapsid protein (ANDV-N) promotes in vitro translation from capped mRNAs without replacing eukaryotic initiation factor (eIF) 4G. Using an RNA affinity chromatography approach followed by mass spectrometry, we identify the human RNA chaperone Mex3A (hMex3A) as a SmRNA-3’UTR binding protein. Results show that hMex3A enhances SmRNA translation in a 3’UTR dependent manner, either alone or when co-expressed with the ANDV-N. The ANDV-N and hMex3A proteins do not interact in cells, but both proteins interact with eIF4G. The hMex3A–eIF4G interaction showed to be independent of ANDV-infection or ANDV-N expression. Together, our observations suggest that translation of the ANDV SmRNA is enhanced by a 5’-3’ end interaction, mediated by both viral and cellular proteins.  相似文献   

18.
19.
Huh SU  Kim MJ  Ham BK  Paek KH 《The New phytologist》2011,191(3):746-762
? In Cucumber mosaic virus (CMV) RNA replication, replicase-associated protein CMV 1a and RNA-dependent RNA polymerase protein CMV 2a are essential for formation of an active virus replicase complex on vacuolar membranes. ? To identify plant host factors involved in CMV replication, a yeast two-hybrid system was used with CMV 1a protein as bait. One of the candidate genes encoded Tsi1-interacting protein 1 (Tsip1), a zinc (Zn) finger protein. Tsip1 strongly interacted with CMV 2a protein, too. ? Formation of a Tsip1 complex involving CMV 1a or CMV 2a was confirmed in vitro and in planta. When 35S::Tsip1 tobacco (Nicotiana tabacum) plants were inoculated with CMV-Kor, disease symptom development was delayed and the accumulation of CMV RNAs and coat protein was decreased in both the infected local leaves and the uninfected upper leaves, compared with the wild type, whereas Tsip1-RNAi plants showed modestly but consistently increased CMV susceptibility. In a CMV replication assay, CMV RNA concentrations were reduced in the 35S::Tsip1 transgenic protoplasts compared with wild-type (WT) protoplasts. ? These results indicate that Tsip1 might directly control CMV multiplication in tobacco plants by formation of a complex with CMV 1a and CMV 2a.  相似文献   

20.
Positive-strand RNA viruses use diverse mechanisms to regulate viral and host gene expression for ensuring their efficient proliferation or persistence in the host. We found that a small viral noncoding RNA (0.4 kb), named SR1f, accumulated in Red clover necrotic mosaic virus (RCNMV)-infected plants and protoplasts and was packaged into virions. The genome of RCNMV consists of two positive-strand RNAs, RNA1 and RNA2. SR1f was generated from the 3′ untranslated region (UTR) of RNA1, which contains RNA elements essential for both cap-independent translation and negative-strand RNA synthesis. A 58-nucleotide sequence in the 3′ UTR of RNA1 (Seq1f58) was necessary and sufficient for the generation of SR1f. SR1f was neither a subgenomic RNA nor a defective RNA replicon but a stable degradation product generated by Seq1f58-mediated protection against 5′→3′ decay. SR1f efficiently suppressed both cap-independent and cap-dependent translation both in vitro and in vivo. SR1f trans inhibited negative-strand RNA synthesis of RCNMV genomic RNAs via repression of replicase protein production but not via competition of replicase proteins in vitro. RCNMV seems to use cellular enzymes to generate SR1f that might play a regulatory role in RCNMV infection. Our results also suggest that Seq1f58 is an RNA element that protects the 3′-side RNA sequences against 5′→3′ decay in plant cells as reported for the poly(G) tract and stable stem-loop structure in Saccharomyces cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号