首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Embryonic stem (ES) cells are pluripotent cells capable of differentiating into cell lineages derived from all primary germ layers including neural cells. In this study we describe an efficient method for differentiating rhesus monkey ES cells to neural lineages and the subsequent isolation of an enriched population of Nestin and Musashi positive neural progenitor (NP) cells. Upon differentiation, these cells exhibit electrophysiological characteristics resembling cultured primary neurons. Embryoid bodies (EBs) were formed in ES growth medium supplemented with 50% MEDII. After 7 days in suspension culture, EBs were transferred to adherent culture and either differentiated in serum containing medium or expanded in serum free medium. Immunocytochemistry on differentiating cells derived from EBs revealed large networks of MAP-2 and NF200 positive neurons. DAPI staining showed that the center of the MEDII-treated EBs was filled with rosettes. NPs isolated from adherent EB cultures expanded in serum free medium were passaged and maintained in an undifferentiated state by culture in serum free N2 with 50% MEDII and bFGF. Differentiating neurons derived from NPs fired action potentials in response to depolarizing current injection and expressed functional ionotropic receptors for the neurotransmitters glutamate and gamma-aminobutyric acid (GABA). NPs derived in this way could serve as models for cellular replacement therapy in primate models of neurodegenerative disease, a source of neural cells for toxicity and drug testing, and as a model of the developing primate nervous system.  相似文献   

3.
Due to the limited understanding of self-renewal and pluripotency related signaling in stem cells, extracting information from genome-wide expression data is not only important but also challenging. With the combined use of two methods, we analyzed a set of microarray data at 11 time points from three mouse embryonic stem cell lines cultivated with and without leukemia inhibitory factor (LIF) for 14 days. Albeit the expression of individual genes in signaling pathways was not noticeably different between cells cultivated with and without LIF, at gene-set level the expression of ERK/MAPK (but not JAK/STAT) and cell cycle related genes was found significantly enriched in cells cultivated with LIF. This indicates that the Ras/Raf/ERK pathway, in addition to JAK/STAT, may also be a key player to carry on external LIF signal into mouse embryonic stem cells to promote self-renewal. When data at the first 7 time points were compared with data at the last 4 time points, the expression of several cell cycle related gene sets was apparently enriched in all three cell lines, indicating the active cell proliferation in the first 2 days. Compared with the slight decay of Oct4/Nanog/Sox2 during the 14 days, the expression of cell differentiation genes such as Gata4/6 underwent a drastic increase, which indicates that the upregulated expression of cell differentiation genes may better reflect the loss of self renewal than the down regulated expression of the stemness indicators Oct4, Sox2 and Nanog. Apart from differential expression and gene set enrichment analyses, a clustering algorithm was also used to classify genes into co-expression clusters. The possible regulation of two clusters, whose expression was most changed during cell culture from very low to very high, was explored. The drastic changes of these genes, including Slc39a8 which was a potential indicator of cell differentiation, in contrast the slight changes of self-renewal genes, imply that differentiation may be the default fate of stem cells and self-renewal may rely on a maintenance mechanism. When that mechanism weakens, cell differentiation begins. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
The identification of the genes regulating neural progenitor cell (NPC) functions is of great importance to developmental neuroscience and neural repair. Previously, we combined genetic subtraction and microarray analysis to identify genes enriched in neural progenitor cultures. Here, we apply a strategy to further stratify the neural progenitor genes. In situ hybridization demonstrates expression in the central nervous system germinal zones of 54 clones so identified, making them highly relevant for study in brain and neural progenitor development. Using microarray analysis we find 73 genes enriched in three neural stem cell (NSC)-containing populations generated under different conditions. We use the custom microarray to identify 38 "stemness" genes, with enriched expression in the three NSC conditions and present in both embryonic stem cells and hematopoietic stem cells. However, comparison of expression profiles from these stem cell populations indicates that while there is shared gene expression, the amount of genetic overlap is no more than what would be expected by chance, indicating that different stem cells have largely different gene expression patterns. Taken together, these studies identify many genes not previously associated with neural progenitor cell biology and also provide a rational scheme for stratification of microarray data for functional analysis.  相似文献   

5.
6.
7.
In this study, we utilize fluorescent activated cell sorting (FACS) of cells from transgenic zebrafish coupled with microarray analysis to globally analyze expression of cell type specific genes. We find that it is possible to isolate cell populations from Tg(fli1:egfp)(y1) zebrafish embryos that are enriched in vascular, hematopoietic and pharyngeal arch cell types. Microarray analysis of GFP+ versus GFP- cells isolated from Tg(fli1:egfp)(y1) embryos identifies genes expressed in hematopoietic, vascular and pharyngeal arch tissue, consistent with the expression of the fli1:egfp transgene in these cell types. Comparison of expression profiles from GFP+ cells isolated from embryos at two different time points reveals that genes expressed in different fli1+ cell types display distinct temporal expression profiles. We also demonstrate the utility of this approach for gene discovery by identifying numerous previously uncharacterized genes that we find are expressed in fli1:egfp-positive cells, including new markers of blood, endothelial and pharyngeal arch cell types. In parallel, we have developed a database to allow easy access to both our microarray and in situ results. Our results demonstrate that this is a robust approach for identification of cell type specific genes as well as for global analysis of cell type specific gene expression in zebrafish embryos.  相似文献   

8.
After implantation, mouse embryos deficient for the activity of the transforming growth factor-beta member Nodal fail to form both the mesoderm and the definitive endoderm. They also fail to specify the anterior visceral endoderm, a specialized signaling center which has been shown to be required for the establishment of anterior identity in the epiblast. Our study reveals that Nodal-/- epiblast cells nevertheless express prematurely and ectopically molecular markers specific of anterior fate. Our analysis shows that neural specification occurs and regional identities characteristic of the forebrain are established precociously in the Nodal-/- mutant with a sequential progression equivalent to that of wild-type embryo. When explanted and cultured in vitro, Nodal-/- epiblast cells readily differentiate into neurons. Genes normally transcribed in organizer-derived tissues, such as Gsc and Foxa2, are also expressed in Nodal-/- epiblast. The analysis of Nodal-/-;Gsc-/- compound mutant embryos shows that Gsc activity plays no critical role in the acquisition of forebrain characters by Nodal-deficient cells. This study suggests that the initial steps of neural specification and forebrain development may take place well before gastrulation in the mouse and highlights a possible role for Nodal, at pregastrula stages, in the inhibition of anterior and neural fate determination.  相似文献   

9.
Neural stem cells have been cultured as three-dimensional aggregates in a number of different types of bioreactors. The design and configuration of the bioreactor are shown to be crucial factors for the successful propagation of the cells. A novel bioreactor with liquid re-circulation and a working volume of 200 ml has been designed, tested and shown to be able to produce a higher cell vitality compared to those produced in multi-well plates, shake flasks and stirred flasks. The novel reactor was able to produce a total density of cells of 3.5 x 10(6) cells/ml consisting of a larger number of smaller and proliferative aggregates, compared to only 1.8 x 10(6) cells/ml produced in a multi-well plate. Shake flasks and stirred flasks commonly used for facilitating mass transfer in the culture of micro-organisms are shown to be unsuitable for the propagation of neural stem cells.  相似文献   

10.
This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.  相似文献   

11.
The effects of mesenchymal stem cells (MSCs) on proliferation and cell fate determination of neural stem cells (NSCs) have been investigated. NSCs were co-cultured with MSCs or NIH3T3 cells using an in vitro transwell system. After 4 days, immunofluorescence staining showed that the number of cells positive for the cell proliferation antigen, ki-67, in neurospheres in MSCs was greater than in NIH3T3 cells. In some experiments, the top-layers of MSCs and NIH3T3 cells were removed to induce NSCs differentiation. Seven days after initiating differentiation, the levels of the neuronal marker, NSE, were higher in NSCs in MSCs co-culture group, and those of glial fibrillary acidic protein (GFAP) were lower, compared with NIH3T3 cells co-culture group. These were confirmed by immunofluorescence. The role of the Notch signaling pathway analyzed with the specific inhibitor, DAPT, and by examining the expression of Notch-related genes using RT-PCR showed that after co-culturing with MSCs for 24 h, NSCs expressed much higher levels of ki-67, Notch1, and Hes1 than did NSCs co-cultured with NIH3T3 cells. Treatment with DAPT decreased ki-67, Notch1 and Hes1 expression in NCSs, and increased Mash1 expression. The data indicate that the interactions between MSCs and NSCs promote NSCs proliferation and are involved in specifying neuronal fate, mediated in part by Notch signaling.  相似文献   

12.
13.
Neural stem (NS) cells are multipotent cells defined by their capacity to proliferate and differentiate into all neuronal and glial phenotypes. NS cells can be obtained from specific regions of the adult brain, or generated from embryonic stem cells (ESCs). NS cells differentiate into neural progenitor (NP) cells and subsequently neural precursors, as transient steps towards terminal differentiation into specific mature neuronal or glial phenotypes. When cultured in EGF and FGF2, ESC-derived NS cells have been reported to be stable and multipotent. Conditions that enable differentiation of NS cells through the committed progenitor and precursor stages to specific neuronal subtypes have not been fully established. In this study we investigated, using Lmx1a reporter ESCs, whether the length of neural induction (NI) dictated the phenotypic potential of cultures of ESC-derived NS cells or NP cells. Following 4, 7 or 10 day periods of NI, ESCs in monolayer culture were harvested and cultured as neurospheres, prior to replating as monolayer cultures for several passages in EGF and FGF2. The NS/NP cultures were then directed towards mature neuronal fates over 16-17 days. 4 and 7-day NS cell cultures could not be differentiated towards dopaminergic, serotonergic or cholinergic fates as determined by the absence of tyrosine hydroxylase, 5-HT or choline acetyltransferase (ChAT) immunolabelling. In contrast NS/NP cultures derived after 10 days of NI were able to generate tyrosine hydroxylase and 5-HT positive neurons (24 ± 6 and 13 ± 1% of the βIII-tubulin positive population, respectively, n = 3). Our data suggest that extended periods of neural induction enhanced the potential of mouse ESC-derived NS/NP cells to generate specific subtypes of neurons. NS/NP cells derived after shorter periods of NI appeared to be lineage-restricted in relation to the neuronal subtypes observed after removal of EGF.  相似文献   

14.
Neural stem cells (NSC) act as a versatile tool for neuronal cell replacement strategies to treat neurodegenerative disorders in which functional neurorestorative mechanisms are limited. While the beneficial effects of such cell-based therapy have already been documented in terms of neurodegeneration of various origins, a neurophysiological basis for improvement in the recovery of neurological function is still not completely understood. This overview briefly describes the cumulative evidence from electrophysiological studies of NSC-derived neurons, aimed at establishing the maturation of differentiated neurons within a host microenvironment, and their integration into the host circuits, with a particular focus on the neurogenesis of NSC grafts within the post-ischemic milieu. Overwhelming evidence demonstrates that the host microenvironment largely regulates the lineage of NSC grafts. This regulatory role, as yet underestimated, raises possibilities for the favoured maturation of a subset of neural phenotypes in order to gain timely remodelling of the impaired brain tissue and amplify the therapeutic effects of NSC-based therapy for recovery of neurological function.  相似文献   

15.
Neural crest-derived structures that depend critically upon expression of the basic helix-loop-helix DNA binding protein Hand2 for normal development include craniofacial cartilage and bone, the outflow tract of the heart, cardiac cushion, and noradrenergic sympathetic ganglion neurons. Loss of Hand2 is embryonic lethal by E9.5, obviating a genetic analysis of its in-vivo function. We have overcome this difficulty by specific deletion of Hand2 in neural crest-derived cells by crossing our line of floxed Hand2 mice with Wnt1-Cre transgenic mice. Our analysis of Hand2 knock-out in neural crest-derived cells reveals effects on development in all neural crest-derived structures where Hand2 is expressed. In the autonomic nervous system, conditional disruption of Hand2 results in a significant and progressive loss of neurons as well as a significant loss of TH expression. Hand2 affects generation of the neural precursor pool of cells by affecting both the proliferative capacity of the progenitors as well as affecting expression of Phox2a and Gata3, DNA binding proteins important for the cell autonomous development of noradrenergic neurons. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting differentiation and cell type-specific gene expression in neural crest-derived noradrenergic sympathetic ganglion neurons. Hand2 has a pivotal function in a non-linear cross-regulatory network of DNA binding proteins that affect cell autonomous control of differentiation and cell type-specific gene expression.  相似文献   

16.
17.
目的:探讨在分化扩增期采用连续低密度传代的方法是否能降低小鼠胚胎干细胞向神经细胞分化的前体细胞中Oct-4阳性细胞的比例,以及对神经分化能力的影响。方法:采用“五步法”将小鼠胚胎干细胞向神经元分化,进入扩增期后采用连续低密度传代的方法连续传10代。然后应用细胞免疫组化鉴定Oct-4阳性细胞、神经元与胶质细胞、流式细胞仪检测Oct-4阳性细胞比例、凋亡试剂盒测定细胞凋亡。结果:流式细胞仪检测出扩增期连续低密度传代得到的前体细胞中Oct-4阳性细胞的比例由16.17±4.8%降至4.33±1.63%,扩增期低密度传代细胞和正常高密度传代细胞的细胞凋亡率鉴定分别为15.16±3.64% 和11.88±2.63%,步骤5诱导分化后的细胞GFAP和Tuj-1免疫组化染色呈阴性。结论:低密度传代培养可以减少分化后Oct-4阳性细胞的比例,且该比例下降不是由Oct-4阳性细胞的凋亡引起的。同时可能是因为低密度传代培养和高密度相比引起了细胞的质变、或者改变了前体细胞向神经元分化的某种微环境,导致了前体细胞不能分化为神经细胞。提示高密度培养在前体细胞向神经元分化过程中具有重要作用,高密度和低密度培养的比较,提供了研究ES细胞向神经元分化机制的新平台和研究方向。  相似文献   

18.
Adult hippocampal neurogenesis is altered in response to different physiological and pathological stimuli. GFAP+ve/nestin+ve radial glial like Type-1 progenitors are considered to be the resident stem cell population in adult hippocampus. During neurogenesis these Type-1 progenitors matures to GFAP−ve/nestin+ve Type-2 progenitors and then to Type-3 neuroblasts and finally differentiates into granule cell neurons. In our study, using pilocarpine-induced seizure model, we showed that seizure initiated activation of multiple progenitors in the entire hippocampal area such as DG, CA1 and CA3. Seizure induction resulted in activation of two subtypes of Type-1 progenitors, Type-1a (GFAP+ve/nestin+ve/BrdU+ve) and Type-1b (GFAP+ve/nestin+ve/BrdU−ve). We showed that majority of Type-1b progenitors were undergoing only a transition from a state of dormancy to activated form immediately after seizures rather than proliferating, whereas Type-1a showed maximum proliferation by 3 days post-seizure induction. Type-2 (GFAP−ve/nestin+ve/BrdU+ve) progenitors were few compared to Type-1. Type-3 (DCX+ve) progenitors showed increased expression of immature neurons only in DG region by 3 days after seizure induction indicating maturation of progenitors happens only in microenvironment of DG even though progenitors are activated in CA1 and CA3 regions of hippocampus. Also parallel increase in growth factors expression after seizure induction suggests that microenvironmental niche has a profound effect on stimulation of adult neural progenitors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号