首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We usedsingle-channel recording techniques to identify and characterize alarge-conductance,Ca2+-independentK+ channel in the colonicsecretory cell line T84. In symmetric potassium gluconate, this channelhad a linear current-voltage relationship with a single-channelconductance of 161 pS. Channel open probability(Po) wasincreased at depolarizing potentials. Partial substitution of bathK+ withNa+ indicated a permeability ratioof K+ toNa+ of 25:1. ChannelPo was reduced byextracellular Ba2+. Event-durationanalysis suggested a linear kinetic model for channel gating having asingle open state and three closed states: C3C2C1O.Arachidonic acid (AA) increased thePo of thechannel, with an apparent stimulatory constant(Ks)of 1.39 µM. Neither channel open time (O) nor the fast closed time(C1) was affected by AA. Incontrast, AA dramatically reduced mean closed time by decreasing bothC3 andC2. Thecis-unsaturated fatty acid linoleate increased Poalso, whereas the saturated fatty acid myristate and thetrans-unsaturated fatty acid elaidatedid not affectPo. This channelis activated also by negative pressure applied to the pipette duringinside-out recording. Thus we determined the effect of thestretch-activated channel blockers amiloride and Gd3+ on theK+ channel after activation by AA.Amiloride (2 mM) on the extracellular side reduced single-channelamplitude in a voltage-dependent manner, whereasGd3+ (100 µM) had no effect onchannel activity. Activation of this K+ channel may be important duringstimulation of Cl secretionby agonists that use AA as a second messenger (e.g., vasoactiveintestinal polypeptide, adenosine) or during the volume regulatoryresponse to cell swelling.

  相似文献   

2.
The role of the Na+ pump2-subunit in Ca2+ signaling was examined inprimary cultured astrocytes from wild-type(2+/+ = WT) mouse fetuses and thosewith a null mutation in one [2+/ = heterozygote (Het)] or both [2/ = knockout (KO)] 2 genes. Na+ pump catalytic() subunit expression was measured by immunoblot; cytosol[Na+] ([Na+]cyt) and[Ca2+] ([Ca2+]cyt) weremeasured with sodium-binding benzofuran isophthalate and fura 2 byusing digital imaging. Astrocytes express Na+ pumpswith both 1- (80% of total ) and2- (20% of total ) subunits. Het astrocytesexpress 50% of normal 2; those from KO express none.Expression of 1 is normal in both Het and KO cells.Resting [Na+]cyt = 6.5 mM in WT, 6.8 mMin Het (P > 0.05 vs. WT), and 8.0 mM in KO cells(P < 0.001); 500 nM ouabain (inhibits only2) equalized [Na+]cyt at 8 mMin all three cell types. Resting[Ca2+]cyt = 132 nM in WT, 162 nM in Het,and 196 nM in KO cells (both P < 0.001 vs. WT).Cyclopiazonic acid (CPA), which inhibits endoplasmic reticulum (ER)Ca2+ pumps and unloads the ER, induces transient (inCa2+-free media) or sustained (in Ca2+-repletemedia) elevation of [Ca2+]cyt. TheseCa2+ responses to 10 µM CPA were augmented in Het as wellas KO cells. When CPA was applied in Ca2+-free media, thereintroduction of Ca2+ induced significantly largertransient rises in [Ca2+]cyt (due toCa2+ entry through store-operated channels) in Het and KOcells than in WT cells. These results correlate with published evidencethat 2 Na+ pumps andNa+/Ca2+ exchangers are confined to plasmamembrane microdomains that overlie the ER. The data suggest thatselective reduction of 2 Na+ pump activitycan elevate local [Na+] and, viaNa+/Ca2+ exchange, [Ca2+] in thetiny volume of cytosol between the plasma membrane and ER. This, inturn, augments adjacent ER Ca2+ stores and therebyamplifies Ca2+ signaling without elevating bulk[Na+]cyt.

  相似文献   

3.
Calcium dependence of C-type natriuretic peptide-formed fast K+ channel   总被引:2,自引:0,他引:2  
The lipid bilayertechnique was used to characterize theCa2+ dependence of a fastK+ channel formed by a synthetic17-amino acid segment [OaCNP-39-(1-17)] ofa 39-amino acid C-type natriuretic peptide (OaCNP-39) found in platypus (Ornithorhynchusanatinus) venom (OaV). TheOaCNP-39-(1-17)-formed K+ channel was reversiblydependent on1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-buffered cis (cytoplasmic)Ca2+ concentration([Ca2+]cis).The channel was fully active when[Ca2+]ciswas >104 M andtrans (luminal)Ca2+ concentration was 1.0 mM, butnot at low[Ca2+]cis.The open probability of single channels increased from zero at1 × 106 McisCa2+ to 0.73 ± 0.17 (n = 22) at103 McisCa2+. Channel openings to themaximum conductance of 38 pS were rapidly and reversibly activated when[Ca2+]cis,but not transCa2+ concentration(n = 5), was increased to >5 × 104 M(n = 14). Channel openings to thesubmaximal conductance of 10.5 pS were dominant at5 × 104 MCa2+.K+ channels did not open whencisMg2+ orSr2+ concentrations were increasedfrom zero to 103 M or when[Ca2+]ciswas maintained at 106 M(n = 3 and 2). The Hill coefficientand the inhibition constant were 1 and 0.8 × 104 McisCa2+, respectively. Thisdependence of the channel on high[Ca2+]cissuggests that it may become active under1) physiological conditions whereCa2+ levels are high, e.g., duringcardiac and skeletal muscle contractions, and2) pathological conditions that leadto a Ca2+ overload, e.g., ischemicheart and muscle fatigue. The channel could modify a cascade ofphysiological functions that are dependent on theCa2+-activatedK+ channels, e.g., vasodilationand salt secretion.

  相似文献   

4.
We reported previously that inhibition ofNa+-K+-Cl cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K+concentration ([K+]o)-induced swelling andintracellular Cl accumulation in rat cortical astrocytes.In this report, we extended our study by using cortical astrocytes fromNKCC1-deficient (NKCC1/) mice. NKCC1 protein andactivity were absent in NKCC1/ astrocytes.[K+]o of 75 mM increased NKCC1 activityapproximately fourfold in NKCC1+/+ cells (P < 0.05) but had no effect in NKCC1/ astrocytes.Intracellular Cl was increased by 70% inNKCC1+/+ astrocytes under 75 mM[K+]o (P < 0.05) butremained unchanged in NKCC1/ astrocytes. Baselineintracellular Na+ concentration([Na+]i) in NKCC1+/+ astrocyteswas 19.0 ± 0.5 mM, compared with 16.9 ± 0.3 mM[Na+]i in NKCC1/ astrocytes(P < 0.05). Relative cell volume ofNKCC1+/+ astrocytes increased by 13 ± 2% in 75 mM[K+]o, compared with a value of 1.0 ± 0.5% in NKCC1/ astrocytes (P < 0.05).Regulatory volume increase after hypertonic shrinkage was completelyimpaired in NKCC1/ astrocytes.High-[K+]o-induced 14C-labeledD-aspartate release was reduced by ~30% inNKCC1/ astrocytes. Our study suggests that stimulationof NKCC1 is required for high-[K+]o-inducedswelling, which contributes to glutamate release from astrocytes underhigh [K+]o.

  相似文献   

5.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

6.
Whole cell patch-clamprecordings were made from cultured myenteric neurons taken from murineproximal colon. The micropipette contained Cs+ to removeK+ currents. Depolarization elicited a slowly activatingtime-dependent outward current (Itdo), whereasrepolarization was followed by a slowly deactivating tail current(Itail). Itdo andItail were present in ~70% of neurons. Weidentified these currents as Cl currents(ICl), because changing the transmembraneCl gradient altered the measured reversal potential(Erev) of both Itdo andItail with that for Itailshifted close to the calculated Cl equilibrium potential(ECl). ICl areCa2+-activated Cl current[ICl(Ca)] because they were Ca2+dependent. ECl, which was measured from theErev of ICl(Ca) using agramicidin perforated patch, was 33 mV. This value is more positivethan the resting membrane potential (56.3 ± 2.7 mV), suggestingmyenteric neurons accumulate intracellular Cl.-Conotoxin GIVA [0.3 µM; N-type Ca2+ channelblocker] and niflumic acid [10 µM; knownICl(Ca) blocker], decreased theICl(Ca). In conclusion, these neurons haveICl(Ca) that are activated by Ca2+entry through N-type Ca2+ channels. These currents likelyregulate postspike frequency adaptation.

  相似文献   

7.
Cell pH was monitored in medullary thick ascending limbs todetermine effects of ANG II onNa+-K+(NH+4)-2Clcotransport. ANG II at 1016to 1012 M inhibited30-50% (P < 0.005),but higher ANG II concentrations were stimulatory compared with the1012 M ANG II levelcotransport activity; eventually,106 M ANG II stimulated34% cotransport activity (P < 0.003). Inhibition by 1012M ANG II was abolished by phospholipase C (PLC), diacylglycerol lipase,or cytochrome P-450-dependentmonooxygenase blockade; 1012 M ANG II had no effectadditive to inhibition by 20-hydroxyeicosatetranoic acid (20-HETE).Stimulation by 106 M ANG IIwas abolished by PLC and protein kinase C (PKC) blockade and waspartially suppressed when the rise in cytosolicCa2+ was prevented. All ANG IIeffects were abolished by DUP-753 (losartan) but not by PD-123319. Thus1012 M ANG II inhibitsvia 20-HETE, whereas 5 × 1011 M ANG II stimulatesvia PKCNa+-K+(NH+4)-2Clcotransport; all ANG II effects involveAT1 receptors and PLC activation.

  相似文献   

8.
An HEK-293 cell line stably expressing the humanrecombinant ClC-2 Cl channel was used in patch-clampstudies to study its regulation. The relative permeabilityPx/PCl calculated fromreversal potentials was I > Cl = NO3 = SCNBr. Theabsolute permeability calculated from conductance ratios wasCl = Br = NO3  SCN > I. The channel was activatedby cAMP-dependent protein kinase (PKA), reduced extracellular pH, oleicacid (C:18 cis9), elaidic acid (C:18trans9), arachidonic acid (AA; C:20cis5,8,11,14), and by inhibitors of AA metabolism,5,8,11,14-eicosatetraynoic acid (ETYA; C:20trans5,8,11,14),-methyl-4-(2-methylpropyl)benzeneacetic acid (ibuprofen), and2-phenyl-1,2-benzisoselenazol-3-[2H]-one (PZ51, ebselen). ClC-2Cl channels were activated by a combination of forskolinplus IBMX and were inhibited by the cell-permeant myristoylated PKAinhibitor (mPKI). Channel activation by reduction of bath pH wasincreased by PKA and prevented by mPKI. AA activation of the ClC-2Cl channel was not inhibited by mPKI or staurosporine andwas therefore independent of PKA or protein kinase C activation.

  相似文献   

9.
Thickening of airway mucus and lungdysfunction in cystic fibrosis (CF) results, at least in part, fromabnormal secretion of Cl and HCO3across the tracheal epithelium. The mechanism of the defect in HCO3 secretion is ill defined; however, a lack ofapical Cl/HCO3 exchange may exist inCF. To test this hypothesis, we examined the expression ofCl/HCO3 exchangers in trachealepithelial cells exhibiting physiological features prototypical ofcystic fibrosis [CFT-1 cells, lacking a functional cystic fibrosistransmembrane conductance regulator (CFTR)] or normal trachea (CFT-1cells transfected with functional wild-type CFTR, termed CFT-WT). Cellswere grown on coverslips and were loaded with the pH-sensitive dye2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, andintracellular pH was monitored. Cl/HCO3exchange activity increased by ~300% in cells transfected with functional CFTR, with activities increasing from 0.034 pH/min in CFT-1cells to 0.11 in CFT-WT cells (P < 0.001, n = 8). This activity was significantly inhibited byDIDS. The mRNA expression of the ubiquitous basolateral AE-2Cl/HCO3 exchanger remained unchanged.However, mRNA encoding DRA, recently shown to be aCl/HCO3 exchanger (Melvin JE, Park K,Richardson L, Schultheis PJ, and Shull GE. J Biol Chem 274:22855-22861, 1999.) was abundantly expressed in cells expressingfunctional CFTR but not in cells that lacked CFTR or that expressedmutant CFTR. In conclusion, CFTR induces the mRNA expression of"downregulated in adenoma" (DRA) and, as a result, upregulates theapical Cl/HCO3 exchanger activity intracheal cells. We propose that the tracheal HCO3secretion defect in patients with CF is partly due to thedownregulation of the apical Cl/HCO3exchange activity mediated by DRA.

  相似文献   

10.
The fluorescence of quinolinium-basedCl indicators such as6-methoxy-N-(3-sulfopropyl)quinolinium(SPQ) is quenched by Cl bya collisional mechanism without change in spectral shape. A series of"chimeric" dual-wavelengthCl indicators weresynthesized by conjugatingCl-sensitive and-insensitive chromophores with spacers. The SPQ chromophore(N-substituted 6-methoxyquinolinium; MQ) was selected as theCl-sensitive moiety[excitation wavelength(ex) 350 nm, emission wavelength (em) 450 nm]. N-substituted 6-aminoquinolinium (AQ) waschosen as theCl-insensitive moietybecause of its different spectral characteristics (ex 380 nm,em 546 nm), insensitivity toCl, positive charge (tominimize quenching by chromophore stacking/electron transfer), andreducibility (for noninvasive cell loading). The dual-wavelengthindicators were stable and nontoxic in cells and were distributeduniformly in cytoplasm, with occasional staining of the nucleus. Thebrightest and mostCl-sensitive indicatorswere -MQ-'-dimethyl-AQ-xylene dichloride andtrans-1,2-bis(4-[1-'-MQ-1'-'-dimethyl-AQ-xylyl]-pyridinium)ethylene (bis-DMXPQ). At 365-nm excitation, emission maxima were at 450 nm(Cl sensitive; Stern-Volmerconstants 82 and 98 M1)and 565 nm (Clinsensitive). Cystic fibrosis transmembrane conductanceregulator-expressing Swiss 3T3 fibroblasts were labeled with bis-DMXPQby hypotonic shock or were labeled with its uncharged reduced form(octahydro-bis-DMXPQ) by brief incubation (20 µM, 10 min). Changes inCl concentration inresponse to Cl/nitrateexchange were recorded by emission ratio imaging (450/565 nm) at 365-nmexcitation wavelength. These results establish a first-generation setof chimeric bisquinoliniumCl indicators forratiometric measurement ofCl concentration.  相似文献   

11.
Effects of HCO3 on protein kinase C (PKC)-and protein kinase A (PKA)-induced anion conductances were investigatedin Necturus gallbladder epithelial cells. InHCO3-free media, activation of PKC via12-O-tetradecanoylphorbol 13-acetate (TPA) depolarizedapical membrane potential (Va) and decreased fractional apical voltage ratio (FR). These effects wereblocked by mucosal 5-nitro-2-(3-phenylpropylamino) benzoic acid(NPPB), a Cl channel blocker. In HCO3media, TPA induced significantly greater changes inVa and FR. These effects wereblocked only when NPPB was present in both mucosal and basolateralcompartments. The data suggest that TPA activates NPPB-sensitive apicalCl conductance (gCla) in theabsence of HCO3; in its presence, TPA stimulated bothNPPB-sensitive gCla and basolateralCl conductance (gClb).Activation of PKA via 3-isobutyl-1-methylxanthine (IBMX) also decreased Va and FR; however, thesechanges were not affected by external HCO3. Weconclude that HCO3 modulates the effects of PKC ongClb. In HCO3 medium, TPAand IBMX also induced an initial transient hyperpolarization andincrease in intracellular pH. Because these changes were independent ofmucosal Na+ and Cl, it is suggested that TPAand IBMX induce a transient increase in apical HCO3 conductance.

  相似文献   

12.
Pancreatic dysfunction in patients with cystic fibrosis (CF) isfelt to result primarily from impairment of ductalHCO3 secretion. We provide molecularevidence for the expression of NBC-1, an electrogenicNa+-HCO3cotransporter (NBC) in cultured human pancreatic ductcells exhibiting physiological features prototypical of CF ductfragments (CFPAC-1 cells) or normal duct fragments [CAPAN-1 cellsand CFPAC-1 cells transfected with wild-type CF transmembraneconductance regulator (CFTR)]. We further demonstrate that1)HCO3 uptake across the basolateralmembranes of pancreatic duct cells is mediated via NBC and2) cAMP potentiates NBC activitythrough activation of CFTR-mediatedCl secretion. We proposethat the defect in agonist-stimulated ductal HCO3 secretion in patients with CF ispredominantly due to decreased NBC-drivenHCO3 entry at the basolateralmembrane, secondary to the lack of sufficient electrogenic drivingforce in the absence of functional CFTR.

  相似文献   

13.
We examined the effect of peroxynitrite(ONOO) on the cloned ratepithelial Na+ channel(-rENaC) expressed in Xenopusoocytes. 3-Morpholinosydnonimine (SIN-1) was used to concurrentlygenerate nitric oxide (· NO) and superoxide(O2 ·), which react toform ONOO, a species knownto promote protein nitration and oxidation. Under control conditions,oocytes displayed an amiloride-sensitive whole cell conductance of 7.4 ± 2.8 (SE) µS. When incubated at 18°C with SIN-1 (1 mM) for 2 h (final ONOO concentration = 10 µM), the amiloride-sensitive conductance was reduced to0.8 ± 0.5 µS. To evaluate whether the observed inhibition was due to ONOO, as opposedto · NO, we also exposed oocytes to SIN-1 in the presence ofurate (500 µM), a scavenger ofONOO and superoxidedismutase, which scavengesO2 ·, converting SIN-1from an ONOO to an· NO donor. Under these conditions, conductance values remained at control levels following SIN-1 treatment.Tetranitromethane, an agent that oxidizes sulfhydryl groups at pH6, also inhibited the amiloride-sensitive conductance. These datasuggest that oxidation of critical sulfhydryl groups within rENaC byONOO directly inhibitschannel activity.

  相似文献   

14.
Alveolar epithelial cells were isolated from adultSprague-Dawley rats and grown to confluence on membrane filters. Mostof the basal short-circuit current(Isc; 60%) wasinhibited by amiloride (IC50 0.96 µM) or benzamil (IC50 0.5 µM).Basolateral addition of terbutaline (2 µM) produced a rapid decreasein Isc, followed by a slow recovery back to its initial amplitude. WhenCl was replaced withmethanesulfonic acid, the basalIsc was reduced and the response to terbutaline was inhibited. In permeabilized monolayer experiments, both terbutaline and amiloride produced sustained decreases in current. The current-voltage relationship of the terbutaline-sensitive current had a reversal potential of28 mV. Increasing Cl concentration in thebasolateral solution shifted the reversal potential to more depolarizedvoltages. These results were consistent with the existence of aterbutaline-activated Cl conductance in the apicalmembrane. Terbutaline did not increase the amiloride-sensitiveNa+ conductance. We conclude that -adrenergicstimulation of adult alveolar epithelial cells results in an increasein apical Cl permeability and thatamiloride-sensitive Na+ channels are not directly affectedby this stimulation.

  相似文献   

15.
The effects of serotonin[5-hydroxytryptamine (5-HT)] on the transepithelial electricalproperties of the short-circuited rabbit conjunctiva were examined.With this epithelium, the short-circuit current(Isc) measures Cl secretion plusan amiloride-resistant Na+ absorptive process. Apicaladdition of 5-HT (10 µM) elicited a prompt Iscreduction from 14.2 ± 1.2 to 10.9 ± 1.2 µA/cm2 and increased transepithelial resistance from0.89 ± 0.05 to 1.03 ± 0.06 k · cm2(means ± SE, n = 21, P < 0.05).Similar changes were obtained with conjunctivae bathed withoutNa+ in the apical bath, as well as with conjunctivaepreexposed to bumetanide with the Cl-dependentIsc sustained by the parallel activities ofbasolateral Na+/H+ andCl/HCO exchangers. In contrast, the5-HT-evoked effects were attenuated by the absence of Cl(Isc = 0.5 ± 0.2, n = 5), suggesting that reduced Clconductance(s) is an effect of 5-HT exposure. In amphotericin B-treatedconjunctiva and in the presence of a transepithelial K+gradient, 5-HT addition reduced K+ diffusion across thepreparation by 13% and increased transepithelial resistance by 4%(n = 6, P < 0.05), indicating that aninhibition in K+ conductance(s) was also detectable.Significant electrical responses also occurred under physiologicalconditions when 5-HT was introduced to epithelia pretreated withadrenergic agonists or protein kinase C, phospholipase C,phosphodiesterase, or adenylyl cyclase inhibitors or after perturbationof Ca2+ homeostasis. Briefly, the conjunctiva harbors theonly known Cl-secreting epithelium in which 5-HT evokesCl transport inhibition; receptor subtype and signaltransduction mechanism were not determined.

  相似文献   

16.
HumanNa+-K+-ATPase11,21, and 31heterodimers were expressed individually in yeast, and ouabainbinding and ATP hydrolysis were measured in membrane fractions. Theouabain equilibrium dissociation constant was 13-17 nM for11 and 31at 37°C and 32 nM for 21, indicatingthat the human -subunit isoforms have a similar high affinity forcardiac glycosides. K0.5 values for antagonism of ouabain binding by K+ were ranked in order as follows:2 (6.3 ± 2.4 mM) > 3(1.6 ± 0.5 mM)  1 (0.9 ± 0.6 mM),and K0.5 values for Na+ antagonismof ouabain binding to all heterodimers were 9.5-13.8 mM. Themolecular turnover for ATP hydrolysis by11 (6,652 min1) was abouttwice as high as that by 31 (3,145 min1). These properties of the human heterodimersexpressed in yeast are in good agreement with properties of the humanNa+-K+-ATPase expressed in Xenopusoocytes (G Crambert, U Hasler, AT Beggah, C Yu, NN Modyanov, J-DHorisberger, L Lelievie, and K Geering. J Biol Chem275: 1976-1986, 2000). In contrast to Na+ pumpsexpressed in Xenopus oocytes, the21 complex in yeast membranes wassignificantly less stable than 11 or31, resulting in a lower functionalexpression level. The 21 complex was also more easily denatured by SDS than was the11 or the31 complex.

  相似文献   

17.
The purpose ofthe current experiments was 1) toassess basolateralNa+-K+-2Clcotransporter (NKCC1) expression and2) to ascertain the role of cysticfibrosis transmembrane conductance regulator (CFTR) in the regulationof this transporter in a prototypical pancreatic duct epithelial cellline. Previously validated human pancreatic duct celllines (CFPAC-1), which exhibit physiological features prototypical ofcystic fibrosis, and normal pancreatic duct epithelia (stablerecombinant CFTR-bearing CFPAC-1 cells, termed CFPAC-WT) were grown toconfluence before molecular and functional studies. High-stringencyNorthern blot hybridization, utilizing specific cDNA probes, confirmedthat NKCC1 was expressed in both cell lines and its mRNA levels weretwofold higher in CFPAC-WT cells than in CFPAC-1 cells(P < 0.01, n = 3).Na+-K+-2Clcotransporter activity, assayed as the bumetanide-sensitive, Na+- andCl-dependentNH+4 entry into the cell (withNH+4 acting as a substitute forK+), increased by ~115% inCFPAC-WT cells compared with CFPAC-1 cells(P < 0.01, n = 6). Reducing the intracellularCl by incubating the cellsin a Cl-free mediumincreasedNa+-K+-2Clcotransporter activity by twofold (P < 0.01, n = 4) only in CFPAC-WT cells. We concluded that NKCC1 is expressed in pancreatic duct cellsand mediates the entry ofCl. NKCC1 activity isenhanced in the presence of an inwardCl gradient. The resultsfurther indicate that the presence of functional CFTR enhances theexpression of NKCC1. We speculate that CFTR regulates this process in aCl-dependent manner.

  相似文献   

18.
We examined the effects of human cytomegalovirus (HCMV)infection on theNa+-K+-Clcotransporter (NKCC) in a human fibroblast cell line. Using the Cl-sensitive dye MQAE, weshowed that the mock-infected MRC-5 cells express a functional NKCC.1) IntracellularCl concentration([Cl]i)was significantly reduced from 53.4 ± 3.4 mM to 35.1 ± 3.6 mMfollowing bumetanide treatment. 2)Net Cl efflux caused byreplacement of external Clwith gluconate was bumetanide sensitive.3) InCl-depleted mock-infectedcells, the Cl reuptake rate(in HCO3-free media) was reduced inthe absence of external Na+ and bytreatment with bumetanide. After HCMV infection, we found that although[Cl]iincreased progressively [24 h postexposure (PE), 65.2 ± 4.5 mM; 72 h PE, 80.4 ± 5.0 mM], the bumetanide andNa+ sensitivities of[Cl]iand net Cl uptake and losswere reduced by 24 h PE and abolished by 72 h PE. Western blots usingthe NKCC-specific monoclonal antibody T4 showed an approximatelyninefold decrease in the amount of NKCC protein after 72 h ofinfection. Thus HCMV infection resulted in the abolition of NKCCfunction coincident with the severe reduction in the amount of NKCCprotein expressed.

  相似文献   

19.
Tumor necrosisfactor (TNF)- has a biphasic effect on heart contractility andstimulates phospholipase A2 (PLA2) incardiomyocytes. Because arachidonic acid (AA) exerts a dual effect onintracellular Ca2+ concentration([Ca2+]i) transients, we investigated thepossible role of AA as a mediator of TNF- on[Ca2+]i transients and contraction withelectrically stimulated adult rat cardiac myocytes. At a lowconcentration (10 ng/ml) TNF- produced a 40% increase in theamplitude of both [Ca2+]i transients andcontraction within 40 min. At a high concentration (50 ng/ml) TNF-evoked a biphasic effect comprising an initial positive effect peakingat 5 min, followed by a sustained negative effect leading to50-40% decreases in [Ca2+]i transientsand contraction after 30 min. Both the positive and negative effects ofTNF- were reproduced by AA and blocked by arachidonyltrifluoromethylketone (AACOCF3), an inhibitor of cytosolic PLA2.Lipoxygenase and cyclooxygenase inhibitors reproduced the high-doseeffects of TNF- and AA. The negative effects of TNF- and AA werealso reproduced by sphingosine and were abrogated by the ceramidaseinhibitor n-oleoylethanolamine. These results point out thekey role of the cytosolic PLA2/AA pathway in mediating thecontractile effects of TNF-.

  相似文献   

20.
We investigated the regulation ofATP-sensitive K+ (KATP) currents in murinecolonic myocytes with patch-clamp techniques. Pinacidil(105 M) activated inward currents in the presence of highexternal K+ (90 mM) at a holding potential of 80 mV indialyzed cells. Glibenclamide (105 M) suppressedpinacidil-activated current. Phorbol 12,13-dibutyrate (PDBu; 2 × 107 M) inhibited pinacidil-activated current.4--Phorbol ester (5 × 107 M), an inactive formof PDBu, had no effect on pinacidil-activated current. In cell-attachedpatches, the open probability of KATP channels wasincreased by pinacidil, and PDBu suppressed openings ofKATP channels. When cells were pretreated withchelerythrine (106 M) or calphostin C (107M), inhibition of the pinacidil-activated whole cell currents by PDBuwas significantly reduced. In cells studied with the perforated patchtechnique, PDBu also inhibited pinacidil-activated current, and thisinhibition was reduced by chelerythrine (106 M).Acetylcholine (ACh; 105 M) inhibited pinacidil-activatedcurrents, and preincubation of cells with calphostin C(107 M) decreased the effect of ACh. Cells dialyzed withprotein kinase C -isoform (PKC) antibody had normal responses topinacidil, but the effects of PDBu and ACh on KATP wereblocked in these cells. Immunofluorescence and Western blots showedexpression of PKC in intact muscles and isolated smooth muscle cellsof the murine proximal colon. These data suggest that PKC regulates KATP in colonic muscle cells and that the effects of ACh onKATP are largely mediated by PKC. PKC appears to be themajor isozyme that regulates KATP in murine colonic myocytes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号