首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Summary Approximately 30–40% ofDrosophila virilis DNA complementary to clonedDrosophila histone genes is reduced to 3.4-kilobase-pair (kbp) segments by Bgl I or Bgl II digestion. The core histone genes of a 3.4-kbp Bgl II segment cloned in the plasmid pDv3/3.4 have the same order as theD. melanogaster core histone genes in the plasmid cDm500: . Nonetheless, pDv3/3.4 and cDm500 have different histone gene configurations: In pDv3/3.4, the region between the H2B and H3 genes contains 0.35 kbp and cannot encode histone H1; in cDm500, the region contains 2.0 kbp and encodes histone H1. The lack of an H1 gene between the H2B and H3 genes in 30–40% ofD. virilis histone gene clusters suggests that changes in histone gene arrays have occurred during the evolution ofDrosophila. The ancestors of modernDrosophila may have possessed multiple varieties of histone gene clusters, which were subsequently lost differentially in thevirilis andmelanogaster lineages. Alternatively, they may have possessed a single variety, which was rearranged during evolution. The H1 genes ofD. virilis andD. melanogaster did not cross-hybridize in vitro under conditions that maintain stable duplexes between DNAs that are 75% homologous. Consequently,D. virilis H1 genes could not be visualized by hybridization to an H1-specific probe and thus remain unidentified. Our observations suggest that the coding segments in the H1 genes ofD. virilis andD. melanogaster are >25% divergent. Our estimate of sequence divergence in the H1 genes ofD. virilis andD. melanogaster seems high until one considers that the coding sequences of cloned H1 genes from the closely related speciesD. melanogaster andD. simulans are 5% divergent.  相似文献   

2.
Summary Two histone H3 genes have been cloned from a gtWES.B corn genomic library. The nucleotide sequences show 96% homology and both encode the same protein, which differs from its counterpart in wheat and pea by one amino acid substitution. The 5-flanking regions of the two corn H3 genes contain the classical histone-gene-specific consensus sequences and possess several regions of extensive nucleotide homology. A conserved octanucleotide 5-CGCGGATC-3 occurs at approximately 200 nucleotides upstream from the initiation ATG codon. This octanucleotide was found to exist in all of the 7 plant histone genes sequenced so far. Codon usage is characterized by a very high frequency of C (67%) and G (28%) at the third position of the codons, those ending by A (1%) and T (4%) being practically excluded.Comparison of Southern blots of EcoRI, EcoRV and BamHI digested genomic DNA suggests that the corn H3 and H4 genes are not closely associated. The H3 genes exist as 60 to 80 copies and the H4 genes as 100 to 120 copies per diploid genome. re]19851002 rv]19851212 ac]19851216  相似文献   

3.
Summary We have compared copy numbers and blothybridization patterns of histone genes (H3 plus H4) between and within individuals of broad bean (Vicia faba). Copy number differences among individuals in the population of 200 individuals were as great as 27 fold, and as much as 3.2 fold among separate leaves of the same plant. Among F2 progeny from genetic crosses, up to a 5.4-fold range was seen (mean=3.5 fold), and among F1 progeny of self-pollinated plants, up to a 5.9-fold range was observed (mean=2.3 fold). Histone gene blot-hybridization patterns for EcoRI and HindIII were also variable among individuals and indicated that the genes are probably clustered in only a few chromosomal loci. The degree of variation in histone gene copy number per haploid genome (2–55 copies, or 27 fold) was similar to that found previously for ribosomal RNA genes (230–22000, or 95 fold) of V. faba. However, the two gene families change independently, since individuals with a high or low copy number for one gene can have either a high or low copy number for the other. The mechanisms(s) for rapid gene copy number change may be similar for these gene families.  相似文献   

4.
Among the unicellular protists, several of which are parasitic, some of the most divergent eukaryotic species are found. The evolutionary distances between protists are so large that even slowly evolving proteins like histones are strongly divergent. In this study we isolated cDNA and genomic histone H3 and H4 clones fromTrichomonas vaginalis. Two histone H3 and three histone H4 genes were detected on three genomic clones with one complete H3 and two complete H4 sequences. H3 and H4 genes were divergently transcribed with very short intergenic regions of only 194 bp, which containedT. vaginalis-specific as well as histone-specific putative promoter elements. Southern blot analysis showed that there may be several more histone gene pairs. The two complete histone H4 genes were different on the nucleotide level but encoded the same amino acid sequence. Comparison of the amino acid sequences of theT. vaginalis H3 and H4 histones with sequences from animals, fungi, and plants as well as other protists revealed a significant divergence not only from the sequences in multicellular organisms but especially from the sequences in other protists likeEntamoeba histolytica, Trypanosoma cruzi, andLeishmania infantum.  相似文献   

5.
We report the nucleotide sequence of the core histone gene cluster from the Cnidarian Acropora formosa. This is the first histone gene cluster to be sequenced from a diploblastic organism and the predicted amino acid sequences most resemble those of sea urchin equivalents. Each of the Cnidarian histone genes has two conserved regions 3 of the coding sequences and these closely resemble those of the metazoan a-class histone genes. In A. formosa the core histone genes are arranged as opposed (H3/H4 and H2A/H2B) pairs, a pattern common to the nondeuterostome metazoa, and tandem repetition is the predominant pattern of organization in the Cnidarian. With the recent identification of several classes of homeobox genes in Cnidarians these features clearly align the Cnidaria with triploblastic metazoans, supporting a monophyletic origin of the metazoa.  相似文献   

6.
7.
Summary A cluster of four Azospirillum brasilense histidine biosynthetic genes, hisA, hisB, hisF and hisH, was identified on a 4.5 kb DNA fragment and its organization studied by complementation analysis of Escherichia coli mutations and nucleotide sequence. The nucleotide sequence of a 1.3 kb fragment that complemented the E. coli hisB mutation was determined and an ORF of 624 nucleotides which can code for a protein of 207 amino acids was identified. A significant base sequence homology with the carboxyterminal moiety of the E. coli hisB gene (0.53) and the Saccharomyces cerevisiae HIS3 gene (0.44), coding for an imidazole glycerolphosphate dehydratase activity was found. The amino acid sequence and composition, the hydropathic profile and the predicted secondary structures of the yeast, E. coli and A. brasilense proteins were compared. The significance of the data presented is discussed.Abbreviations IGP imidazole glycerolphosphate - HP histidinolphosphate  相似文献   

8.
Summary The three yolk protein genes (yp) of Drosophila melanogaster are transcribed in a sex- and tissue-limited fashion. We have searched for cis-regulatory sequences in regions flanking yp1 and yp2 to identify the elements that confer female-specific expression in the fat body. One such 127 by element has previously been identified in this region. We show here the existence of two additional regions which confer female fat body-specific expression on an Adh reporter gene and on the native yp2 gene, respectively. This suggests some redundancy in the regulation of expression of the yp genes. Computer searches for putative binding sites for the DSX protein, which regulates sex-specific expression of the yp genes, revealed several such sites in our constructs. However, the significance of these is unclear since many such sites also occur in genes which one would not expect to be regulated in a sex-specific manner (e.g. Adh, Actin 5C). We suggest that DSX acts in concert with other proteins to mediate sex- and tissue-specific expression of the yp genes.  相似文献   

9.
10.
Animal cells react to mitogenic or stress stimuli by rapid up-regulation of immediate-early (IE) genes and a parallel increase in characteristic modifications of core histones: chromatin changes, collectively termed the nucleosomal response. With regard to plants little is known about the accompanying changes at the chromatin level. We have used tobacco BY-2 and Arabidopsis T87 cell lines to study the nucleosomal response of plant cells to high salinity, cold and exogenous abscisic acid (ABA). When in quiescent stage, both tobacco and Arabidopsis cells show the typical nucleosomal response to high salinity and cold stress, manifested by rapid transient up-regulation of histone H3 Ser-10 phosphorylation, immediately followed by transient up-regulation of H3 phosphoacetylation and histone H4 acetylation. For each of the studied stresses the observed nucleosomal response was strictly correlated with the induction of stress-type specific genes. The dynamics of histone modifications in BY-2 cells in response to exogenous ABA exhibited a more complex pattern than that evoked by the two abiotic stresses, probably due to superposition of the primary and secondary effects of ABA. A rapid increase in H3 Ser-10 phosphorylation was also observed in whole leaves subjected to high salinity; however, the rate of change in this modification was much slower than in cultured cells. Together, these results indicate that the quiescent BY-2 and T87 cell lines show a typical nucleosomal response to abiotic stresses and ABA treatment and may represent suitable models for the study of chromatin-mediated mechanisms of stress tolerance in plants.  相似文献   

11.
Summary The chloroplast gene for the epsilon subunit (atpE) of the CF1/CF0 ATPase in the green alga Chlamydomonas reinhardtii has been localized and sequenced. In contrast to higher plants, the atpE gene does not lie at the 3 end of the beta subunit (atpB) gene in the chloroplast genome of C. reinhardtii, but is located at a position 92 kb away in the other single copy region. The uninterrupted open reading frame for the atpE gene is 423 bp, and the epsilon subunit exhibits 43% derived amino acid homology to that from spinach. Codon usage for the atpE gene follows the restricted pattern seen in other C. reinhardtii chloroplast genes.The genes for the CF0 subunits I (atpF) and IV (atpI) of the ATPase complex have also been mapped on the chloroplast genome of C. reinhardtii. The six chloroplast ATPase genes in C. reinhardtii are dispersed individually between the two single copy regions of the chloroplast genome, an organization strikingly different from the highly conserved arrangement in two operon-like units seen in chloroplast genomes of higher plants.Abbreviations bp base pairs - CF1 chloroplast coupling factor 1 - CF0 chloroplast coupling factor 0 - F1 coupling factor 1 - F0 coupling factor 0 - kb kilobase pairs  相似文献   

12.
We sequenced the amino-terminal third of the histone H3 and H4 genes and the intergenic region from Ichthyophthirius multifiliis. Fourteen recombinant clones of 646 bp were sequenced and the level of sequence variation detected among these clones was similar to that reported among closely related species of Tetrahymena and to levels of sequence variation detected within other ciliates. The intergenic region is 417 bp and approximately 92% AT rich, making it the longest and most AT-rich ciliate H3/H4 intergenic region yet identified. Similar to Tetrahymena, the intergenic region of Ichthyophthirius contains two CCAAT regions arranged in a complementary orientation. A neighbor-joining tree was constructed based on nucleotide sequence variation among H4 genes to evaluate evolutionary relationships within and among six classes of Ciliophora. The single shortest neighbor-joining tree depicted a sister-group relationship of Ichthyophthirius with taxa of Tetrahymenina, thereby supporting monophyly of Oligohymenophorea.  相似文献   

13.
Summary The cefD and cefE genes of Nocardia lactamdurans, which encode isopenicillin N epimerase and deacetoxycephalosporin C synthase respectively, have been located 0.63 kb upstream from the lysine-6-amino-transferase (lat) gene. cefD contains an open reading frame (ORF) of 1197 nucleotides (nt) encoding a protein of 398 amino acids with a Mr of 43 622. The deduced amino acid sequence exhibits 62.2% identity to the cefD gene product of Streptomyces clavuligerus. The sequence SXHKXL in isopenicillin N epimerase resembles the consensus sequence for pyridoxal phosphate binding found in several amino acid decarboxylases from Enterobacteria. cefE contains an ORF of 945 nt encoding a protein of 314 amino acids with a Mr of 34532, which is similar to the deacetoxycephalosporin C synthase of S. clavuligerus. Expression of both genes, cefD and cefE, in S. lividans transformants, results in deacetoxycephalosporin C synthase and isopenicillin N epimerase activities that are 10–12 times higher than those in N. lactamdurans. The cefD and cefE genes of N. lactamdurans are closely linked but the overall organization of the cephamycin gene cluster differs in N. lactamdurans and S. clavuligerus.  相似文献   

14.
Summary cDNA clones for an S-allele, designated S5, of the self-incompatibility locus (S-locus) of Lycopersicon peruvianum have been isolated by probing a pistil cDNA library with cDNAs for S-alleles of Petunia inflata and Solanum chacoense. The longest S5-cDNA is 869 bp and contains an open reading frame of 217 amino acids. An alignment of the deduced amino acid sequence of S5-protein with that of the 18 S-proteins from five other solanaceous species is presented. Sequence comparison further refines the primary structural features of the S-proteins previously revealed from comparison of subsets of these sequences. Based on this comparison and evidence presented elsewhere, it is proposed that accumulation of point mutations, and not intragenic recombination, is responsible for the generation of new allelic specificities.  相似文献   

15.
Two genes were employed to study phylogenetic relatedness of theChironomus species: the protein-coding, salivary gland-specificssp160 gene, and the globin 2b (gb2b) gene. By using PCR, it was demonstrated that all the 38Chironomus species analyzed possess thegb2b gene, while only 13 have thessp160 gene. Partial nucleotide sequences of the genes of 22 species were determined. The data obtained were employed to construct phylogenetic trees which appeared to be topologically similar and revealed five groups of phylogenetically closely related species. Combining the data obtained in the studies of nuclear and mitochondrial genes, a molecular-data-based scenario could be suggested for theChironomus genus evolution.  相似文献   

16.
17.
Hessian fly [Mayetiola destructor (Say)] is one of the major insect pests of wheat (Triticum aestivum L.) worldwide. Hessian fly (Hf)-resistance genes H16 and H17 were reported to condition resistance to Hf biotype L that is prevalent in many wheat-growing areas of eastern USA, and both of them were previously assigned to wheat chromosome 5A by their linkage to H9. The objectives in this study were to (1) map H16 and H17 independent of their linkage with H9 and (2) identify DNA markers that co-segregate with H16 or H17, and that are useful for selection of these genes in segregating populations and to combine these genes with other Hf-resistance genes in wheat cultivars. Contrary to previously reported locations, H16 and H17 did not show linkage with the molecular markers on chromosome 5A. Instead, both of them are linked with the molecular markers on the short arm of chromosome 1A (1AS). The simple sequence repeat (SSR) marker Xpsp2999 and EST-derived SSR (eSSR) marker Xwem6b are two flanking markers that are linked to H16 at genetic distances of 3.7 and 5.5 cM, respectively. Similarly, H17 is located between markers Xpsp2999 and Xwem6b at genetic distances of 6.2 and 5.1 cM, respectively. Five other SSR and eSSR markers including Xcfa2153, Xbarc263, Xwem3a, Xwmc329, and Xwmc24 were also linked to H16 and H17 at close genetic distances. These closely linked molecular markers should be useful for pyramiding H16 and H17 with other Hessian fly resistance genes in a single wheat genotype. In addition, using Chinese Spring deletion line bin mapping we positioned all of the linked markers and the Hf-resistance genes (H16 and H17) to the distal 14% of chromosome 1AS, where Hf-resistance genes H9, H10, and H11 are located. Our results together with previous studies suggest that Hf-resistance genes H9, H10, H11, H16, and H17 along with the pathogen resistance genes Pm3 and Lr10 appear to occupy a resistance gene cluster in the distal region of chromosome 1AS in wheat. Contribution from Purdue Univ. Agric. Res. Programs Journal Article No. 2007-18105.  相似文献   

18.
Thirty-nine missense mutations, which had been identified in rod monochromacy or related disorders, in the CNGA3 subunit of cone photoreceptor cGMP-gated channels were analyzed. HEK293 cells were transfected with cDNA of the human CNGA3 subunit harboring each of these mutations in an expression vector. Patch-clamp recordings demonstrated that 32 of the 39 mutants did not show cGMP-activated current, suggesting that these 32 mutations cause a loss of function of the channels. From the remaining 7 mutants that showed cGMP-activated current, two mutations in the cyclic nucleotide-binding domain, T565M or E593K, were further studied. The half-maximal activating concentration (K(1/2)) for cGMP in the homomeric CNGA3-T565M channels (160microM) was 17.8-fold higher than that of the homomeric wild-type CNGA3 channels (9.0microM). Conversely, the K(1/2) for cGMP in the homomeric CNGA3-E593K channels (3.0microM) was 3-fold lower than that of the homomeric wild-type CNGA3 channels. These results suggest that the T565M and E593K mutations alter the apparent affinity for cGMP of the channels to cause cone dysfunction, resulting in rod monochromacy.  相似文献   

19.
The Ngrol genes, which have high similarity in sequence to the rol genes of Agrobacterium rhizogenes, are present in the genome of untransformed plants of Nicotiana glauca. It is thought that bacterial infection resulted in the transfer of the Ngrol genes to plants early in the evolution of the genus Nicotiana, since several species in this genus contain rol-like sequences but others do not. Plants transformed with the bacterial rol genes exhibit various developmental and morphological changes. The presence of rol-like sequences in plant genomes is therefore thought to have contributed to the evolution of Nicotiana species. This paper focuses on studies of the Ngrol genes in present-day plants and during the evolution of the genus Nicotiana. The functional sequences of several Ngrol genes may have been conserved after their ancient introduction from a bacterium to the plant. Resurrection of an ancestral function of one of the Ngrol genes, as examined by physiological and evolutionary analyses, is also described. The origin of the Ngrol genes is then considered, based on results of molecular phylogenetic analyses. The effects of the horizontal transfer of the Ngrol genes and mutations in the genes are discussed on the plants of the genus Nicotiana during evolution.Seishiro Aoki is the recipient of the Botanical Society Award for Young Scientist, 2002.  相似文献   

20.
Eukaryotic RNA-dependent RNA polymerases (RdRPs, encoded by RDR genes) play critical roles in developmental regulation, maintenance of genome integrity, and defense against foreign nucleic acids. However, the phylogenetic relationship of RDRs remains unclear. From available genome sequences, we identified 161 putative RDR genes from 56 eukaryotes, ranging from protists to multicellular organisms, including plants, fungi and invertebrate animals, such as nematodes, lancelet and sea anemone. On the other hand, we did not detect RDR homologs in vertebrates and insects, even though RNA interference functions in these organisms. Our phylogenetic analysis of the RDR genes suggests that the eukaryotic ancestor might have had three copies, i.e. RDRα, RDRβ and RDRγ. These three ancient copies were also supported by the patterns of protein sequence motifs. Further duplication events after the divergence of major eukaryotic groups were supported by the phylogenetic analyses, including some that likely occurred before the separation of subgroups within each kingdom. We present a model for a possible evolutionary history of RDR genes in eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号