首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

2.
One of the major challenges confronting grassland restoration of highly invaded communities is increasing the diversity of native species. There is surprisingly little research investigating how reconstructed native grasslands respond to common management techniques and how these techniques influence the relative establishment of both native grasses and forbs. Despite the diversity and wide distribution of native clovers in California, few practitioners incorporate them into grassland restoration plans. Conversely, non‐native clovers have been seeded extensively onto California rangelands. This study addresses the following questions: (1) Using readily available management tools, is there a strategy that can benefit the growth of both planted native bunchgrasses and seeded clovers? (2) Do native bunchgrasses compete with establishing clovers and non‐native grasses? (3) Do native and non‐native clovers differ in their response to management treatments or in their productivity? Plots were established to test three factors in different combinations over 3 years: (1) early spring clipping, (2) initial broadleaf herbicide, and (3) native bunchgrass planting density. Native and non‐native clovers were seeded in years 2 and 3. Early spring clipping did not have a significant effect on native bunchgrass cover, yet it did result in greater growth of native and non‐native clovers. The direction of the response to broadleaf herbicide changed between years for native bunchgrasses and was consistently negative for native clovers. Plots with higher native grass densities did not adversely affect the seeded clovers, yet non‐native grass cover was reduced. Native and non‐native clovers exhibited similar responses to clipping and established at similar densities.  相似文献   

3.
Prescribed fire is an important management tool for reducing the dominance of non‐native species in annual grasslands; both annual and perennial native species show strong vegetative responses in the subsequent growing season. However, although the post‐fire contribution of native species to the seed bank is assumed to be larger than in pretreatment years, the effects on seed quality, particularly viability and longevity, are not well understood. In this study, I germinated Nassella pulchra (purple needlegrass) seed that had been stored for 10 years after collection from target plants receiving treatment combinations of summer burning and grazing by sheep. Seeds from burned plants were larger and had higher germinability than seed from unburned plants. Seeds from plants that were both burned and grazed had the highest germination. The strong relationship between long‐term viability and seed size suggests greater maternal provisioning and increased seed quality subsequent to burning and grazing. I conclude that managing for seed quality may be a useful approach for conservation of native species in California's critically endangered grassland habitats.  相似文献   

4.
荒漠草原3种典型群落类型的土壤微生物量碳氮研究   总被引:1,自引:0,他引:1  
采用氯仿熏蒸-浸提法,以宁夏盐池荒漠草原3种典型群落(柠条、沙蒿、短花针茅)类型为研究对象,分析了不同生境(冠下、丛间)和不同土层间(0~5、5~10、10~15cm)土壤理化性质及微生物量——微生物量碳(MBC)和微生物量氮(MBN)的变化特征。结果表明:(1)3种群落土壤微生物量变化差异较大,柠条、沙蒿和短花针茅群落土壤MBC含量分别为77.00~393.18、17.27~221.71和81.05~173.37mg/kg,MBN含量分别为7.59~64.81、1.43~13.95和4.25~22.13mg/kg,MBC和MBN含量均表现为:冠下丛间,且随土层深度的增加而降低,有明显的"沃岛效应"。(2)群落类型对土壤微生物量碳氮含量的变化有显著影响,3种典型群落类型下土壤微生物量熵(qMB)、碳氮比(C/N)、微生物量碳氮比(MBC/MBN)分别在0.76~4.10、15.02~52.50、5.34~23.07范围内变化,其比值在不同生境和不同土层深度的分布特征有明显差异。(3)3种典型群落类型的土壤MBC与SOC、MBN、qMB具有显著相关关系,土壤C/N与MBC/MBN呈显著正相关关系,表明土壤MBC、MBN具有一定的生物学指示特性,可以作为评价土壤质量的生物学指标。  相似文献   

5.
6.
以立地条件和营林方式相同的约30a林龄油松与云杉人工纯林为对象,测定地表微气候、土壤理化性质以及微生物生物量C、N、P(MBC、MBN、MBP),揭示林分结构、土壤性质与微生物生物量间的关系,以及两林分间的差异性。结果表明:两个林分地表环境荫湿,土壤肥力较低,土壤微生物生物量低,林地土壤碳积累低,土壤生态服务功能不强。相对而言,云杉林比油松林相对湿度大而地表温度低、林地土壤肥力高、土壤微生物生物量高,因此更有利于林地土壤生态服务功能的恢复。综合分析发现,林分结构、土壤养分状况及地表小气候影响着土壤微生物生物量与肥力转换过程,降低乔木冠层密度可以改善地表小气候,为有机物分解与养分归还创造良好的条件,从而改善土壤肥力与林地土壤生态服务功能。  相似文献   

7.
8.
Concerns about the use of genetically appropriate material in restoration often focus on questions of local adaptation. Many reciprocal transplant studies have demonstrated local adaptation in native plant species, but very few have examined how interspecific competition affects the expression of adaptive variation. Our study examined regional scales of adaptation between foothill and coastal populations of two California native bunchgrasses (Elymus glaucus and Nassella pulchra). By combining competitive manipulations with reciprocal transplants, we examined the importance of the vegetation at a site as a selective factor in the process of local adaptation. By monitoring survival and reproduction of reciprocally transplanted populations over the course of 3 years, we also studied the effect of life history stage on the expression of local adaptation. For most of the fitness components we measured, local adaptation was detected and interspecific competition consistently amplified its expression. Expression of local adaptation was especially apparent in the more inbreeding species E. glaucus and suggests that with weaker gene flow, selection may be more effective in creating ecotypes within this species. Local adaptation was detected at all life history stages but was most strongly expressed in traits associated with adult reproduction and the viability of seeds produced by the transplants. Taken together, our results indicate that the importance of local adaptation will become more apparent in the later stages of a restoration project as the plants at a site begin to reproduce and as they experience greater interspecific competition from the maturing vegetation at the site.  相似文献   

9.
Abstract Annual grasslands in California are often managed with seasonal grazing and prescribed burning on the assumption that such practices have long‐term benefits for native species. Mature native perennial bunchgrasses, particularly Nassella pulchra (purple needlegrass), are often the focal species, although very little is known about responses at different life history stages. Thus, important questions remain about long‐term population dynamics of both mature plants and seedling recruitment. In plots receiving repeated grazing and burning events over 7 years, mortality of mature plants was threefold higher on mounds than on intermounds and likely reflected increased competition intensity associated with increased resource availability in deeper soil. Burning and grazing treatments had strong positive effects on basal area of mature N. pulchra. However, plants in grazed plots that were not burned contained considerable standing dead biomass. Topographic location strongly influenced growth as intermound plants grew relatively more than mound plants, but the effects on growth of burning and grazing did not vary with topographic location. In mapped plots N. pulchra recruitment was very low, and overall density dropped an average of 31%. However, a significant time‐by‐burning effect indicated that survival was significantly higher in burned plots. After 7 years of repeated treatments, effects of burning and grazing management on mature N. pulchra were positive but not for all phenological stages. Understanding long‐term influence of management on bunchgrass populations may not be easy to determine because short‐term results may not reflect long‐term responses and some life cycle dynamics may be observed only over very long periods.  相似文献   

10.
Understanding priority effects, in which one species in a habitat decreases the success of later species, may be essential for restoring native communities. Priority effects can operate in two ways: size‐asymmetric competition and creation of “soil legacies,” effects on soil that may last long after the competitive effect. We examined how these two types of priority effects, competition and soil legacies, drive interactions between seedlings of native and exotic California grassland plants. We established native and exotic communities in a mesocosm experiment. After 5 weeks, we removed the plants from half the treatments (soil legacy treatment) and retained the plants in the other half (priority effect treatment, which we interpret to include both competition and soil legacies). We then added native or exotic seed as the colonizing community. After 2 months, we measured the biomass of the colonizing community. When germinating first, both natives and exotics established priority effects, reducing colonist biomass by 86 and 92%, respectively. These priority effects were predominantly due to size‐asymmetric competition. Only exotics created soil legacies, and these legacies only affected native colonizers, reducing biomass by 74%. These results imply that exotic species priority effects can affect native grassland restorations. Although most restorations focus on removing exotic seedlings, amending soil to address soil legacies may also be critical. Additionally, because native species can exclude exotics if given a head start, ensuring that natives germinate first may be a cost‐effective restoration technique.  相似文献   

11.
为了探讨不同群落类型的土壤粒径分布(PSD)与土壤微生物生物量(MB)的关系,以宁夏盐池荒漠草原3种典型群落类型(冰草、沙蒿、短花针茅)为研究对象,测定了不同群落2种生境(冠下、丛间)0~5、5~10和10~15 cm表土层土壤PSD和微生物量碳(MBC)、微生物量氮(MBN)含量变化,并分析了土壤颗粒组成中砂粒、粉粒和黏粒体积分数变化与土壤有机碳(SOC)、全氮(TN)和MBC、MBN间的关系。结果表明:(1)不同群落类型土壤粒径都呈“倒V”型分布趋势,但土壤退化最严重的沙蒿群落中100~500 μm粒径颗粒含量相对较多,与其他两种群落形成显著差异。(2)不同群落类型SOC、MBC、MBN含量均随土层深度的增加而降低,同土层SOC、MBN含量均表现为冠下明显大于丛间,表现出“肥岛效应”,且0~5 cm土层差异显著(P<0.05)。(3)对土壤粒径组成与土壤SOC、MBC、MBN间相关性研究表明,在土壤SOC、MBC和MBN含量较高的冰草、短花针茅群落类型中,0.01~2、2~50和50~100 μm土壤粒径的颗粒含量也高,SOC、MBC和MBN含量与<100 μm的粉粒含量呈正相关关系;在沙蒿群落类型中粒径为100~250和250~500 μm的土粒含量增高,导致其SOC、MBC和MBN含量较低,表明不同群落类型对土壤理化结构产生影响的同时,对微生物生物量也有显著的影响。  相似文献   

12.
皇甫川流域退化草地和恢复草地土壤微生物生物量的研究   总被引:8,自引:3,他引:8  
土壤微生物生物量常被作为植物所需营养元素的转化因子和资源库,是表明土壤发育状况和生化强度的一项主要指标。在内蒙古伊盟准格尔旗皇甫川流域,对退化草地和恢复草地土壤微生物生物量进行了研究。结果表明,土壤微生物生物量的垂直分布依次为0~10>10~20>20~30>30~40>40~50cm,随土层加深而递减;0~10cm土层细菌和丝状微生物生物量超过其他土层;恢复草地各土层中的土壤微生物生物量均高于退化草地;恢复草地的土壤微生物生物量与土壤肥力密切相关。  相似文献   

13.
阎欣  安慧 《西北植物学报》2017,37(6):1242-1251
以宁夏中北部盐池县不同恢复阶段的沙化草地(流动沙地、半固定沙地、固定沙地和荒漠草地)土壤为研究对象,分析土壤粗砂粒有机碳、细砂粒有机碳、粘粉粒有机碳、重组有机碳、轻组有机碳和土壤全氮的变异特征,探讨沙化草地恢复过程中土壤有机碳变化机制。结果显示:(1)荒漠草地、固定沙地、半固定沙地0~30cm土层土壤,粗砂粒有机碳、细砂粒有机碳和粘粉粒有机碳含量分别比流动沙地增加了67.7%、69.8%、212.1%和48.8%、35.3%、99.9%以及33.6%、23.0%、48.9%。(2)随着沙化草地不同程度的恢复,轻组有机碳含量、分配比例和重组有机碳含量均表现为流动沙地半固定沙地固定沙地荒漠草地;重组有机碳分配比例随沙化草地恢复程度的升高呈降低趋势。(3)土壤细砂粒、粘粉粒、重组有机碳、轻组有机碳、粗砂粒有机碳、细砂粒有机碳、粘粉粒有机碳含量与土壤有机碳、土壤全氮含量均呈显著正相关关系,与粗砂粒含量均呈显著负相关关系。研究表明,轻组有机碳和粘粉粒有机碳含量对土壤有机碳的影响最大,轻组有机碳、重组有机碳、粗砂粒有机碳和粘粉粒有机碳对土壤全氮的影响最大,表明沙化草地的恢复有利于减小土壤侵蚀,改善土壤结构与质量。  相似文献   

14.
生物有机肥对轻度盐碱土理化性质影响的研究   总被引:7,自引:0,他引:7  
目的:研究施用生物有机肥改善盐碱土。方法:将生物有机肥施入轻度盐碱土中,研究其对土壤理化性质的影响。结果:生物有机肥可以改善轻度盐碱土pH值,有效缓解由于植物生长所造成的土壤养分的消耗。结论:生物有机肥可在轻度盐碱土中广泛使用,在施用时应根据不同地区的土壤气候条件确定最佳施肥量。  相似文献   

15.
为了研究华北农田生态系统化肥、秸秆还田和有机肥等培肥措施对土壤微生物生物量碳的影响,在山东省桓台县冬小麦套种夏玉米种植模式下的低肥力生产系统中设置了田间试验。田间试验设7个处理,依序为:①全还 化肥(小麦秸杆 玉米秸杆还田 600kgN/(hm2.a)),②全还 化肥 有机肥(小麦秸杆 玉米秸杆还田 有机肥),③麦还 化肥(小麦秸杆还田 600kgN/(hm2.a)),④麦还 化肥 有机肥(小麦秸杆还田 600kgN/(hm2.a) 有机肥),⑤化肥(600kgN/(hm2.a)),⑥麦还双倍 化肥(加倍小麦秸杆还田 600kgN/(hm2.a)),⑦不施肥(对照)。1998年4月至1998年11月田间取样测定了土壤的微生物生物量碳。试验结果显示:在整个试验阶段提高施肥水平微生物生物量碳都明显增加。单施化肥可以增加土壤的微生物生物量碳,有机物配合施用化肥作用更加明显。不同秸秆还田方式(全还、双倍麦还和麦还)对微生物生物量碳影响的季节变化较大。有机肥对提高土壤微生物生物量碳的作用是很明显的。从微生物生物量碳的全年平均值来看,全还 化肥 有机肥处理>麦还 化肥 有机肥处理>全还 化肥处理>双倍麦还 化肥处理>麦还 化肥处理>化肥处理>对照。因此,低肥力的农田生态系统中最好的培肥措施是化肥配施有机物。  相似文献   

16.
Plant and soil nitrogen dynamics in California annual grassland   总被引:8,自引:0,他引:8  
Seasonal changes in soil water and nitrogen availability were related to the phenology and growth of plants in California annual grassland. Plant accumulation of nitrogen was mainly confined to two short periods of the year: fall and early spring. At these times, plants were in the vegetative growth phase, roots were growing rapidly and soil moisture was high. During these periods, soil nitrate was low or depleted. High flux of nitrogen in this ecosystem, however, is indicated by the rapid disappearance of the previous year's detrital material, high microbial biomass, and high mineralizable nitrogen and nitrification potential.At the end of the summer drought, significant amounts of the previous year's detrital material had disappeared, chloroform-labile N (expressed as microbial biomass N) was at its seasonal maximum, and soil inorganic nitrogen pools were high. This suggests inorganic nitrogen flux during the drought period. The drought escaper life history characteristics of annual grasses in California annual grassland, however, may prevent plants from utilizing available nitrogen during a large part of the year.  相似文献   

17.
Most restoration projects involving invasive plant eradication tend to focus on plant removal with little consideration given to how these invasives change soil microbial communities. However, soil microorganisms can determine invasibility of habitats and, in turn, be altered by invasives once established, potentially inhibiting native plant establishment. We studied soil microbial communities in coastal dunes with varying invasion intensity and different restoration approaches (herbicide, mechanical excavation) at Point Reyes National Seashore. Overall, we found evidence of a strong link between bacterial and fungal soil communities and the presence of invasives and restoration approach. Heavily invaded sites were characterized by a lower abundance of putatively identified nitrifiers, fermentative bacteria, fungal parasites, and fungal dung saprotrophs and a higher abundance of cellulolytic bacteria and a class of arbuscular mycorrhizal fungi (Archaeosporomycetes). Changes in soil microbiota did not fully dissipate following removal of invasives using herbicide, with exception of reductions in cellulolytic bacteria and Archaeosporomycetes abundance. Mechanical restoration effectively removed both invasives and soil legacy effects by inverting or “flipping” rhizome‐contaminated surface soils with soils from below and may have inadvertently induced other adverse effects on soils that impeded reestablishment of native dune plants. Land managers should consider additional measures to counteract lingering legacy effects and/or focus restoration efforts in areas where legacy effects are less pronounced.  相似文献   

18.
Carolina bays are shallow depression wetlands found in the southeastern United States that have been severely altered by human activity. The need to restore these complex and diverse systems is well established, but our limited understanding of wetland hydrologic processes in these systems hinders our ability to assess the effectiveness of bay restoration efforts. Carolina bays exhibit a wide range of moisture regimes from seasonally saturated to semipermanently inundated. Differing physicochemical properties of soils within bay interiors may control bay hydrology. However, previous efforts to establish relationships between soil characteristics and bay hydrology have been inconclusive. An assessment of soil and hydroperiod was initiated in 16 bays designated to be restored and 6 bays that were not restored (reference). Soil morphology was described, and permanent monitoring wells were installed at each site. Multiple regression analysis was used to determine relationships between the soil physicochemical characteristics and the bay hydroperiod for restored and reference bays in both pre‐ and postrestoration periods. A significant relationship (r2= 0.75, p= 0.02) between prerestoration hydroperiod and clay content in the argillic horizon (Bt) of the reference bays was observed. This relationship was then used to evaluate hydroperiod change in the restored bays from the postrestoration period. The relationship accurately identified sites that exhibited high prerestoration hydroperiods and did not need hydrologic restoration (n= 4) and effectively showed sites that exhibited substantial increases in hydroperiod due to the restoration activities (n= 7).  相似文献   

19.
曹志平  胡诚  叶钟年  吴文良 《生态学报》2006,26(5):1486-1493
为研究华北高产农田生态系统中化肥、有机肥和秸秆还田等培肥措施对土壤微生物生物量碳的影响,在山东省桓台县冬小麦套种夏玉米的种植模式下设置了田间试验。田间试验设10个处理,依序为:①全还(小麦秸秆 玉米秸秆还田),②麦还(小麦秸秆还田),③全还 化肥1(小麦秸秆 玉米秸秆还田 600kgN/(hm2·a)),④麦还 化肥1(小麦秸秆还田 600kgN/(hm2·a)),⑤全还 化肥2(小麦秸秆 玉米秸秆还田 480kgN/*hm2·a)),⑥麦还 化肥2(小麦秸秆还田 480kgN/(hm2·a)),⑦全还 化肥3(小麦秸秆 玉米秸秆还田 720kgN/(hm2·a)),⑧麦还 化肥3(小麦秸秆还田 720kgN/(hm2·a)),⑨全还 化肥1 有机肥(小麦秸秆 玉米秸秆还田 600kgN/(hm2·a) 有机肥)和⑩化肥1(600kgN/(hm2·a))。1998年4月至1998年11月田间取样测定了土壤的微生物生物量碳。试验结果表明:在高投入的高肥力农业生态系统中,单施化肥土壤的微生物生物量碳下降,化肥抑制了土壤微生物的活性,但是由于有机物的投入,这种抑制作用会减弱。化肥和秸秆还田配合施用时,增量和减量化肥对微生物生物量碳的影响不明显,秸秆还田配合施用化肥能够明显减弱化肥对微生物的抑制作用。有机肥对微生物生物量的促进作用是很明显的。不同秸秆还田方式对微生物生物量碳的影响季节变化较大,但从全年平均值来看全还处理对土壤微生物量碳的影响大于麦还处理。试验中不同处理间微生物量碳有下列趋势:化肥1<麦还 化肥1<麦还 化肥2<全还 化肥2<麦还 化肥3<全还 化肥1<全还 化肥3<麦还<全还<全还 化肥1 有机肥。因此,在高投入集约化的高肥力农田生态系统中,提倡秸秆还田和多施有机肥。  相似文献   

20.
黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态   总被引:16,自引:0,他引:16  
依据黄土旱塬区黑垆土上中国科学院长武站长期定位试验 (始于1984年),于2008年3月到6月,测定了冬小麦连作系统中返青期、拔节期、抽穗期、灌浆期和收获期土壤呼吸日变化、生育期变化以及土壤可溶性有机碳(Dissolved organic C, DOC)和微生物量碳(Soil microbial biomass C, MBC),研究了施肥措施对土壤呼吸、DOC和MBC的影响以及土壤呼吸与碳组分之间的关系.研究涉及6个处理:休闲地(F)、不施肥(CK)、有机肥(M)、氮肥(N)、氮磷肥(NP)和氮磷有机肥(NPM).结果表明,冬小麦连作系统中土壤呼吸的日变化格局呈单峰曲线,最高值出现在12:00左右(拔节期)和14:30左右(成熟期),最小值出现在0:00~3:00之间或6:00左右;冬小麦土壤呼吸速率拔节期最高,其次是灌浆后期,抽穗期最低;不同施肥条件下,各生育期土壤呼吸速率大小顺序:NPM>M>NP>N>CK>F.土壤水分亏缺是导致抽穗期和灌浆期土壤呼吸速率降低的重要原因.各施肥处理DOC含量高低顺序为灌浆期>抽穗期>成熟期>返青期>拔节期;除M,NPM处理MBC含量拔节期>灌浆期外,各施肥处理MBC含量高低顺序为成熟期>抽穗期>灌浆期>拔节期>返青期.同一处理不同生育期土壤呼吸速率与DOC,MBC的相关性较低,但同生育期不同施肥处理土壤呼吸与土壤有机碳组分间存在显著的相关性.以F处理土壤呼吸为基础,估算CK、N和NP处理生育期根系对土壤呼吸的平均贡献率依次为36%、45%和54%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号