首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70–80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l?1 of lactic acid with the productivity and yield of 1.58 and 0.87 g l?1 h?1, respectively.  相似文献   

2.
Nonribosomal peptides (NRPs), a large family of natural products, possess numerous pharmaceutically significant bioactivities. However, many native microbial producers of NRPs are not cultivable or have low production yields making mass production infeasible. The recombinant production of natural products in a surrogate host has emerged as a strategy to overcome these limitations. De novo recombinant production of the NRP antibiotic valinomycin in an engineered Escherichia coli host strain was established with the necessary biosynthetic pathway constituents from Streptomyces tsusimaensis. In the present study, the initially modest valinomycin yields could be significantly increased from 0.3 up to 2.4 mg L?1 by switching from a batch to an enzyme-based fed-batch mode in shake flasks. A subsequent design of experiment-driven optimization of parallel fed-batch cultivations in 24-well plates with online monitoring of dissolved oxygen and pH led to valinomycin yields up to 6.4 mg L?1. Finally, repeated glucose polymer feeding to enzyme-based high cell density cultivations in shake flasks resulted in cell densities of OD600 >50 and a valinomycin titer of appr. 10 mg L?1. This represents a 33-fold improvement compared to the initial batch cultivations and is the highest concentration of a nonribosomal peptide which has been produced in E. coli without feeding of specific precursors so far to our knowledge. Also, such a small-scale optimization under fed-batch conditions may be generally applicable for the development and scale-up of natural product production processes in E. coli.  相似文献   

3.
The ability of Arthrospira platensis to use ethanol as a carbon and energy source was investigated by batch process and fed-batch process. A. platensis was cultivated under the effect of a single addition (batch process) and a daily pulse feeding (fed-batch process) of pure ethanol, at different concentrations, to evaluate cell concentration (X) and specific growth rate (μ). A marked increase was observed in the cell concentration of A. platensis in runs with ethanol addition when compared to control cultures without ethanol addition. The fed-batch process using an ethanol concentration of 38 mg L?1 days?1 reached the maximum cell concentration of 2,393 ± 241 mg L?1, about 1.5-fold that obtained in the control culture. In all experiments, the maximum specific growth rate was observed in the early exponential phase of cell growth. In the fed-batch process, μ decreased more slowly than in the batch process and control culture, resulting in the highest final cell concentration. Ethanol can be used as a feasible carbon and energy source for A. platensis growth via a fed-batch process.  相似文献   

4.
《Process Biochemistry》1999,34(4):355-366
The production of pigment-free pullulan by Aureobasidium pullulans in batch and fed-batch culture was investigated. Batch culture proved to be a better fermentation system for the production of pullulan than the fed-batch culture system. A maximum polysaccharide concentration (31.3 g l−1), polysaccharide productivity (4.5 g l−1 per day), and sugar utilization (100%) were obtained in batch culture. In fed-batch culture, feed medium composition influenced the kinetics of fermentation. For fed-batch culture, the highest values of pullulan concentration (24.5 g l−1) and pullulan productivity (3.5 g l−1 per day) were obtained in culture grown with feeding substrate containing 50 g l−1 sucrose and all nutrients. The molecular size of pullulan showed a decline as fermentation progressed for both fermentation systems. At the end of fermentation, the polysaccharide isolated from the fed-batch culture had a slightly higher molecular weight than that of batch culture. Structural characterization of pullulan samples (methylation and enzymic hydrolysis with pullulanase) revealed the presence of mainly α-(1→4) (∼66%) and α-(1→6) (∼31%) glucosidic linkages; however, a small amount (<3%) of triply linked (1,3,4-, 1,3,6-, 1,2,4- and 1,4,6-Glc p) residues were detected. The molecular homogeneity of the alcohol-precipitated polysaccharides from the fermentation broths as well as the structural features of pullulan were confirmed by 13C-NMR and pullulanase treatments followed by gel filtration chromatography of the debranched digests.  相似文献   

5.
The possibilities of parallel lactic acid and biomass production in batch and fed-batch fermentation on distillery stillage from bioethanol production were studied. The highest lactic acid yield and productivity of 92.3 % and 1.49 g L?1 h?1 were achieved in batch fermentation with initial sugar concentration of 55 g L?1. A significant improvement of the process was achieved in fed-batch fermentation where the concentration of lactic acid was increased to 47.6 % and volumetric productivity for 21 % over the batch process. A high number of Lactobacillus rhamnosus ATCC 7469 viable cells of 109 CFU ml?1 was attained at the end of fed-batch fermentation. The survival of 92.9 % of L. rhamnosus cells after 3 h of incubation at pH 2.5 validated that the fermentation media remained after lactic acid removal could be used as a biomass-enriched animal feed thus making an additional value to the process.  相似文献   

6.
In this study, a compressed oxygen gas supply was connected to a sealed aerated stirred tank reactor (COS-SSTR) bio-system, leading to a high-oxygen pressure bioreactor used to improve the bio-transformative performance in the production of 1,3-dihydroxyacetone (DHA) from glycerol using Gluconobacter oxydans NL71. A concentration of 301.2 ± 8.2 g L?1 DHA was obtained from glycerol after 32 h of fed-batch fermentation in the COS-SSTR system. The volumetric productivity for this process was 9.41 ± 0.23 g L?1 h?1, which is presently the highest obtained level of glycerol bioconversion into DHA. These results show that the application of this bioreactor would enable microbial production of DHA from glycerol at the industrial scale.  相似文献   

7.
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae under micro-aerobic conditions was investigated in this study. The experimental results of batch fermentation showed that the final concentration and yield of 1,3-PD on glycerol under micro-aerobic conditions approached values achieved under anaerobic conditions. However, less ethanol was produced under microaerobic than anaerobic conditions at the end of fermentation. The batch micro-aerobic fermentation time was markedly shorter than that of anaerobic fermentation. This led to an increment of productivity of 1,3-PD. For instance, the concentration, molar yield, and productivity of 1,3-PD of batch micro-aerobic fermentation by K. pneumoniae DSM 2026 were 17.65 g/l, 56.13%, and 2.94 g l–1 h–1, respectively, with a fermentation time of 6 h and an initial glycerol concentration of 40 g/l. Compared with DSM 2026, the microbial growth of K. pneumoniae AS 1.1736 was slow and the concentration of 1,3-PD was low under the same conditions. Furthermore, the microbial growth in fed-batch fermentation by K. pneumoniae DSM 2026 was faster under micro-aerobic than anaerobic conditions. The concentration, molar yield, and productivity of 1,3-PD in fed-batch fermentation under micro-aerobic conditions were 59.50 g/l, 51.75%, and 1.57 g l–1 h–1, respectively. The volumetric productivity of 1,3-PD under microaerobic conditions was almost twice that of anaerobic fed-batch fermentation, at 1.57 and 0.80 g l–1 h–1, respectively.  相似文献   

8.
A newly-isolated strain of Serratia marcescens, G12, was characterized for 2,3-butanediol (2,3-BD) production. In shake-flask and batch fermentations, 2,3-BD reached 48.5 and 51 g l?1, respectively. Low amounts of (~8 g l?1) of acetoin were also formed. In fed-batch fermentations, strain G12 produced 72.8 g 2,3-BD l?1 with glucose initially at 130 g l?1. When aeration rate was increased to 2.5 vvm for the fermentation process, 2,3-BD reached 87.8 g l?1 and the highest productivity was 1.6 g l?1 h?1. Acetoin was at 6.2 g l?1. G12 therefore may be a suitable candidate strain for large-scale production of 2,3-BD.  相似文献   

9.
Nisin production in batch culture and fed-batch cultures (sucrose feeding rates were 6, 7, 8, and 10 g l–1 h–1, respectively) by Lactococcus lactis subsp. lactis ATCC 11454 was investigated. Nisin production showed primary metabolite kinetics, and could be improved apparently by altering the feeding strategy. The nisin titer reached its maximum, 4,185 IU ml–1, by constant addition of sucrose at a feeding rate of 7 g l–1 h–1; an increase in 58% over that of the batch culture (2,658 IU ml–1). Nisin biosynthesis was affected strongly by the residual sucrose concentration during the feeding. Finally, a mathematical model was developed to simulate the cell growth, sucrose consumption, lactic acid production and nisin production. The model was able to describe the fermentation process in all cases.  相似文献   

10.
Sweet sorghum juice supplemented with 0.5% ammonium sulphate was used as a substrate for ethanol production by Saccharomyces cerevisiae TISTR 5048. In batch fermentation, kinetic parameters for ethanol production depended on initial cell and sugar concentrations. The optimum initial cell and sugar concentrations in the batch fermentation were 1 × 108 cells ml−1 and 24 °Bx respectively. At these conditions, ethanol concentration produced (P), yield (Y ps) and productivity (Q p ) were 100 g l−1, 0.42 g g−1 and 1.67 g l−1 h−1 respectively. In fed-batch fermentation, the optimum substrate feeding strategy for ethanol production at the initial sugar concentration of 24 °Bx was one-time substrate feeding, where P, Y ps and Q p were 120 g l−1, 0.48 g g−1 and 1.11 g l−1 h−1 respectively. These findings suggest that fed-batch fermentation improves the efficiency of ethanol production in terms of ethanol concentration and product yield.  相似文献   

11.
A glucose utilizing strain, Arthrobacter A302 was used for cyclic adenosine monophosphate (cAMP) production in batch modes. The non-structured model in a 5 l stirred tank bioreactor for understanding, controlling, and optimizing the fermentation process was proposed using the logistic equation for microbial growth, the Luedeking-Piret equation for product formation and Luedeking-Piret-like equation for substrate uptake, respectively. The production of cAMP was a mixed-growth-associated pattern. Based on model prediction, a comparison of calculated value using the parameters evaluated above with another experimental data in 30 l bioreactor was used to test the model. The results predicted from the model were in good agreement with the experimental observations in 30 l bioreactor, which demonstrated that the model might be useful for the development and optimization of production of cAMP in industrial scale. Based on estimated kinetic parameters, three different fed-batch modes, constant rate and intermittent (once and repeated), were adopted in order to obtain more cAMP accumulation. Furthermore, the final production of cAMP reached 11.24 g l−1 after 72 h incubation using three stages feeding strategy. In particular, the cAMP productivity (0.156 g l−1 h−1) was successfully improved by 22.83, 11.43 and 9.86%, respectively, compared with the modes of the batch, constant rate fed-batch and intermittent fed-batch once.  相似文献   

12.
《Process Biochemistry》1999,34(2):139-145
A novel feeding strategy for enhanced protein production of hepatitis B virus surface antigen (HBsAg) in fed-batch fermentation, recombinant Pichia pastoris, has been developed. A minimal salt medium was used to grow cells in the initial batch fermentation, followed by a glycerol+salts fed-batch phase. At the end of the fed-batch phase a dry cell weight of 130 g l−1 was achieved. In the absence of basal salts, the same amount of glycerol feed resulted in only 90 g l−1 cell dry weight. When a limited amount of casamino acids were also included every 24 h during methanol induction, there was a two-fold increase in expression levels of HBsAg. After 192 h of induction, the expression levels of HBsAg (soluble and insoluble) reached >1 g l−1 using the Mut strain. Thus, the use of basal salts in the glycerol feed, along with the addition of limited amounts of casamino acids with the methanol feed, resulted in an increased expression of total HBsAg.  相似文献   

13.
利用尾气分析仪对发酵过程的尾气中的O2、CO2含量进行实时检测,建立了裂殖弧菌发酵生产DHA过程中的呼吸参数在线检测方法,实现了裂殖壶菌补料分批发酵过程及双阶段供氧控制发酵过程中的呼吸参数在线检测分析。通过呼吸参数在线检测分析,从氧消耗机制方面解释了双阶段氧传递控制工艺能获得较高生物量、油脂和DHA含量的原因,从而为该工艺过程提供了理论指导。根据发酵过程中菌体生长不同时期的呼吸参数的变化情况,建立了基于呼吸商变化的在线补料控制方法,设计了一种基于RQ-Stat的补料工艺。RQ-Stat补料方式最终获得的油脂含量、DHA产量和产率比间歇式补料工艺分别提高了11.58%、12.19%和11.40%。  相似文献   

14.
Dissociated cells separated from a natural colony of Nostoc flagelliforme were cultivated heterotrophically in the darkness on glucose under fed-batch culture conditions. The effects of carbon sources (glucose, fructose, xylose, and sucrose) and concentrations on cell growth and extracellular polysaccharide (EPS) production were investigated. At harvest, the culture contained 1.325 g L?1 of biomass and 117.2 mg L?1 of EPS, respectively. The gravimetric EPS production rate was 16.7 mg g?1 cell dry weight day?1, which was 2.1 times higher than previously reported. Using sigmoid model, batch fermentation of N. flagelliforme was kinetically simulated to obtain equations including substrate consumption, biomass growth, and EPS accumulation. Results from a simulation correlated well with the experimental ones, indicating that this method could be useful in studying EPS production from batch and fed-batch cultures.  相似文献   

15.
Aims: To improve the yield and productivity of docosahexaenoic acid (DHA) by Schizochytrium sp. in terms of the analysis of microbial physiology. Methods and Results: A two‐stage oxygen supply control strategy, aimed at achieving high concentration and high productivity of DHA, was proposed. At the first 40 h, KLa was controlled at 150·1 h?1 to obtain high μ for cell growth, subsequently KLa was controlled at 88·5 h?1 to maintain high qp for high DHA accumulation. Finally, the maximum lipid, DHA content and DHA productivity reached 46·6, 17·7 g l?1 and 111 mg l?1 h?1, which were 43·83%, 63·88% and 32·14% over the best results controlled by constant KLa. Conclusions: This paper described a two‐stage oxygen supply control strategy based on the kinetic analysis for efficient DHA fermentation by Schizochytrium sp. Significance and Impact of the study: This study showed the advantage of two‐stage control strategy in terms of microbial physiology. As KLa is a scaling‐up parameter, the idea developed in this paper could be scaled‐up to industrial process and applied to other industrial biotechnological processes to achieve both high product concentration and high productivity.  相似文献   

16.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   

17.
In this research, aerobic decolorization of Acid Brilliant Scarlet GR by microbial community was studied. Effects of conditions and dye concentraion on decolorization processes were investigated. Additionally, continuous decolorization was evaluated through sequencing batch tests and the microbial dynamics during this process was analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis. The results showed that 100 mg l?1 of the dye was completely decolorized within 12 h, which was mainly caused by biodegradation. The optimal decolorization conditions were as follows: inoculation size 2.07 g l?1 (wet cell pellet), rotation speed 150 r min?1, pH 5.0–7.0 and 30 °C. The processes were well described by zero-order kinetics, and more than 700 mg l?1 of the dye would inhibit the activity of the consortium. Furthermore, the microbial community exhibited high efficiency in sequencing batch processes for continuous decolorization. Microbial community structure shifted obviously when exposed to higher concentration of the dye (500 mg l?1), and all the dominant microorganisms were affiliated with four different phyla of Actinobacteria, Bacteroidetes, Proteobacteria and Firmicutes.  相似文献   

18.
The simultaneous production of intracellular esterase and extracellular protease from the strain Lysinibacillus fusiformis AU01 was studied in detail. The production was performed both under batch and fed-batch modes. The maximum yield of intracellular esterase and protease was obtained under full oxygen saturation at the beginning of the fermentation. The data were fitted to the Luedeking–Piret model and it was shown that the enzyme (both esterase and protease) production was growth associated. A decrease in intracellular esterase and increase in the extracellular esterase were observed during late stationary phase. The appearance of intracellular proteins in extracellular media and decrease in viable cell count and biomass during late stationary phase confirmed that the presence of extracellular esterase is due to cell lysis. Even though the fed-batch fermentation with different feeding strategies showed improved productivity, feeding yeast extract under DO-stat fermentation conditions showed highest intracellular esterase and protease production. Under DO-stat fed-batch cultivation, maximum intracellular esterase activity of 820?×?103 U/L and extracellular protease activity of 172?×?103 U/L were obtained at the 16th?hr. Intracellular esterase and extracellular protease production were increased fivefold and fourfold, respectively, when compared to batch fermentation performed under shake flask conditions.  相似文献   

19.
A simple, accurate model capable of predicting cell growth and methanol utilization during the mixed substrate fed-batch fermentation of MutS recombinant Pichia pastoris was developed and was used to design an exponential feeding strategy for mixed substrate fed-batch fermentation at a constant specific growth rate. Mixed substrate feeding has been shown to boost productivity in recombinant fed-batch culture of P. pastoris, while fixed growth rate exponential feeding during fed-batch culture is a useful tool in process optimization and control.  相似文献   

20.
The minimization of costs in the distillation step of lignocellulosic ethanol production requires the use of a high solids loading during the enzymatic hydrolysis to obtain a more concentrated glucose liquor. However, this increase in biomass can lead to problems including increased mass and heat transfer resistance, decreased cellulose conversion, and increased apparent viscosity with the associated increase in power consumption. The use of fed-batch operation offers a promising way to circumvent these problems. In this study, one batch and four fed-batch strategies for solids and/or enzyme feeding during the enzymatic hydrolysis of sugarcane bagasse were evaluated. Determinations of glucose concentration, power consumption, and apparent viscosity were made throughout the experiments, and the different strategies were compared in terms of energy efficiency (mass of glucose produced according to the energy consumed). The best energy efficiency was obtained for the strategy in which substrate and enzyme were added simultaneously (0.35 kgglucose kWh?1). This value was 52 % higher than obtained in batch operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号