共查询到20条相似文献,搜索用时 0 毫秒
1.
BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis
The components and pathways that regulate programmed cell death (PCD) in plants remain poorly understood. Here we describe the impact of drug-induced endoplasmic reticulum (ER) stress on Arabidopsis seedlings and present evidence for the role of Arabidopsis BAX inhibitor-1 (AtBI1) as a modulator of ER stress-mediated PCD. We found that treatment of Arabidopsis seedlings with tunicamycin (TM), an inhibitor of N-linked glycosylation and an inducer of ER stress by triggering accumulation of unfolded proteins in the ER, results in strong inhibition of root growth and loss of survival accompanied by typical hallmarks of PCD such as accumulation of H(2)O(2), chromatin condensation, and oligonucleosomal fragmentation of nuclear DNA. These phenotypes are alleviated by co-treatment with either of two different chemical chaperones, sodium 4-phenylbutyrate and tauroursodeoxycholic acid, both with chaperone properties that can reduce the load of misfolded protein in the ER. Expression of AtBI1 mRNA and its promoter activity are increased dramatically prior to initiation of TM-induced PCD. Compared with wild-type plants, two AtBI1 mutants (atbi1-1 and atbi1-2) exhibit hypersensitivity to TM with accelerated PCD progression. Conversely, overexpressing AtBI1 markedly reduces the sensitivity of Arabidopsis seedlings to TM. However, alterations in AtBI1 gene expression levels do not cause a significant effect on the expression patterns of typical ER stress-inducible genes (AtBip2, AtPDI, AtCRT1, and AtCNX1). We propose that AtBI1 plays a pivotal role as a highly conserved survival factor during ER stress that acts in parallel to the unfolded protein response pathway. 相似文献
2.
The Arabidopsis thaliana chloroplast protein ACCELERATED CELL DEATH2 (ACD2) modulates the amount of programmed cell death (PCD) triggered by Pseudomonas syringae and protoporphyrin IX (PPIX) treatment. In vitro, ACD2 can reduce red chlorophyll catabolite, a chlorophyll derivative. We find that ACD2 shields root protoplasts that lack chlorophyll from light- and PPIX-induced PCD. Thus, chlorophyll catabolism is not obligatory for ACD2 anti-PCD function. Upon P. syringae infection, ACD2 levels and localization change in cells undergoing PCD and in their close neighbors. Thus, ACD2 shifts from being largely in chloroplasts to partitioning to chloroplasts, mitochondria, and, to a small extent, cytosol. ACD2 protects cells from PCD that requires the early mitochondrial oxidative burst. Later, the chloroplasts of dying cells generate NO, which only slightly affects cell viability. Finally, the mitochondria in dying cells have dramatically altered movements and cellular distribution. Overproduction of both ACD2 (localized to mitochondria and chloroplasts) and ascorbate peroxidase (localized to chloroplasts) greatly reduces P. syringae-induced PCD, suggesting a pro-PCD role for mitochondrial and chloroplast events. During infection, ACD2 may bind to and/or reduce PCD-inducing porphyrin-related molecules in mitochondria and possibly chloroplasts that generate reactive oxygen species, cause altered organelle behavior, and activate a cascade of PCD-inducing events. 相似文献
3.
Noutoshi Y Kuromori T Wada T Hirayama T Kamiya A Imura Y Yasuda M Nakashita H Shirasu K Shinozaki K 《Plant molecular biology》2006,62(1-2):29-42
We isolated a lesion mimic mutant, n
ecrotic
s
potted
l
esions 1 (nsl1), from Ds-tagged Arabidopsis thaliana accession No-0. The nsl1 mutant exhibits a growth retardation phenotype and develops spotted necrotic lesions on its rosette and cauline leaves. These phenotypes occur in the absence of pathogens indicating that nsl1 mutants may constitutively express defense responses. Consistent with this idea, nsl1 accumulates high levels of callose and autofluorescent phenolic compounds localized to the necrotic lesions. Furthermore RNA gel blot analysis revealed that genes associated with disease resistance activation are upregulated in the nsl1 mutants and these plants contain elevated levels of salicylic acid (SA). Crossing nsl1 with an SA deficient mutant, eds16-1, revealed that the nsl1 lesions and growth retardation are dependent upon SA. The nsl1 phenotypes are not suppressed under either the rar1-10 or sgt1b-1 genetic background. NSL1 encodes a novel 612aa protein which contains a membrane-attack complex/perforin (MACPF) domain, which is conserved in bacteria, fungi, mammals and plants. The possible modes of action of NSL1 protein in negative regulation of cell death programs and defense responses are discussed. 相似文献
4.
5.
6.
Degrave A Fagard M Perino C Brisset MN Gaubert S Laroche S Patrit O Barny MA 《Molecular plant-microbe interactions : MPMI》2008,21(8):1076-1086
Erwinia amylovora is the bacterium responsible for fire blight, a necrotic disease affecting plants of the rosaceous family. E. amylovora pathogenicity requires a functional type three secretion system (T3SS). We show here that E. amylovora triggers a T3SS-dependent cell death on Arabidopsis thaliana. The plants respond by inducing T3SS-dependent defense responses, including salicylic acid (SA)-independent callose deposition, activation of the SA defense pathway, reactive oxygen species (ROS) accumulation, and part of the jasmonic acid/ethylene defense pathway. Several of these reactions are similar to what is observed in host plants. We show that the cell death triggered by E. amylovora on A. thaliana could not be simply explained by the recognition of AvrRpt2 ea by the resistance gene product RPS2. We then analyzed the role of type three-secreted proteins (T3SPs) DspA/E, HrpN, and HrpW in the induction of cell death and defense reactions in A. thaliana following infection with the corresponding E. amylovora mutant strains. HrpN and DspA/E were found to play an important role in the induction of cell death, activation of defense pathways, and ROS accumulation. None of the T3SPs tested played a major role in the induction of SA-independent callose deposition. The relative importance of T3SPs in A. thaliana is correlated with their relative importance in the disease process on host plants, indicating that A. thaliana can be used as a model to study their role. 相似文献
7.
Kim B Masuta C Matsuura H Takahashi H Inukai T 《Molecular plant-microbe interactions : MPMI》2008,21(2):260-268
In the pathosystems of Turnip mosaic virus (TuMV) with Brassicaceae crops, various symptoms, including mosaic and necrosis, are observed. We previously reported a necrosis-inducing factor TuNI in Arabidopsis thaliana, a model species. In this study, we show that the necrotic symptom induced by TuNI, observed along the veins, was actually a form of defense response accompanying a hypersensitive reaction (HR)-like cell death in the veinal area. The virus is often localized in the necrotic region. The necrotic response is associated with the production of H2O2, accumulation of salicylic acid (SA), emission of ethylene, and subsequent expression of defense-related genes. Additionally, this HR-like cell death is eased or erased by a shading treatment. These features are similar to the HR-associated resistance reaction to pathogens. However, unlike HR, two phytohormones--SA and ethylene--are involved in the necrosis induction, and both SA- and ethylene-dependent pathogenesis-related genes are activated. We concluded that the veinal necrosis induced by TuMV is regulated by a complex and unique network of at least two signaling pathways, which differs from the signal transduction for the known HR-associated resistance. 相似文献
8.
Programmed cell death in development and defense 总被引:49,自引:0,他引:49
Jones AM 《Plant physiology》2001,125(1):94-97
9.
10.
Schulte M Reiss K Lettau M Maretzky T Ludwig A Hartmann D de Strooper B Janssen O Saftig P 《Cell death and differentiation》2007,14(5):1040-1049
The apoptosis-inducing Fas ligand (FasL) is a type II transmembrane protein that is involved in the downregulation of immune reactions by activation-induced cell death (AICD) as well as in T cell-mediated cytotoxicity. Proteolytic cleavage leads to the generation of membrane-bound N-terminal fragments and a soluble FasL (sFasL) ectodomain. sFasL can be detected in the serum of patients with dysregulated inflammatory diseases and is discussed to affect Fas-FasL-mediated apoptosis. Using pharmacological approaches in 293T cells, in vitro cleavage assays as well as loss and gain of function studies in murine embryonic fibroblasts (MEFs), we demonstrate that the disintegrin and metalloprotease ADAM10 is critically involved in the shedding of FasL. In primary human T cells, FasL shedding is significantly reduced after inhibition of ADAM10. The resulting elevated FasL surface expression is associated with increased killing capacity and an increase of T cells undergoing AICD. Overall, our findings suggest that ADAM10 represents an important molecular modulator of FasL-mediated cell death. 相似文献
11.
Zaid H Abu-Hamad S Israelson A Nathan I Shoshan-Barmatz V 《Cell death and differentiation》2005,12(7):751-760
The role of the voltage-dependent anion channel (VDAC) in cell death was investigated using the expression of native and mutated murine VDAC1 in U-937 cells and VDAC inhibitors. Glutamate 72 in VDAC1, shown previously to bind dicyclohexylcarbodiimide (DCCD), which inhibits hexokinase isoform I (HK-I) binding to mitochondria, was mutated to glutamine. Binding of HK-I to mitochondria expressing E72Q-mVDAC1, as compared to native VDAC1, was decreased by approximately 70% and rendered insensitive to DCCD. HK-I and ruthenium red (RuR) reduced the VDAC1 conductance but not that of E72Q-mVDAC1. Overexpression of native or E72Q-mVDAC1 in U-937 cells induced apoptotic cell death (80%). RuR or overexpression of HK-I prevented this apoptosis in cells expressing native but not E72Q-mVDAC1. Thus, a single amino-acid mutation in VDAC prevented HK-I- or RuR-mediated protection against apoptosis, suggesting the direct VDAC regulation of the mitochondria-mediated apoptotic pathway and that the protective effects of RuR and HK-I rely on their binding to VDAC. 相似文献
12.
The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence 总被引:1,自引:0,他引:1
von Saint Paul V Zhang W Kanawati B Geist B Faus-Kessler T Schmitt-Kopplin P Schäffner AR 《The Plant cell》2011,23(11):4124-4145
Plants coordinate and tightly regulate pathogen defense by the mostly antagonistic salicylate (SA)- and jasmonate (JA)-mediated signaling pathways. Here, we show that the previously uncharacterized glucosyltransferase UGT76B1 is a novel player in this SA-JA signaling crosstalk. UGT76B1 was selected as the top stress-induced isoform among all 122 members of the Arabidopsis thaliana UGT family. Loss of UGT76B1 function leads to enhanced resistance to the biotrophic pathogen Pseudomonas syringae and accelerated senescence but increased susceptibility toward necrotrophic Alternaria brassicicola. This is accompanied by constitutively elevated SA levels and SA-related marker gene expression, whereas JA-dependent markers are repressed. Conversely, UGT76B1 overexpression has the opposite effect. Thus, UGT76B1 attenuates SA-dependent plant defense in the absence of infection, promotes the JA response, and delays senescence. The ugt76b1 phenotypes were SA dependent, whereas UGT76B1 overexpression indicated that this gene possibly also has a direct effect on the JA pathway. Nontargeted metabolomic analysis of UGT76B1 knockout and overexpression lines using ultra-high-resolution mass spectrometry and activity assays with the recombinant enzyme led to the ab initio identification of isoleucic acid (2-hydroxy-3-methyl-pentanoic acid) as a substrate of UGT76B1. Exogenously applied isoleucic acid increased resistance against P. syringae infection. These findings indicate a novel link between amino acid-related molecules and plant defense that is mediated by small-molecule glucosylation. 相似文献
13.
Marco R. Straus Steffen Rietz Emiel Ver Loren van Themaat Michael Bartsch Jane E. Parker 《The Plant journal : for cell and molecular biology》2010,62(4):628-640
Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast‐derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo‐oxidative stress and display EDS1‐dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1‐regulated SA and ROS by examining gene expression profiles, photo‐oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA‐biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast‐derived O2?? that lead to SA‐assisted H2O2 accumulation as part of a mechanism limiting cell death. A combination of EDS1‐regulated SA‐antagonized and SA‐promoted processes is necessary for resistance to host‐adapted pathogens and for a balanced response to photo‐oxidative stress. In contrast to SA, the apoplastic ROS‐producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo‐oxidative stress. Thus, chloroplastic O2?? signals are processed by EDS1 to produce counter‐balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O2?? or O2??‐generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment. 相似文献
14.
The tight association between nitrogen status and pathogenesis has been broadly documented in plant-pathogen interactions. However, the interface between primary metabolism and disease responses remains largely unclear. Here, we show that knockout of a single amino acid transporter, LYSINE HISTIDINE TRANSPORTER1 (LHT1), is sufficient for Arabidopsis thaliana plants to confer a broad spectrum of disease resistance in a salicylic acid-dependent manner. We found that redox fine-tuning in photosynthetic cells was causally linked to the lht1 mutant-associated phenotypes. Furthermore, the enhanced resistance in lht1 could be attributed to a specific deficiency of its main physiological substrate, Gln, and not to a general nitrogen deficiency. Thus, by enabling nitrogen metabolism to moderate the cellular redox status, a plant primary metabolite, Gln, plays a crucial role in plant disease resistance. 相似文献
15.
Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis 总被引:3,自引:0,他引:3
He R Drury GE Rotari VI Gordon A Willer M Farzaneh T Woltering EJ Gallois P 《The Journal of biological chemistry》2008,283(2):774-783
Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have no orthologous caspase sequences in their genomes. The discovery of plant and fungi metacaspases as proteases most closely related to animal caspases led to the hypothesis that metacaspases are the functional homologues of animal caspases in these organisms. Arabidopsis thaliana has nine metacaspase genes, and so far it is unknown which members of the family if any are involved in the regulation of PCD. We show here that metacaspase-8 (AtMC8) is a member of the gene family strongly up-regulated by oxidative stresses caused by UVC, H(2)O(2), or methyl viologen. This up-regulation was dependent of RCD1, a mediator of the oxidative stress response. Recombinant metacaspase-8 cleaved after arginine, had a pH optimum of 8, and complemented the H(2)O(2) no-death phenotype of a yeast metacaspase knock-out. Overexpressing AtMC8 up-regulated PCD induced by UVC or H(2)O(2), and knocking out AtMC8 reduced cell death triggered by UVC and H(2)O(2) in protoplasts. Knock-out seeds and seedlings had an increased tolerance to the herbicide methyl viologen. We suggest that metacaspase-8 is part of an evolutionary conserved PCD pathway activated by oxidative stress. 相似文献
16.
Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1
下载免费PDF全文

Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35SERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35SERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation. 相似文献
17.
18.
19.
20.
Developmentally controlled farnesylation modulates AtNAP1;1 function in cell proliferation and cell expansion during Arabidopsis leaf development
下载免费PDF全文

In multicellular organisms, organogenesis requires tight control and coordination of cell proliferation, cell expansion, and cell differentiation. We have identified Arabidopsis (Arabidopsis thaliana) nucleosome assembly protein 1 (AtNAP1;1) as a component of a regulatory mechanism that connects cell proliferation to cell growth and expansion during Arabidopsis leaf development. Molecular, biochemical, and kinetic studies of AtNAP1;1 gain- or loss-of-function mutants indicate that AtNAP1;1 promotes cell proliferation or cell expansion in a developmental context and as a function of the farnesylation status of the protein. AtNAP1;1 was farnesylated and localized to the nucleus during the cell proliferation phase of leaf development when it promotes cell division. Later in leaf development, nonfarnesylated AtNAP1;1 accumulates in the cytoplasm when it promotes cell expansion. Ectopic expression of nonfarnesylated AtNAP1;1, which localized to the cytoplasm, disrupts this developmental program by promoting unscheduled cell expansion during the proliferation phase. 相似文献