首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
2.
3.
Plant immune responses to pathogens are often associated with enhanced production of reactive oxygen species (ROS), known as the oxidative burst, and with rapid hypersensitive host cell death (the hypersensitive response, HR) at sites of attempted infection. It is generally accepted that the oxidative burst acts as a promotive signal for HR, and that HR is highly correlated with efficient disease resistance. We have identified the Arabidopsis mutant rph1 ( resistance to Phytophthora 1 ), which is susceptible to the oomycete pathogen Phytophthora brassicae despite rapid induction of HR. The susceptibility of rph1 was specific for P. brassicae and coincided with a reduced oxidative burst, a runaway cell-death response, and failure to properly activate the expression of defence-related genes. From these results, we conclude that, in the immune response to P. brassicae , (i) HR is not sufficient to stop the pathogen, (ii) HR initiation can occur in the absence of a major oxidative burst, (iii) the oxidative burst plays a role in limiting the spread of cell death, and (iv) RPH1 is a positive regulator of the P. brassicae -induced oxidative burst and enhanced expression of defence-related genes. Surprisingly, RPH1 encodes an evolutionary highly conserved chloroplast protein, indicating a function of this organelle in activation of a subset of immune reactions in response to P. brassicae . The disease resistance-related role of RPH1 was not limited to the Arabidopsis model system. Silencing of the potato homolog StRPH1 in a resistant potato cultivar caused susceptibility to the late blight pathogen Phytophthora infestans .  相似文献   

4.
5.
6.
7.
Devadas SK  Raina R 《Plant physiology》2002,128(4):1234-1244
The hypersensitive response (HR) displayed by resistant plants against invading pathogens is a prominent feature of plant-pathogen interactions. The Arabidopsis hypersensitive response like lesions1 (hrl1) mutant is characterized by heightened defense responses that make it more resistant to virulent pathogens. However, hrl1 suppresses avirulent pathogen-induced HR cell death. Furthermore, the high PR-1 expression observed in hrl1 remains unaltered after avirulent and virulent pathogen infections. The suppressed HR phenotype in hrl1 is observed even when an elicitor is expressed endogenously from an inducible promoter, suggesting that an impaired transfer of avirulent factors is not the reason. Interestingly, the lack of HR phenotype in hrl1 is reversed if the constitutive defense responses are compromised either by a mutation in NON EXPRESSOR OF PR-1 (NPR1) or by depleting salicylic acid due to the expression of the nahG gene. The rescue of HR cell death in hrl1 npr1 and in hrl1 nahG depends on the extent to which the constitutive systemic acquired response (SAR) is compromised. Pretreating Arabidopsis wild-type plants with SAR-inducers, before pathogen infection resulted in a significant decrease in HR cell death. Together, these results demonstrate that the preexisting SAR may serve as one form of negative feedback loop to regulate HR-associated cell death in hrl1 mutant and in the wild-type plants.  相似文献   

8.
9.
10.
Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.  相似文献   

11.
Aerenchyma tissues form gas-conducting tubes that provide roots with oxygen under hypoxic conditions. Although aerenchyma have received considerable attention in Zea mays, the signaling events and genes controlling aerenchyma induction remain elusive. Here, we show that Arabidopsis thaliana hypocotyls form lysigenous aerenchyma in response to hypoxia and that this process involves H(2)O(2) and ethylene signaling. By studying Arabidopsis mutants that are deregulated for excess light acclimation, cell death, and defense responses, we find that the formation of lysigenous aerenchyma depends on the plant defense regulators LESION SIMULATING DISEASE1 (LSD1), ENHANCED DISEASE SUSCEPIBILITY1 (EDS1), and PHYTOALEXIN DEFICIENT4 (PAD4) that operate upstream of ethylene and reactive oxygen species production. The obtained results indicate that programmed cell death of lysigenous aerenchyma in hypocotyls occurs in a similar but independent manner from the foliar programmed cell death. Thus, the induction of aerenchyma is subject to a genetic and tissue-specific program. The data lead us to conclude that the balanced activities of LSD1, EDS1, and PAD4 regulate lysigenous aerenchyma formation in response to hypoxia.  相似文献   

12.
13.
α-吡啶羧酸(PA)是动物细胞程序化死亡的诱导物。我们前期的研究表明,PA可以激发单子叶模式植物水稻的过敏反应(HR)。进一步用双子叶模式植物拟南芥(Arabidopsis thaliana)进行的研究表明,PA是一个广谱的植物HR反应的激发子,包括诱导氧进发和细胞死亡。我们探究了PA诱导的拟南芥防卫反应途径,利用不同信号途径标志基因PR-1,PR-2和PDF1.2受诱导剂量和时间激活的结果,表明PA可以同时激活水杨酸和茉莉酸/乙烯依赖的防卫途径。我们也发现PA诱导水稻悬浮细胞产生活性氧是钙离子依赖性的。综合所有结果,我们认为PA可以作为一个非专化性的植物防卫反应激发子,可望用于系统获得性抗性激发的细胞模型的建立。  相似文献   

14.
α-吡啶羧酸(PA)是动物细胞程序化死亡的诱导物.我们前期的研究表明,PA可以激发单子叶模式植物水稻的过敏反应(HR).进一步用双子叶模式植物拟南芥(Arabidopsis thaliana)进行的研究表明,PA是一个广谱的植物HR反应的激发子,包括诱导氧进发和细胞死亡.我们探究了PA诱导的拟南芥防卫反应途径,利用不同信号途径标志基因PR-1,PR-2和PDF1.2受诱导剂量和时间激活的结果,表明PA可以同时激活水杨酸和茉莉酸/乙烯依赖的防卫途径.我们也发现PA诱导水稻悬浮细胞产生活性氧是钙离子依赖性的.综合所有结果,我们认为PA可以作为一个非专化性的植物防卫反应激发子,可望用于系统获得性抗性激发的细胞模型的建立.  相似文献   

15.
Harpin inactivates mitochondria in Arabidopsis suspension cells   总被引:10,自引:0,他引:10  
Harpin is a well-known proteinaceous bacterial elicitor that can induce an oxidative burst and programmed cell death in various host plants. Given the demonstrated roles of mitochondria in animal apoptosis, we investigated the effect of harpin from Pseudomonas syringae on mitochondrial functions in Arabidopsis suspension cells in detail. Fluorescence microscopy in conjunction with double-staining for reactive oxygen species (ROS) and mitochondria suggested co-localization of mitochondria and ROS generation. Plant defense responses or cell death after pathogen attack have been suggested to be regulated by the concerted action of ROS and nitric oxide (NO). However, although Arabidopsis cells respond to harpin treatment with NO generation, time course analyses suggest that NO generation is not involved in initial responses but, rather, is a consequence of cellular decay. Among the fast responses we observed was a decrease of the mitochondrial membrane potential deltapsim, and, possibly as a direct consequence, of ATP production. Furthermore, treatment of Arabidopsis cells with harpin protein induced a rapid cytochrome C release from mitochondria into the cytosol, which is regarded as a hallmark of programmed cell death or apoptosis. Northern and DNA array analyses showed strong induction of protecting or scavenging systems such as alternative oxidase and small heat shock proteins, components that are known to be associated with cellular stress responses. In sum, the presented data suggest that harpin inactivates mitochondria in Arabidopsis cells.  相似文献   

16.
17.
Previous studies suggest that salicylic acid (SA) plays an important role in influencing plant resistance to ozone (O3). To further define the role of SA in O3-induced responses, we compared the responses of two Arabidopsis genotypes that accumulate different amounts of SA in response to O3 and a SA-deficient transgenic Col-0 line expressing salicylate hydroxylase (NahG). The differences observed in O3-induced changes in SA levels, the accumulation of active oxygen species, defense gene expression, and the kinetics and severity of lesion formation indicate that SA influences O3 tolerance via two distinct mechanisms. Detailed analyses indicated that features associated with a hypersensitive response (HR) were significantly greater in O3-exposed Cvi-0 than in Col-0, and that NahG plants failed to exhibit these HR-like responses. Furthermore, O3-induced antioxidant defenses, including the redox state of glutathione, were greatly reduced in NahG plants compared to Col-0 and Cvi-0. This suggests that O3-induced cell death in NahG plants is due to the loss of SA-mediated potentiation of antioxidant defenses, while O3-induced cell death in Cvi-0 is due to activation of a HR. This hypothesis is supported by the observation that inhibition of NADPH-oxidases reduced O3-induced H2O2 levels and the O3-induced cell death in Cvi-0, while no major changes were observed in NahG plants. We conclude that although SA is required to maintain the cellular redox state and potentiate defense responses in O3 exposed plants, high levels of SA also potentiate activation of an oxidative burst and a cell death pathway that results in apparent O3 sensitivity.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are of global environmental concern because they cause many health problems including cancer and inflammation of tissue in humans. Plants are important in removing PAHs from the atmosphere; yet, information on the physiology, cell and molecular biology, and biochemistry of PAH stress responses in plants is lacking. The PAH stress response was studied in Arabidopsis (Arabidopsis thaliana) exposed to the three-ring aromatic compound, phenanthrene. Morphological symptoms of PAH stress were growth reduction of the root and shoot, deformed trichomes, reduced root hairs, chlorosis, late flowering, and the appearance of white spots, which later developed into necrotic lesions. At the tissue and cellular levels, plants experienced oxidative stress. This was indicated by localized H2O2 production and cell death, which were detected using 3, 3'-diaminobenzidine and trypan blue staining, respectively. Gas chromatography-mass spectrometry and fluorescence spectrometry analyses showed that phenanthrene is internalized by the plant. Gene expression of the cell wall-loosening protein expansin was repressed, whereas gene expression of the pathogenesis related protein PR1 was induced in response to PAH exposure. These findings show that (i) Arabidopsis takes up phenanthrene, suggesting possible degradation in plants, (ii) a PAH response in plants and animals may share similar stress mechanisms, since in animal cells detoxification of PAHs also results in oxidative stress, and (iii) plant specific defence mechanisms contribute to PAH stress response in Arabidopsis.  相似文献   

19.
20.
Mutants of Arabidopsis thaliana which exhibit accelerated cell death in response to pathogens were isolated and characterized to gain insight into how symptom severity and disease resistance are modulated. This paper describes mutants that fall into one of two complementation groups that were identified. A novel feature of these mutants is that they are unable to control the rate and extent of cell death after exposure to a variety of stimuli that induce senescence responses. Thus, accelerated cell death ( acd1 ) mutants show rapid, spreading necrotic responses to both virulent and avirulent Pseudomonas syringae pv. maculicola or pv. tomato pathogens and to ethylene. In addition, they develop necrotic lesions as they age and are sensitive to mechanical stress in a developmentally controlled manner. The acd1 mutants are also susceptible to opportunistic pathogens and show decreased growth inhibition of a heterologous pathogen of bean. The signal for lesion formation is not necessarily due to pathogens or wounding since plants grown aseptically also develop necrotic lesions. The lesions formed under a variety of conditions resemble those produced during a pathogen-induced rapid cell death response (the hypersensitive response, HR). Analysis of these acd1 mutants may help to explain the molecular basis of the HR and the relationship between this response and the normal process of senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号