首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent outbreaks of highly pathogenic avian influenza A virus (H5N1 subtype) infections in poultry and humans (through direct contact with infected birds) have raised concerns that a new influenza pandemic might occur in the near future. Effective vaccines against H5N1 virus are, therefore, urgently needed. Reverse-genetics-based inactivated vaccines have been prepared according to World Health Organization (WHO) recommendations and are now undergoing clinical evaluation in several countries. Here, we review the current strategies for the development of H5N1 influenza vaccines, and future directions for vaccine development.  相似文献   

2.
H5N1禽流感的威胁与全球应对   总被引:1,自引:0,他引:1  
当前H5N1禽流感在迁徙禽类、家禽中的暴发,以及越来越多的人感染病例的发生,使流感全球大流行的可能性持续存在。简要综述了H5N1禽流感在鸟类和其他动物中的暴发情况,H5N1禽流感的人感染病例,以及全球禽流感应对计划及疫苗、药物、病原体基础研究的进展。  相似文献   

3.
Influenza A subtype H5N1 has represented a growing alarm since its recent identification in Asia. Previously thought to infect only wild birds and poultry, H5N1 has now infected humans, cats, pigs and other mammals in an ongoing outbreak, often with a fatal outcome. In order to evaluate the risk factors for human infection with influenza virus H5N1, here we summarize 53 case patients confirmed with H5N1 infection during 2006. The review also compares the mortality rate among human cases from late 2003 until 15 June 2006 in different countries. Neither how these viruses are transmitted to humans nor the most effective way to reduce the risk for infection is fully understood. The association between household contact with diseased poultry in human infection has been demonstrated. This association could possibly operate by 2 mechanisms. First, transmission may be by inhalation or conjunctival deposition of large infectious droplets which may travel only in short distances. Second, having infected poultry in the home and preparation of infected poultry for consumption may result in exposure to higher virus concentrations than other types of exposure. There is so far no significant evidence for repeated human to human transmission, yet some cases of human to human transmission among the family relatives in Indonesia, Azerbaijan, Iraq and Turkey have been described. Recent outbreaks of highly pathogenic avian influenza A virus (H5N1 subtype) infections in poultry and humans (through direct contact with infected birds) have raised concerns that a new influenza pandemic might occur in the near future.  相似文献   

4.
Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.  相似文献   

5.
Multiple reassortment events within poultry and wild birds had resulted in the establishment of another novel avian influenza A(H10N8) virus, and finally resulted in human death in Nanchang, China. However, there was a paucity of information on the prevalence of avian influenza virus in poultry and wild birds in Nanchang area. We investigated avian influenza virus in poultry and wild birds from live poultry markets, poultry countyards, delivery vehicles, and wild-bird habitats in Nanchang. We analyzed 1036 samples from wild birds and domestic poultry collected from December 2013 to February 2014. Original biological samples were tested for the presence of avian influenza virus using specific primer and probe sets of H5, H7, H9, H10 and N8 subtypes by real-time RT-PCR. In our analysis, the majority (97.98%) of positive samples were from live poultry markets. Among the poultry samples from chickens and ducks, AIV prevalence was 26.05 and 30.81%, respectively. Mixed infection of different HA subtypes was very common. Additionally, H10 subtypes coexistence with N8 was the most prevalent agent during the emergence of H10N8. This event illustrated a long-term surveillance was so helpful for pandemic preparedness and response.  相似文献   

6.
Thirty-two epizootics of high pathogenicity avian influenza (HPAI) have been reported in poultry and other birds since 1959. The ongoing H5N1 HPAI epizootic that began in 1996 has also spilled over to infect wild birds. Traditional stamping-out programs in poultry have resulted in eradication of most HPAI epizootics. However, vaccination of poultry was added as a control tool in 1995 and has been used during five epizootics. Over 113 billion doses of AI vaccine have been used in poultry from 2002 to 2010 as oil-emulsified, inactivated whole AIV vaccines (95.5%) and live vectored vaccines (4.5%). Over 99% of the vaccine has been used in the four H5N1 HPAI enzootic countries: China including Hong Kong (91%), Egypt (4.7%), Indonesia (2.3%), and Vietnam (1.4%) where vaccination programs have been nationwide and routine to all poultry. Ten other countries used vaccine in poultry in a focused, risk-based manner but this accounted for less than 1% of the vaccine used. Most vaccine “failures” have resulted from problems in the vaccination process; i.e., failure to adequately administer the vaccine to at-risk poultry resulting in lack of population immunity, while fewer failures have resulted from antigenic drift of field viruses away from the vaccine viruses. It is currently not feasible to vaccinate wild birds against H5N1 HPAI, but naturally occurring infections with H5 low pathogenicity avian influenza viruses may generate cross-protective immunity against H5N1 HPAI. The most feasible method to prevent and control H5N1 HPAI in wild birds is through control of the disease in poultry with use of vaccine to reduce environmental burden of H5N1 HPAIV, and eventual eradication of the virus in domestic poultry, especially in domestic ducks which are raised in enzootic countries on range or in other outdoor systems having contact with wild aquatic and periurban terrestrial birds.  相似文献   

7.
Highly pathogenic avian influenza (HPAI) H5N1 viruses are now endemic in many Asian countries, resulting in repeated outbreaks in poultry and increased cases of human infection. The immediate precursor of these HPAI viruses is believed to be A/goose/Guangdong/1/96 (Gs/GD)-like H5N1 HPAI viruses first detected in Guangdong, China, in 1996. From 2000 onwards, many novel reassortant H5N1 influenza viruses or genotypes have emerged in southern China. However, precursors of the Gs/GD-like viruses and their subsequent reassortants have not been fully determined. Here we characterize low-pathogenic avian influenza (LPAI) H5 subtype viruses isolated from poultry and migratory birds in southern China and Europe from the 1970s to the 2000s. Phylogenetic analyses revealed that Gs/GD-like virus was likely derived from an LPAI H5 virus in migratory birds. However, its variants arose from multiple reassortments between Gs/GD-like virus and viruses from migratory birds or with those Eurasian viruses isolated in the 1970s. It is of note that unlike HPAI H5N1 viruses, those recent LPAI H5 viruses have not become established in aquatic or terrestrial poultry. Phylogenetic analyses revealed the dynamic nature of the influenza virus gene pool in Eurasia with repeated transmissions between the eastern and western extremities of the continent. The data also show reassortment between influenza viruses from domestic and migratory birds in this region that has contributed to the expanded diversity of the influenza virus gene pool among poultry in Eurasia.  相似文献   

8.
Wild birds are the natural reservoirs of avian influenza viruses, and surveillance and assessment of these viruses in wild birds provide valuable information for early warning and control of animal diseases. In this study, we isolated 19 H7N7 avian influenza viruses from wild bird between 2018 and 2020. Full genomic analysis revealed that these viruses bear a single basic amino acid in the cleavage site of their hemagglutinin gene, and formed four different genotypes by actively reassorting other avian influenza viruses circulating in wild birds and ducks. The H7N7 viruses bound to both avian-type and human-type receptors, although their affinity for human-type receptors was markedly lower than that for avian-type receptors. Moreover, we found that the H7N7 viruses could replicate efficiently in the upper respiratory tract and caecum of domestic ducks, and that the H5/H7 inactivated vaccine used in poultry in China provided complete protection against H7N7 wild bird virus challenge in ducks. Our findings demonstrate that wild bird H7N7 viruses pose a substantial threat to the poultry industry across the East Asian-Australian migratory flyway, emphasize the importance of influenza virus surveillance in both wild and domestic birds, and support the development of active control strategies against H7N7 virus.  相似文献   

9.
H5N8亚型高致病性禽流感病毒(highly pathogenic avian influenza virus,HPAIV)随候鸟的迁徙活动及商业贸易活动现已蔓延至亚洲、欧洲、非洲、美洲等国家和地区.2014-2015和2016-2019年H5N8亚型HPAIV已引发两波全球疫情,现正经历第三波疫情,导致家禽及野生鸟类...  相似文献   

10.
Results of the analysis registered avian flu epizootia are submitted. Diseases were registered as among wild birds, and poultry. From a biological material from a poultry and wild bird of some villages of Novosibirsk region the influenza virus type A (H5N1) is allocated. Carrying out sanitary and antiepidemic measures is organized. It is established, that disease and a mass destruction of poultry have taken place after contact to a wild bird on lakes. It is revealed, that the degree of distribution of a mass destruction of poultry on farmsteads in the struck territories depends on terms of carrying out of necessary measures on localization of the foci. Occurrence of new cases of disease among wild birds and poultry in 2006 as lakes in this territory are a place of nesting of the wild birds being the reservoir of the influenza virus is predicted.  相似文献   

11.
H5N1 avian influenza virus (AIV) has caused widespread infections in poultry and wild birds, and has the potential to emerge as a pandemic threat to human. In order to explore novel approaches to inhibiting highly pathogenic H5N1 influenza virus infection, we have developed short RNA oligonucleotides, specific for conserved regions of the non-structural protein gene (NS1) of AIV. In vitro the hemagglutination (HA) titers in RNA oligonucleotide-treated cells were at least 5-fold lower than that of the control. In vivo, the treatment with three doses of RNA oligonucleotides protected the infected chickens from H5N1 virus-induced death at a rate of up to 87.5%. Plaque assay and real-time PCR analysis showed a significant reduction of the PFU and viral RNA level in the lung tissues of the infected animals treated with the mixed RNA oligonucleotides targeting the NS1 gene. Together, our findings revealed that the RNA oligonucleotides targeting at the AIV NS1 gene could potently inhibit avian H5N1 influenza virus reproduction and present a rationale for the further development of the RNA oligonucleotides as prophylaxis and therapy for highly pathogenic H5N1 influenza virus infection in humans.  相似文献   

12.
The emerging threat of a human pandemic caused by the H5N1 avian influenza virus strain magnifies the need for controlling the incidence of H5N1 infection in domestic bird populations. Culling is one of the most widely used control measures and has proved effective for isolated outbreaks. However, the socio-economic impacts of mass culling, in the face of a disease which has become endemic in many regions of the world, can affect the implementation and success of culling as a control measure. We use mathematical modeling to understand the dynamics of avian influenza under different culling approaches. We incorporate culling into an SI model by considering the per capita culling rates to be general functions of the number of infected birds. Complex dynamics of the system, such as backward bifurcation and forward hysteresis, along with bi-stability, are detected and analyzed for two distinct culling scenarios. In these cases, employing other control measures temporarily can drastically change the dynamics of the solutions to a more favorable outcome for disease control.  相似文献   

13.
Evolutionary dynamics and emergence of panzootic H5N1 influenza viruses   总被引:1,自引:0,他引:1  
The highly pathogenic avian influenza (HPAI) H5N1 virus lineage has undergone extensive genetic reassortment with viruses from different sources to produce numerous H5N1 genotypes, and also developed into multiple genetically distinct sublineages in China. From there, the virus has spread to over 60 countries. The ecological success of this virus in diverse species of both poultry and wild birds with frequent introduction to humans suggests that it is a likely source of the next human pandemic. Therefore, the evolutionary and ecological characteristics of its emergence from wild birds into poultry are of considerable interest. Here, we apply the latest analytical techniques to infer the early evolutionary dynamics of H5N1 virus in the population from which it emerged (wild birds and domestic poultry). By estimating the time of most recent common ancestors of each gene segment, we show that the H5N1 prototype virus was likely introduced from wild birds into poultry as a non-reassortant low pathogenic avian influenza H5N1 virus and was not generated by reassortment in poultry. In contrast, more recent H5N1 genotypes were generated locally in aquatic poultry after the prototype virus (A/goose/Guangdong/1/96) introduction occurred, i.e., they were not a result of additional emergence from wild birds. We show that the H5N1 virus was introduced into Indonesia and Vietnam 3-6 months prior to detection of the first outbreaks in those countries. Population dynamics analyses revealed a rapid increase in the genetic diversity of A/goose/Guangdong/1/96 lineage viruses from mid-1999 to early 2000. Our results suggest that the transmission of reassortant viruses through the mixed poultry population in farms and markets in China has selected HPAI H5N1 viruses that are well adapted to multiple hosts and reduced the interspecies transmission barrier of those viruses.  相似文献   

14.

Background  

The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's) contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's) that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006.  相似文献   

15.
Recurrent outbreaks of H5, H7 and H9 avian influenza viruses in domestic poultry accompanied by their occasional transmission to humans have highlighted the public health threat posed by these viruses. Newer vaccine approaches for pandemic preparedness against these viruses are needed, given the limitations of vaccines currently approved for H5N1 viruses in terms of their production timelines and the ability to induce protective immune responses in the absence of adjuvants. In this study, we evaluated the feasibility of an adenovirus (AdV)-based multivalent vaccine approach for pandemic preparedness against H5, H7 and H9 avian influenza viruses in a mouse model. Replication-defective AdV vectors expressing hemagglutinin (HA) from different subtypes and nucleoprotein (NP) from one subtype induced high levels of humoral and cellular immune responses and conferred protection against virus replication following challenge with H5, H7 and H9 avian influenza virus subtypes. Inclusion of HA from the 2009 H1N1 pandemic virus in the vaccine formulation further broadened the vaccine coverage. Significantly high levels of HA stalk-specific antibodies were observed following immunization with the multivalent vaccine. Inclusion of NP into the multivalent HA vaccine formulation resulted in the induction of CD8 T cell responses. These results suggest that a multivalent vaccine strategy may provide reasonable protection in the event of a pandemic caused by H5, H7, or H9 avian influenza virus before a strain-matched vaccine can be produced.  相似文献   

16.
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this 'thoroughfare'. We used an eco-virological approach to compare the migration of 141 birds marked with GPS satellite transmitters during 2005-2010 with: 1) the spatio-temporal patterns of poultry and wild bird outbreaks of HPAI H5N1, and 2) the trajectory of the virus in the outbreak region based on phylogeographic mapping. We found that biweekly utilization distributions (UDs) for 19.2% of bar-headed geese and 46.2% of ruddy shelduck were significantly associated with outbreaks. Ruddy shelduck showed highest correlation with poultry outbreaks owing to their wintering distribution in South Asia, where there is considerable opportunity for HPAI H5N1 spillover from poultry. Both species showed correlation with wild bird outbreaks during the spring migration, suggesting they may be involved in the northward movement of the virus. However, phylogeographic mapping of HPAI H5N1 clades 2.2 and 2.3 did not support dissemination of the virus in a northern direction along the migration corridor. In particular, two subclades (2.2.1 and 2.3.2) moved in a strictly southern direction in contrast to our spatio-temporal analysis of bird migration. Our attempt to reconcile the disciplines of wild bird ecology and HPAI H5N1 virology highlights prospects offered by both approaches as well as their limitations.  相似文献   

17.

Background

The threat posed by highly pathogenic avian influenza A H5N1 viruses to humans remains significant, given the continued occurrence of sporadic human cases (499 human cases in 15 countries) with a high case fatality rate (approximately 60%), the endemicity in poultry populations in several countries, and the potential for reassortment with the newly emerging 2009 H1N1 pandemic strain. Therefore, we review risk factors for H5N1 infection in humans.

Methods and Findings

Several epidemiologic studies have evaluated the risk factors associated with increased risk of H5N1 infection among humans who were exposed to H5N1 viruses. Our review shows that most H5N1 cases are attributed to exposure to sick poultry. Most cases are sporadic, while occasional limited human-to-human transmission occurs. The most commonly identified factors associated with H5N1 virus infection included exposure through contact with infected blood or bodily fluids of infected poultry via food preparation practices; touching and caring for infected poultry; consuming uncooked poultry products; exposure to H5N1 via swimming or bathing in potentially virus laden ponds; and exposure to H5N1 at live bird markets.

Conclusions

Research has demonstrated that despite frequent and widespread contact with poultry, transmission of the H5N1 virus from poultry to humans is rare. Available research has identified several risk factors that may be associated with infection including close direct contact with poultry and transmission via the environment. However, several important data gaps remain that limit our understanding of the epidemiology of H5N1 in humans. Although infection in humans with H5N1 remains rare, human cases continue to be reported and H5N1 is now considered endemic among poultry in parts of Asia and in Egypt, providing opportunities for additional human infections and for the acquisition of virus mutations that may lead to more efficient spread among humans and other mammalian species. Collaboration between human and animal health sectors for surveillance, case investigation, virus sharing, and risk assessment is essential to monitor for potential changes in circulating H5N1 viruses and in the epidemiology of H5N1 in order to provide the best possible chance for effective mitigation of the impact of H5N1 in both poultry and humans.

Disclaimer

The opinions expressed in this article are those of the authors and do not necessarily reflect those of the institutions or organizations with which they are affiliated.  相似文献   

18.
Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness.The highly pathogenic H5N1 influenza viruses that emerged over a decade ago in southern China have evolved into over 10 distinct phylogenetic clades based on their hemagglutinin (HA) genes. The viruses have spread to over 63 countries and to multiple mammalian species, including humans, resulting in 498 cases of infection and 294 deaths by 6 May 2010 according to the World Health Organization (WHO) (http://www.who.int). To date, none of the different H5N1 clades has acquired the ability to consistently transmit among mammalian species. The currently circulating H5N1 viruses are unique in that they continue to circulate in avian species. All previous highly pathogenic H5 and H7 viruses have naturally “burned out” or were stamped out because of their high pathogenicity in domestic poultry. While there is growing complacency about the potential of H5N1 “bird flu” to attain consistent transmissibility in humans and develop pandemicity, it is worth remembering that we have no knowledge of the time that it took the 1918 Spanish, the 1957 Asian, the 1968 Hong Kong, and the 2009 North American pandemics to develop their pandemic potentials. We may therefore currently be witnessing in real time the evolution of an H5N1 pandemic influenza virus.H5N1 avian influenza viruses (AIVs) were first detected in sick geese in Guangdong province in 1996, and both nonpathogenic and highly pathogenic (HP) H5N1 viruses were described (18). In 1997, H5N1 reassortant viruses that derived the HA gene from A/goose/Guangdong/1/96 (GS/GD/1/96)-like viruses and the other genes from H6N1 and/or H9N2 viruses caused lethal outbreaks in poultry and humans in Hong Kong (6, 7). Since then, long-term active surveillance of influenza viruses in domestic poultry has been performed, and multiple subtypes of influenza viruses have been detected in chickens and ducks in China (16, 19, 37). H5N1 influenza viruses have been repeatedly detected in apparently healthy ducks in southern China since 1999 (4, 13) and were also detected in pigs in Fujian province in 2001 and 2003 (39).Since the beginning of 2004, there have been significant outbreaks of H5N1 avian influenza virus infection involving multiple poultry farm flocks in more than 20 provinces in China (2). H5N1 viruses resulted in the deaths of millions of domestic poultry, including chickens, ducks, and geese, as the result of infection or of culling and the deaths of thousands of wild birds (5, 20). Thirty-eight human cases of HP H5N1 infection with 25 fatalities have been associated with direct exposure to infected poultry (WHO; http://www.who.int). Since 2004, the vaccination of domestic poultry has been used for the control of HP H5N1 influenza virus in China. While this strategy has been effective at reducing the incidence of HP H5N1 in poultry and at markedly reducing the number of human cases, it is impossible to vaccinate every single bird due to the enormous poultry population. Outbreaks of H5N1 influenza virus still continue to occur in poultry although at a reduced frequency.A previous study by Smith et al. reported that a “Fujian-like” H5N1 influenza virus emerged in late 2005 and predominated in poultry in southern China (26). Those authors suggested that vaccination may have facilitated the selection of the “Fujian-like” sublineage. Here, we analyzed 51 representative H5N1 viruses that were isolated from wild birds, domestic poultry, and humans from 2004 to 2009 in China and described their genetic evolution and antigenicity profiles. Our results indicate that H5N1 influenza viruses in southern China, including the “Fujian-like” viruses, are complicated reassortants, which could be well protected against by GS/GD/1/96 virus-based vaccines. We documented the emergence of the latest variant of H5N1 (A/chicken/Shanxi/2/06 [CK/SX/2/06]) that broke through existing poultry vaccines. We show that this variant is less pathogenic in mice and ducks than the earlier strains and propose that the variant was not selected by the use of vaccines.  相似文献   

19.
Ge J  Deng G  Wen Z  Tian G  Wang Y  Shi J  Wang X  Li Y  Hu S  Jiang Y  Yang C  Yu K  Bu Z  Chen H 《Journal of virology》2007,81(1):150-158
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.  相似文献   

20.
According to opinion of WHO's experts, development and use of tetravaccine, which contains both interdemic and pandemic (H5N1) serotypes of influenza viruses, is one of the most promising approaches to control possible influenza pandemic. Results of recently obtained data from clinical trials allowed experts from WHO to make a conclusion that protective immunity against avian influenza virus can be achieved after 2-doses immunization, when the immune system will be primed to hemagglutinin after the 1st dose and sufficient protective immunity level will be formed after the 2nd dose. However, in case of real threat of pandemic, the time for immunization with 2 doses of the vaccine will be absent. In order to provide protection for population of Russia in a limited time frame it is reasonable to vaccinate them with H5 hemagglutinin beforehand. In that case, when real threat of pandemic will arise, not two but one injection with monovalent vaccine against avian influenza will be sufficient. This idea formed the basis for concept of development of tetravaccine. The essence of the concept is vaccination of population with tetravaccine, consisting of antigens of influenza virus serotypes H3N2, H1N1, B, and H5, before the influenza pandemic caused by H5N1 virus will begin. Such vaccination will induce immunologic memory to hemagglutinin of avian influenza virus serotype H5 and, when the real threat of the pandemic will occur, only single immunization with monovaccine against avian influenza instead of 2 doses will be required. In 2006 Scientific-Production Association "Microgen" conducted extended preclinical study of immunogenic and protective characteristics of candidate vaccines against avian influenza prepared from vaccine strains of H5N1 and H5N2 serotypes. It has been shown that candidate vaccines prepared from both strains have high protective ability against Russian epidemic isolate A/chicken/Kurgan/Russia/2/2005(H5N1). To this time Scientific-Production Association "Microgen" has produced monovalent bulk of H3N2, H1N1, and B serotypes, which are included in interdemic influenza vaccines, as well as monovalent bulk of H5N1 and H5N2 serotypes. This intermediate products are ready to be produced into tetravaccine for conducting extended preclinical studies of its safety, reactogenicity, immunogenicity, and protective properties. If results of such studies will be positive then it is possible to begin clinical trials of the tetravaccine in 2007 and to discuss the questions about its dosage, methods of challenge and schedule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号