首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracellular Ca2+ (Cai) signaling following the binding of surface receptors activates a Ca2+ permeable plasma membrane conductance which has been shown to be associated with store depletion in a number of cell types. We examined the activation of this conductance in human monocyte-derived macrophages (HMDMs) using whole-cell voltage-clamp techniques coupled with fura-2 microfluorimetry and characterized the importance of external pH (pHo) as a modulator of current amplitude. Current activation was observed following experimental maneuvers designed to deplete intracellular Ca2+-stores including: (i) dialysis of the cell with 100 m inositol 1,4,5-triphosphate (IP3), (ii) intracellular dialysis with high concentrations of the Ca2+ buffers EGTA and BAPTA, or (iii) exposure of the cell to the Ca2+-ATPase inhibitor thapsigargin (1 m). Currents associated with store depletion were inwardly rectifying with kinetics, inactivation, and selectivity that appeared similar irrespective of the mode of activation. Currents were Ca2+ selective with a selectivity sequence of Ca2+ > Sr2+ Mg2+ = Mn2+ = Ni2+. The Ca2+ influx current was modulated by changes in pHo; modulation was not produced as a consequence of changes in internal pH (pHi). External acidification led to a reversible reduction in current amplitude with a pKa at pH 8.2. Changes in pHo alone failed to induce current activation. These observations are consistent with a scheme by which changes in pHo, as would be encountered by macrophages at sites of inflammation, could change the time course and magnitude of the Cai transient associated with receptor activation by regulating the influx of Ca2+ ions.The authors wish to gratefully acknowledge the expert technical assistance of Weiwen Xie without whom the study could not have been completed. This work was supported by National Institutes of Health GM36823.  相似文献   

2.
A cDNA encoding a mouse B2 bradykinin (BK) receptor was stably transfected in Chinese hamster ovary (CHO) cells. In two resulting transformants, mouse B2 BK receptor was found to induce a twofold elevation in the inositol-1,4,5-trisphosphate level. In a pertussis toxin-insensitive manner, BK also produced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). The initial elevation in [Ca2+]i was abolished by thapsigargin pretreatment in Ca2+-free medium. The second phase was dependent on external Ca2+. The BK/inositol trisphosphate- and thapsigargin-sensitive Ca2+ stores required extracellular Ca2+ for refilling. Ca2+ influx induced by BK and thapsigargin was confirmed by Mn2+ entry through Ca2+ influx pathways producing Mn2+ quenching. Genistein, a tyrosine kinase inhibitor, partially decreased the BK-induced [Ca2+]i increase during the sustained phase and the rate of Mn2+ entry. BK had essentially no effect on the intracellular cyclic AMP level. The results suggest that the mouse B2 BK receptor couples to phospholipase C in CHO cells and that its activation results in biphasic [Ca2+]i increases, by mobilization of intracellular Ca2+ and store-depletion-mediated Ca2+ influx, the latter of which is tyrosine phosphorylation-dependent.  相似文献   

3.
In the present study we studied platelet-activating factor (PAF)-, and ATP-induced increases in intracellular Ca2+ concentration ([Ca2+]i) using RAW 264.7 macrophages filled with fura-2/AM and imaged with fluorescence video microscopy. We found that the prevalence of detectable [Ca2+]i responses to PAF application was significantly higher in the presence of dantrolene. Dantrolene itself significantly decreased basal [Ca2+]i of macrophages compared to control cases after a 20-min incubation period. In the dantrolene-treated cells even the peak [Ca2+]i in response to PAF (as an average of all cells) was below the baseline of control suggesting that decreased [Ca2+]i plays a permissive role in the Ca2+ rise induced by PAF in macrophages. In contrast to the effect of PAF, neither the amplitude of response to ATP nor the frequency of responding cells changed significantly during dantrolene treatment in our experiments. These cells were able to respond to a standard immune stimulus as well: lipopolysaccharide (LPS) was able to increase [Ca2+]i. Our data indicate that the effectiveness of PAF to increase [Ca2+]i in RAW 264.7 macrophages depends on the resting [Ca2+]i. It has also been shown in this study that PAF and ATP differently regulate Ca2+ homeostasis in macrophages during inflammatory response and therefore they possibly differently modulate cytokine production by macrophages.  相似文献   

4.
The transition of a resting macrophage into the activated state is accompanied by changes in membrane potential, cytoplasmic pH, and intracellular calcium (Ca i ). Activation of Cl as well as H+-selective currents may give rise to stimulus-induced changes in membrane potential and counteract changes in intra-cellular pH (pH i ) which have been observed to be closely associated with respiratory burst activation and superoxide production in macrophages. We carried out whole-cell voltage clamp experiments on human monocyte-derived macrophages (HMDMs) and characterized currents activated following an elevation in Ca i using isosmotic pipette and bath solutions in which Cl was the major permeant species. Ca i was elevated by exposing cells to the Ca2+ ionophore A23187 (1–10 m) in the presence of extracellular Ca2+ or by internally exchanging the patch-electrode solution with ones buffered to free Ca2+ concentrations between 40 and 2,000 nm. We have identified two Ca2+-dependent ion conductances based on differences in their characteristic time-dependent kinetics: a rapidly activating Cl conductance that showed variable inactivation at depolarized potentials and a H+ conductance with delayed activation kinetics. Both conductances were inhibited by the disulfonic acid stilbene DIDS (100 m). Current activation for both Ca2+-dependent conductances was phosphorylation dependent, neither conductance appeared in the presence of the broad spectrum kinase inhibitor H-7 (75 m). Inclusion of the autophosphorylated, Ca2+/calmodulin-dependent protein kinase in the pipette in the presence of ATP induced a rapidly activating current similar to that observed following an elevation in Ca i . Activation of both conductances would contribute to the changes in membrane potential which accompany stimulation-induced activation of macrophages as well as counteract the decrease in pH i during sustained Superoxide production.The authors wish to thank Dr. H. Schulman for providing us with the purified CaMKII and Jennifer Foss for technical assistance. This work was supported by National Institutes of Health RO1 GM36823.  相似文献   

5.
We analyzed [Ca2+] i transients in Paramecium cells in response to veratridine for which we had previously established an agonist effect for trichocyst exocytosis (Erxleben & Plattner, 1994. J. Cell Biol. 127:935–945; Plattner et al., 1994. J. Membrane Biol. 158:197–208). Wild-type cells (7S), nondischarge strain nd9–28°C and trichocyst-free strain ``trichless' (tl), respectively, displayed similar, though somewhat diverging time course and plateau values of [Ca2+] i transients with moderate [Ca2+] o in the culture/assay fluid (50 μm or 1 mm). In 7S cells which are representative for a normal reaction, at [Ca2+] o = 30 nm (c.f. [Ca2+] rest i =∼50 to 100 nm), veratridine produced only a small cortical [Ca2+] i transient. This increased in size and spatial distribution at [Ca2+] o = 50 μm of 1 mm. Interestingly with unusually high yet nontoxic [Ca2+] o = 10 mm, [Ca2+] i transients were much delayed and also reduced, as is trichocyst exocytosis. We interpret our results as follows. (i) With [Ca2+] o = 30 nm, the restricted residual response observed is due to Ca2+ mobilization from subplasmalemmal stores. (ii) With moderate [Ca2+] o = 50 μm to 1 mm, the established membrane labilizing effect of veratridine may activate not only subplasmalemmal stores but also Ca2+ o influx from the medium via so far unidentified (anteriorly enriched) channels. Visibility of these phenomena is best in tl cells, where free docking sites allow for rapid Ca2+ spread, and least in 7S cells, whose perfectly assembled docking sites may ``consume' a large part of the [Ca2+] i increase. (iii) With unusually high [Ca2+] o , mobilization of cortical stores and/or Ca2+ o influx may be impeded by the known membrane stabilizing effect of Ca2+ o counteracting the labilizing/channel activating effect of veratridine. (iv) We show these effects to be reversible, and, hence, not to be toxic side-effects, as confirmed by retention of injected calcein. (v) Finally, Mn2+ entry during veratridine stimulation, documented by Fura-2 fluorescence quenching, may indicate activation of unspecific Me2+ channels by veratridine. Our data have some bearing on analysis of other cells, notably neurons, whose response to veratridine is of particular and continous interest. Received: 8 December 1998/Revised: 2 March 1999  相似文献   

6.
Rat sympathetic neurons undergo programmed cell death (PCD) in vitro and in vivo when they are deprived of nerve growth factor (NGF). Chronic depolarization of these neurons in cell culture with elevated concentrations of extracellular potassium ([K+]o) prevents this death. The effect of prolonged depolarization on neuronal survival is thought to be mediated by a rise of intracellular calcium concentration ([Ca2+]i) caused by Ca2+ influx through voltage-gated channels. In this report we investigate the effects of chronic treatment of rat sympathetic neurons with thapsigargin, an inhibitor of intracellular Ca2+ sequestration. In medium containing a normal concentration of extracellular Ca2+ ([Ca2+]o), thapsigargin caused a sustained rise of intracellular Ca2+ concentration and partially blocked death of NGF-deprived cells. Elevating [Ca2+]o in the presence of thapsigargin further increased [Ca2+]i, suggesting that the sustained rise of [Ca2+]i was caused by a thapsigargin-induced Ca2+ influx. This treatment potentiated the effect of thapsigargin on survival. The dihydropyridine Ca2+ channel antagonist, nifedipine, blocked both a sustained elevation of [Ca2+]i and enhanced survival caused by depolarization with elevated [K+]o, suggesting that these effects are mediated by Ca2+ influx through L-type channels. Nifedipine did not block the sustained rise of [Ca2+]i or enhanced survival caused by thapsigargin treatment, indicating that these effects were not mediated by influx of Ca2+ through L-type channels. These results provide additional evidence that increased [Ca2+]i can suppress neuronal PCD and identify a novel method for chronically raising neuronal [Ca2+]i for investigation of this and other Ca2+-dependent phenomena. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
A Store-Operated Nonselective Cation Channel in Human Lymphocytes   总被引:1,自引:0,他引:1  
1. Agonist interaction with phospholipase C-linked receptors at the plasma membrane can elicit both Ca2+ and Na+ influxes in lymphocytes. While Ca2+ influx is mediated by Ca2+ release-activated Ca2+ (CRAC) channels, the pathway responsible for Na+ influx is largely unknown.2. We show that thapsigargin, ionomycin, ADP-ribose and IP3 activated a nonselective cation channel in lymphocytes that had a slightly outwardly rectifying IV relationship, and a single channel conductance of 23.1 pS. We termed this channel a Ca2+ release-activated nonselective cation (CRANC) channel.3. On activation in cell-attached configuration, switching to an inside-out configuration abolished CRANC channel activity.4. Transfection of Jurkat T cells with antisense oligonucleotides for LTRPC2 reduced capacitative Ca2+ entry.5. These results suggest that CRANC channels are responsible for the Na+ influx as well as a portion of the Ca2+ influx in lymphocytes induced by store depletion, that sustained activation of CRANC channels requires some property of the environment of a cell depleted of its Ca2+ stores; and that LTRPC2 protein is a likely component of the CRANC channel.  相似文献   

8.
Cytoplasmic calcium concentration ([Ca2+]i) and extracellular calcium (Ca2+o) influx has been studied in pollen tubes of Lilium longliflorum in which the processes of cell elongation and exocytosis have been uncoupled by use of Yariv phenylglycoside ((β-D-Glc)3). Growing pollen tubes were pressure injected with the ratio dye fura-2 dextran and imaged after application of (β-D-Glc)3, which binds arabinogalactan proteins (AGPs). Application of (β-D-Glc)3 inhibited growth but not secretion. Ratiometric imaging of [Ca2+]i revealed an initial spread in the locus of the apical [Ca2+]i gradient and substantial elevations in basal [Ca2+]i followed by the establishment of new regions of elevated [Ca2+]i on the flanks of the tip region. Areas of elevated [Ca2+]i corresponded to sites of pronounced exocytosis, as evidenced by the formation of wall ingrowths adjacent to the plasma membrane. Ca2+o influx at the tip of (β-D-Glc)3-treated pollen tubes was not significantly different to that of control tubes. Taken together these data indicate that regions of elevated [Ca2+]i, probably resulting from Ca2+o influx across the plasma membrane, stimulate exocytosis in pollen tubes independent of cell elongation.  相似文献   

9.
Consideration of the principal current models for agonist-induced activation of Ca2+ entry in electrically non-excitable cells suggests that it may be possible to distinguish between them on the basis of predicted differences in the temporal relationship(s) between intracellular Ca2+ release and the activation of Ca2+ entry. Measurements of changes in [Ca2+]i and Mn2+ quench in individual exocrine cells from the avian nasal gland indicate that, whereas Ins(1,4,5)P3-induced release of intracellular Ca2+ occurs within 3–5 s, the increase in Mn2+ quench is delayed by some 20–30 s. Mn2+ quench rate is similarly increased by thapsigargin, and is blocked by SK&F 96365, indicating that the increased Mn2+ quench observed genuinely reflects agonist-enhanced activity of the divalent cation entry pathway normally traversed by Ca2+. Additional experiments indicate that the observed delay is not due to inhibition of this pathway by elevated [Ca2+]i. Furthermore, the delay cannot be explained by the time required for Ins(1,3,4,5)P4 generation, which is essentially maximal within 10 s of agonist addition. It is concluded that the observed delay in the activation of the Ca2+ entry pathway is best explained by ‘capacitative’ models where increased entry requires the generation, and transmission to the plasma membrane, of an unknown messenger as a direct result of the depletion of intracellular Ca2+ stores.  相似文献   

10.
Using whole-cell current-clamp measurements we have found that thapsigargin-mediated activation of store-regulated Ca2+ entry in rat basophilic leukemia cells is accompanied by complex changes in membrane potential. These changes consisted of: (i) an initial slow, small depolarization, (ii) a transitional change in potential to a depolarized value and (iii) transitional changes between a hyperpolarized and a depolarized potential. These complex changes in potential can be explained by the interaction between the endogenous inwardly rectifying K+ conductance and the generation of a small inward current. To investigate the possible influence of these changes of potential on [Ca2+] i , single cell measurements of fura2 fluorescence were undertaken alone or in combination with current-clamp measurements. Thapsigargin-mediated activation of the store-regulated Ca2+ entry pathway was accompanied by a marked increase of [Ca2+] i . During this increase, transient, abrupt declines in [Ca2+] i were detected in approximately 60% of the cells investigated. These changes of [Ca2+] i are consistent with the observed changes of membrane potential recorded under current-clamp. Received: 1 December 1998/Revised: 30 March 1999  相似文献   

11.
Summary The whole-cell patch-clamp method has been used to measure Ca2+ influx through otherwise K+-selective channels in the plasma membrane surrounding protoplasts from guard cells of Vicia faba. These channels are activated by membrane hyperpolarization. The resulting K+ influx contributes to the increase in guard cell turgor which causes stomatal opening during the regulation of leaf-air gas exchange. We find that after opening the K+ channels by hyperpolarization, depolarization of the membrane results in tail current at voltages where there is no electrochemical force to drive K+ inward through the channels. Tail current remains when the reversal potential for permeant ions other than Ca2+ is more negative than or equal to the K+ equilibrium potential (–47 mV), indicating that the current is due to Ca2+ influx through the K+ channels prior to their closure. Decreasing internal [Ca2+] (Ca i ) from 200 to 2 nm or increasing the external [Ca2+] (Ca o ) from 1 to 10 mm increases the amplitude of tail current and shifts the observed reversal potential to more positive values. Such increases in the electrochemical force driving Ca2+ influx also decrease the amplitude of time-activated current, indicating that Ca2+ permeation is slower than K+ permeation, and so causes a partial block. Increasing Ca o also (i) causes a positive shift in the voltage dependence of current, presumably by decreasing the membrane surface potential, and (ii) results in a U-shaped current-voltage relationship with peak inward current ca. –160 mV, indicating that the Ca2– block is voltage dependent and suggesting that the cation binding site is within the electric field of the membrane. K+ channels in Zea mays guard cells also appear to have a Ca i -, and Ca o -dependent ability to mediate Ca2+ influx. We suggest that the inwardly rectiying K+ channels are part of a regulatory mechanism for Ca i . Changes in Ca o and (associated) changes in Ca i regulate a variety of intracellular processes and ion fluxes, including the K+ and anion fluxes associated with stomatal aperture change.This work was supported by grants to S.M.A. from NSF (DCB-8904041) and from the McKnight Foundation. K.F.-G. is a Charles Gilbert Heydon Travelling Fellow. The authors thank Dr. R. MacKinnon (Harvard Medical School) and two anonymous reviewers for helpful comments.  相似文献   

12.
The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 μM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [Ca2+ fluctuations. Bombesin-evoked [Ca2+]i oscillations were dependent on extracellular Ca2+ entry and were attenuated by membrane hype rpolarization or by L-type Ca2+ channel blockers. These [Ca2+]i oscillations were apparently not associated with fluctuations in plasma membrane Ca2+ permeability as monitored by the Mn2+ quenching technique. 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and 4-chloro-m-cresol, which interfere with intracellular Ca2+ stores, respectively, by inhibiting Ca2+-ATPase of endoplasmic reticulum and by affecting Ca2+-induced Ca2+ release, disrupted bombesin-induced [Ca2+]i oscillations. 4-chloro-m-resol raised [Ca2+]i by mobilizing an intracellular Ca2+ pool, an effect not altered by ryanodine. Caffeine exerted complex actions on [Ca2+]i It raised [Ca2+]i by promoting Ca2+ entry while inhibiting bombesin-elicited [Ca2+]i oscillations. Our results suggest that in bombesin-elicited [Ca2+]i oscillations in HIT-T15 cells: (i) the oscillations originate primarily from intracellular Ca2+ stores; and (ii) the Ca2+ influx required for maintaining the oscillations is in part membrane potential-sensitive and not coordinated with [Ca2+]i oscillations. The interplay between intracellular Ca2+ stores and voltage-sensitive and voltage-insensitive extracellular Ca2+ entry determines the [Ca2+]i oscillations evoked by bombesin.  相似文献   

13.
The giant axon of the squid has been extensively used as a model for studying Ca regulation in excitable cells. Different techniques (extrusion, injection and dialysis) have been employed to characterize Ca fluxes across the axon membrane. Since both Ca efflux and influx are markedly dependent on [Ca2+]i, considerable effort has been dedicated to determine the resting value of the [Ca2+]i. Results from different laboratories indicate that the [Ca2+]i, in a normal fibre, range from 20–100 nM. Under dialysis conditions (internal control), with an imposed [Ca2+]i of 80 nM, Ca influx is balanced by an outward Ca movement of about 40 f/CS. Ca extrusion occurs through two parallel transport systems: one having a high affinity for [Ca2+]i, dependent on ATP, not affected by Nai, Nao, Cao, Mgo and inhibited by internal vanadate (uncoupled component), the other, more prominent at relatively high [Ca2+]i, does not require ATP, is inhibited by Nai activated by Nao and not inhibited by vanadate. (Nao-dependent component). The existence of these two systems provide the axon with an effective way to maintain in the long term a constant low [Ca2+]i in spite of short term fluctuations due to increased Ca influx during nervous activity.  相似文献   

14.
The present studies were conducted to investigate the mechanisms underlying the 1,25-dihydroxycholecalciferol (1,25(OH)2D3)-induced increase in intracellular Ca2+ ([Ca2+] i ) in individual CaCo-2 cells. In the presence of 2mm Ca2+, 1,25(OH)2D3-induced a rapid transient rise in [Ca2+] i in Fura-2-loaded cells in a concentration-dependent manner, which decreased, but did not return to baseline levels. In Ca2+-free buffer, this hormone still induced a transient rise in [Ca2+] i , although of lower magnitude, but [Ca2+] i then subsequently fell to baseline. In addition, 1,25(OH)2D3 also rapidly induced45Ca uptake by these cells, indicating that the sustained rise in [Ca2+] i was due to Ca2+ entry. In Mn2+-containing solutions, 1,25(OH)2D3 increased the rate of Mn2+ influx which was temporally preceded by an increase in [Ca2+] i . The sustained rise in [Ca2+] i was inhibited in the presence of external La3+ (0.5mm). 1,25(OH)2D3 did not increase Ba2+ entry into the cells. Moreover, neither high external K+ (75mm), nor the addition of Bay K 8644 (1 μm), an L-type, voltage-dependent Ca2+ channel agonist, alone or in combination, were found to increase [Ca2+] i , 1,25(OH)2D3 did, however, increase intracellular Na+ in the absence, but not in the presence of 2mm Ca2+, as assessed by the sodium-sensitive dye, sodium-binding benzofuran isophthalate. These data, therefore, indicate that CaCo-2 cells do not express L-type, voltage-dependent Ca2+ channels. 1,25(OH)2D3 does appear to activate a La3+-inhibitable, cation influx pathway in CaCo-2 cells.  相似文献   

15.
16.
Divalent cation (Mn2+, Ca2+) entry into rat parotid acinar cells is stimulated by the release of Ca2+ from the internal agonist-sensitive Ca2+ pool via a mechanism which is not yet defined. This study examines the effect of temperature on Mn2+ influx into internal Ca2+ pool-depleted acini (depl-acini, as a result of carbachol stimulation of acini in a Ca2+-free medium for 10 min) and passive 45Ca2+ influx in basolateral membrane vesicles (BLMV). Mn2+ entry into deplacini was decreased when the incubation temperature was lowered from 37 to 4°C. At 4°C, Mn2+ entry appeared to be inactivated since it was not increased by raising extracellular [Mn2+] from 50 m up to 1 mm. The Arrhenius plot of depletion-activated Mn2+ entry between 37 and 8°C was nonlinear, with a change in the slope at about 21°C. The activation energy (Ea) increased from 10 kcal/mol (Q10=1.7) at 21–37°C to 25 kcal/mol (Q10=3.0) at 21-8°C. Under the same conditions, Mn2+ entry into basal (unstimulated) cells and ionomycin (5 m) permeabilized depl-acini exhibit a linear decrease, with E a of 7.8 kcal/mol (Q10=1.5) and 6.2 kcal/mol (Q10 < 1.5), respectively. These data suggest that depletion-activated Mn2+ entry into parotid acini is regulated by a mechanism which is strongly temperature dependent and distinct from Mn2+ entry into unstimulated acini.As in intact acini, Ca2+ influx into BLMV was decreased (by 40%) when the temperature of the reaction medium was lowered from 37 to 4°C. Kinetic analysis of the initial rates of Ca2+ influx in BLMV at 37°C demonstrated the presence of two Ca2+ influx components: a saturable component, with K Ca =279 ± 43 m, Vmax = 3.38 ± 0.4 nmol Ca2+/mg protein/min, and an apparently unsaturable component. At 4°C, there was no significant change in the affinity of the saturable component, but Vmax decreased by 61% to 1.3 ± 0.4 nmol Ca2+/mg protein/min. There was no detectable change in the unsaturable component. When BLMV were treated with DCCD (5 mm) or trypsin (1100, enzyme to membrane) for 30 min at 37°C there was a 40% decrease in Ca2+ influx. When BLMV were treated with DCCD or trypsin at 4°C and subsequently assayed for Ca2+ uptake at 37°C there was no significant loss of Ca2+ influx. These data suggest that the temperature sensitive high affinity Ca2+ flux component in BLMV is mediated by a protein which undergoes a modification at low temperatures, resulting in decreased Ca2+ transport.We thank Dr. Bruce Baum, Dr. Yukiharu Hiramatsu, Dr. Ofer Eidelman, and our other colleagues for their support during this work.  相似文献   

17.
Caffeine causes a [Ca2+] i increase in the cortex of Paramecium cells, followed by spillover with considerable attenuation, into central cell regions. From [Ca2+]rest i ∼50 to 80 nm, [Ca2+]act i rises within ≤3 sec to 500 (trichocyst-free strain tl) or 220 nm (nondischarge strain nd9–28°C) in the cortex. Rapid confocal analysis of wildtype cells (7S) showed only a 2-fold cortical increase within 2 sec, accompanied by trichocyst exocytosis and a central Ca2+ spread during the subsequent ≥2 sec. Chelation of Ca2+ o considerably attenuated [Ca2+] i increase. Therefore, caffeine may primarily mobilize cortical Ca2+ pools, superimposed by Ca2+ influx and spillover (particularly in tl cells with empty trichocyst docking sites). In nd cells, caffeine caused trichocyst contents to decondense internally (Ca2+-dependent stretching, normally occurring only after membrane fusion). With 7S cells this usually occurred only to a small extent, but with increasing frequency as [Ca2+] i signals were reduced by [Ca2+] o chelation. In this case, quenched-flow and ultrathin section or freeze-fracture analysis revealed dispersal of membrane components (without fusion) subsequent to internal contents decondensation, opposite to normal membrane fusion when a full [Ca2+] i signal was generated by caffeine stimulation (with Ca2+ i and Ca2+ o available). We conclude the following. (i) Caffeine can mobilize Ca2+ from cortical stores independent of the presence of Ca2+ o . (ii) To yield adequate signals for normal exocytosis, Ca2+ release and Ca2+ influx both have to occur during caffeine stimulation. (iii) Insufficient [Ca2+] i increase entails caffeine-mediated access of Ca2+ to the secretory contents, thus causing their decondensation before membrane fusion can occur. (iv) Trichocyst decondensation in turn gives a signal for an unusual dissociation of docking/fusion components at the cell membrane. These observations imply different threshold [Ca2+] i -values for membrane fusion and contents discharge. Received: 23 May 1997/Revised: 18 August 1997  相似文献   

18.
Gap junctional communication between granulosa cells seems to play a crucial role for follicular growth and atresia. Application of the double whole-cell patch-clamp- and ratiometric fura-2-techniques allowed a simultaneous measurement of gap junctional conductance (G j) and cytoplasmic concentration of free Ca2+ ([Ca2+]i) in a rat granulosa cell line GFSHR-17. The voltage-dependent gating of G j varied for different cell pairs. One population exhibited a bell-shape dependence of G j on transjunctional voltage, which was strikingly similar to that of Cx43/Cx43 homotypic gap junction channels expressed in pairs of oocytes of Xenopus laevis. Within 15–20 min, gap junctional uncoupling occurred spontaneously, which was preceded by a sustained increase of [Ca2+]i and accompanied by shrinkage of cellular volume. These responses to the whole-cell configuration were avoided by absence of extracellular Ca2+, blockage of K+ efflux, or addition of 8-bromoguanosine 3,5-cyclic monophosphate (8-Br-cGMP) to the pipette solution. Even in the absence of extracellular Ca2+ or blockage of K+ efflux, formation of whole-cell configuration generated a Ca2+ spike that could be suppressed by the presence of 8-Br-cGMP. We propose that intracellular cGMP regulates Ca2+ release from intracellular Ca2+ stores, which activates sustained Ca2+ influx, K+ efflux and cellular shrinkage. We discuss whether gap junctional conductance is directly affected by cGMP or by cellular shrinkage and whether gap junctional coupling and/or cell shrinkage is involved in the regulation of apoptotic/necrotic processes in granulosa cells.  相似文献   

19.
To investigate Ca2+ uptake by Ca2+-depleted bovine chromaffin cells we depleted these cells of Ca2+ by incubating them in Ca2+-free buffer, then measured changes in cytoplasmic Ca2+ concentration ([Ca2+ 1)45Ca2+ uptake, and Mn2+ uptake in response to added Ca2+ or MN2+. In depleted cells, the increase in [Ca2+]i after Ca2+ addition, and the Mn2+ and45Ca2+ uptakes were higher than in control cells, and were inhibited by verapamil. The size of the intracellular Ca2+ pools in depleted cells increased after Ca2+ addition. The times for [Ca2+]i rise and Mn2+ entry to reach plateau levels were much shorter than the time for refilling of intracellular Ca2+ stores. In Ca2+-depleted cells and cells which had been loaded with BAPTA,45Ca2+ uptake was much higher than in control cells. These results suggest that extracellular Ca2+ enters the cytoplasm first before refilling the intracellular stores. The rate of Mn2+ influx depended on the level of filling of the Ca2+ stores, suggesting that some signalling takes place between the intracellular stores and Ca2+ entry pathways through the plasma membrane.Abbreviations used BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid - BAPTA/AM acetoxymethyl ester of BAPTA - [Ca2+]i cytosolic Ca2+ concentration - IP3 inositol 1,4,5-trisphosphate - tBHQ 2,5-di-(t-butyl)-1,4-benzohydroquinone This work was included in a thesis submitted by A.-L. Sui to the Department of Biochemistry, National Yang-Ming Medical College, in partial fulfillment of the requirements for the degree of Doctor of Philosophy  相似文献   

20.
The relationship between relative cell volume and time-dependent changes in intracellular Ca2+ concentration ([Ca2+] i ) during exposure to hypotonicity was characterized in SV-40 transformed rabbit corneal epithelial cells (tRCE) (i). Light scattering measurements revealed rapid initial swelling with subsequent 97% recovery of relative cell volume (characteristic time (τ vr ) was 5.9 min); (ii). Fura2-fluorescence single-cell imaging showed that [Ca2+] i initially rose by 216% in 30 sec with subsequent return to near baseline level after another 100 sec. Both relative cell volume recovery and [Ca2+] i transients were inhibited by either: (a) Ca2+-free medium; (b) 5 mm Ni2+ (inhibitor of plasmalemma Ca2+ influx); (c) 10 μm cyclopiazonic acid, CPA (which causes depletion of intracellular Ca2+ content); or (d) 100 μm ryanodine (inhibitor of Ca2+ release from intracellular stores). To determine the temporal relationship between an increased plasmalemma Ca2+ influx and the emptying of intracellular Ca2+ stores during the [Ca2+] i transients, Mn2+ quenching of fura2-fluorescence was quantified. In the presence of CPA, hypotonic challenge increased plasmalemma Mn2+ permeability 6-fold. However, Mn2+ permeability remained unchanged during exposure to either: 1.100 μm ryanodine; 2.10 μm CPA and 100 μm ryanodine. This report for the first time documents the time dependence of the components of the [Ca2+] i transient required for a regulatory volume decrease (RVD). The results show that ryanodine sensitive Ca2+ release from an intracellular store leads to a subsequent increase in plasmalemma Ca2+ influx, and that both are required for cells to undergo RVD. Received: 7 November 1996/Revised: 6 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号