首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Nitroxide stable radicals generally serve for probing molecular motion in membranes and whole cells, transmembrane potential, intracellular oxygen and pH, and are tested as contrast agents for magnetic resonance imaging. Recently nitroxides were found to protect against oxidative stress. Unlike most low molecular weight antioxidants (LMWA) which are depleted while attenuating oxidative damage, nitroxides can be recycled. In many cases the antioxidative activity of nitroxides is associated with switching between their oxidized and reduced forms. In the present work, superoxide radicals were generated either radiolytically or enzymatically using hypoxanthine/xanthine oxidase. Electron paramagnetic resonance (EPR) spectrometry was used to follow the exchange between the nitroxide radical and its reduced form; whereas, pulse radiolysis was employed to study the kinetics of hydroxylamine oxidation. The results indicate that: a) The rate constant of superoxide reaction with cyclic hydroxylamines is pH-independent and is lower by several orders of magnitude than the rate constant of superoxide reaction with nitroxides; b) The oxidation of hydroxylamine by superoxide is primarily responsible for the non-enzymatic recycling of nitroxides; c) The rate of nitroxides restoration decreases as the pH decreases because nitroxides remove superoxide more efficiently than is hydroxylamine oxidation; d) The hydroxylamine reaction with oxidized nitroxide (comproportionation) might participate in the exchange among the three oxidation states of nitroxide. However, simulation of the time-dependence and pH-dependence of the exchange suggests that such a comproportionation is too slow to affect the rate of non-enzymatic nitroxide restoration. We conclude that the protective activity of nitroxides in vitro can be distinguished from that of common LMWA due to hydroxylamine oxidation by superoxide, which allows nitroxide recycling and enables its catalytic activity.  相似文献   

2.
Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.  相似文献   

3.
Piperidine nitroxides such as TEMPOL act as antioxidants in vivo due to their interconversion among nitroxide, hydroxylamine, and oxoammonium derivatives, but the mechanistic details of these reactions are unclear. As mitochondria are a significant site of piperidine nitroxide metabolism and action, we synthesized a mitochondria-targeted nitroxide, MitoTEMPOL, by conjugating TEMPOL to the lipophilic triphenylphosphonium cation. MitoTEMPOL was accumulated several hundred-fold into energized mitochondria where it was reduced to the hydroxylamine by direct reaction with ubiquinol. This reaction occurred by transfer of H() from ubiquinol to the nitroxide, with the ubisemiquinone radical product predominantly dismutating to ubiquinone and ubiquinol, together with a small amount reacting with oxygen to form superoxide. The piperidine nitroxides TEMPOL, TEMPO, and butylTEMPOL reacted similarly with ubiquinol in organic solvents but in mitochondrial membranes the rates varied in the order: MitoTEMPOL > butylTEMPOL > TEMPO > TEMPOL, which correlated with the extent of access of the nitroxide moiety to ubiquinol within the membrane. These findings suggest ways of using mitochondria-targeted compounds to modulate the coenzyme Q pool within mitochondria in vivo, and indicate that the antioxidant effects of mitochondria-targeted piperidine nitroxides can be ascribed to their corresponding hydroxylamines.  相似文献   

4.
Metabolism of different nitroxides with piperidine structure used as spin labels in electron spin resonance (ESR) studies in vitro and in vivo was investigated in human keratinocytes of the cell line HaCaT by GC and GC-MS technique combined with S-band ESR. Besides the well known reduction of the nitroxyl radicals to the ESR silent hydroxylamines as primary products our results indicate the formation of the corresponding secondary amines. These reductions are inhibited by the thiol blocking agent N-ethylmaleimide and by the strong inhibitors of the thioredoxin reductase (TR) 2-chloro-2,4-nitrobenzene and 2,6-dichloroindophenol. The competitive inhibitor TR inhibitor azelaic acid and the cytochrome P-450 inhibitor metyrapone lack any effects. The rates of reduction to the hydroxylamines and secondary amines were dependent on the lipid solubility of the nitroxides. Therefore, it can be assumed that the nitroxides must enter the cells for their bioreduction. The mostly discussed intracellular nitroxide reducing substances ascorbic acid and glutathione were unable to form the secondary amines. In conclusion, our results suggest that the secondary amine represents one of the major metabolites of nitroxides besides the hydroxylamine inside keratinocytes formed via the flavoenzyme thioredoxin reductase most probably. Further metabolic conversions were detected with 4-oxo-2,2,6,6-tetramethylpiperidine-1-oxyl and the benzoate of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl as substrates.  相似文献   

5.
The ability of nitroxide spin labels to act as oxidizers of reduced nitroxides (hydroxylamines) in biological and model systems was demonstrated. All of the nitroxides tested were able to act as oxidizing agents with respect to hydroxylamine derivatives of nitroxides. The rates of these reactions were first order with respect to nitroxide concentration and with respect to hydroxylamine concentration, making the reaction second order overall. The second-order rate constants are reported for a number of these reactions. These reactions proceeded to an equilibrium state and the equilibrium constants for several combinations of reactants are presented. Both the rate constants and the equilibrium constants were found to be dependent on the ring structure of the nitroxide and hydroxylamine, with piperidines being reduced more easily and pyrrolidines and oxazolidines being oxidized more easily. All of the hydroxylamine derivatives were oxidized by air to their respective nitroxides, with the rate of this oxidation greater for pyrrolidines than for piperidines. Furthermore, hydroxylamines that are permeable to lipid bilayers were able to act as shuttles of reducing equivalents to liposome-encapsulated nitroxides that were otherwise inaccessible to reducing agents. This mechanism of shuttling of electrons was able to explain the relatively rapid reduction by cells of a nonpermeable nitroxide in the presence of a permeable nitroxide.  相似文献   

6.
Nitronyl nitroxides, such as derivatives of 2-phenyl-4,4,5,5,-tetramethylimidazoline-1-oxyl 3-oxide (PTIOs), react with *NO to form the corresponding imino nitroxides (PTIs) and *NO2. PTIOs are considered as monitors of *NO, stoichiometric sources of *NO2, biochemical and physiological effectors, specific tools for the elimination of *NO, and potential therapeutic agents. However, a better understanding of the chemical properties of PTIOs, especially following their reaction with *NO, is necessary to resolve many of the reported discrepancies surrounding the effects of PTIOs and to better characterize their potential therapeutic activity. We have generated electrochemically the oxidized and reduced forms of PTIO and carboxy-PTIO (C-PTIO), characterized their absorption spectra, and determined the reduction potentials for the oxoammonium/nitroxide and nitroxide/hydroxylamine couples. The rate constants for the reaction of *NO2 with PTIO and C-PTIO to form the corresponding oxoammonium cations (PTIO+s) and nitrite were determined to be (1.5 - 2) x 10(7) m-1 s-1. We have also shown that the reactions of PTIO+s with *NO form PTIOs and NO2-. The rate constants for these reactions are approximately 30-fold higher than those for the reactions of PTIOs with *NO or O2-*. The present results show that (i) the reaction of PTIOs with *NO forms solely PTIs and NO2- where [NO2-]/[PTI] varies between 1 and 2 depending on the steady-state concentrations of *NO. Consequently, quantitation of *NO is valid only at sufficiently low fluxes of *NO; (ii) the reaction of PTIOs with *NO can be used as a valid source of *NO2 only when the latter is effectively scavenged by an appropriate reductant; and (iii) the formation of peroxynitrite cannot be efficiently inhibited by PTIOs even under relatively low fluxes of *NO and O2-* and millimolar levels of PTIOs.  相似文献   

7.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

8.
Potassium ferricyanide (PF), routinely employed for the oxidation of sterically-hindered hydroxylamines to nitroxides, is considered to be chemically inert towards the latter. In the present study, we report on an unexpected oxidative fragmentation of the imidazolidine nitroxides containing hydrogen atom in the 4-position of the heterocycle (HIMD) by PF resulting in the loss of the EPR signal. The mechanistic EPR, spectrophotometric, electrochemical and HPLC-MS studies support the assumption that the HIMD fragmentation is facilitated by the proton abstraction from the 4-position of the oxoammonium cation formed as a result of the initial one-electron HIMD oxidation. Increase in steric hindrance around the radical fragment by introducing ethyl substituents decreased the rate of ascorbate-induced HIMD reduction by more than 20 times, but did not affect the rate of ferricyanide-induced HIMD oxidation. This preferential sensitivity of HIMDs to oxidative processes has been used to detect peroxyl radicals in the presence of high concentration of the reducing agent, ascorbate. HIMD-based EPR probes capable to discriminate oxidative and reductive processes might find application in biomedicine and related fields for monitoring the oxidative stress and reactive radical species in biological systems.  相似文献   

9.
Superoxide (O???) has been implicated in the pathogenesis of many human diseases, but detection of the O(2)(?-) radicals in biological systems is limited due to inefficiency of O??? spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O??? in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O???, producing stable nitroxides and allowing site-specific cO??? detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O???. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O??? both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O??? stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O???. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O??? radical in extracellular or intracellular compartments, cytoplasm or mitochondria.  相似文献   

10.
《Free radical research》2013,47(9):1115-1122
Abstract

Potassium ferricyanide (PF), routinely employed for the oxidation of sterically-hindered hydroxylamines to nitroxides, is considered to be chemically inert towards the latter. In the present study, we report on an unexpected oxidative fragmentation of the imidazolidine nitroxides containing hydrogen atom in the 4-position of the heterocycle (HIMD) by PF resulting in the loss of the EPR signal. The mechanistic EPR, spectrophotometric, electrochemical and HPLC–MS studies support the assumption that the HIMD fragmentation is facilitated by the proton abstraction from the 4-position of the oxoammonium cation formed as a result of the initial one-electron HIMD oxidation. Increase in steric hindrance around the radical fragment by introducing ethyl substituents decreased the rate of ascorbate-induced HIMD reduction by more than 20 times, but did not affect the rate of ferricyanide-induced HIMD oxidation. This preferential sensitivity of HIMDs to oxidative processes has been used to detect peroxyl radicals in the presence of high concentration of the reducing agent, ascorbate. HIMD-based EPR probes capable to discriminate oxidative and reductive processes might find application in biomedicine and related fields for monitoring the oxidative stress and reactive radical species in biological systems.  相似文献   

11.
The interaction of nitroxide free radicals and their reduced products (hydroxylamines) with synthetic and natural melanins has been studied. Electron spin resonance spectroscopy was used to measure changes in radical concentration in the dark and during irradiation with visible or uv light. Some reduction of nitroxide occurs in the dark, and is reversible: the nitroxide can be completely regenerated by the one-electron oxidant ferricyanide. The kinetics of the process depend strongly on radical charge and pH. For positively charged nitroxides the rate is much faster than for either neutral or anionic radicals. At pH 10 the rate is about 20 times faster than at pH 5. Oxidation of hydroxylamine also can occur so that a redox equilibrium is established. The equilibrium constant has been estimated for the reaction between a nitroxide and melanin from autoxidation of 3,4-dihydroxyphenylalanine. Results are also dependent upon the type of melanin used and chemical modification (oxidation or reduction) of the melanin. Redox equilibria are altered during irradiation with either visible or uv light. Rapid oxidation of hydroxylamine to nitroxide is apparent, together with a slower reduction of nitroxide. Action spectra for these processes are related to those for melanin radical production and oxygen consumption in nitroxide-free melanin systems. Reduction of nitroxide is inhibited by oxygen, suggesting a competition between nitroxide and oxygen for photoinduced reducing equivalents.  相似文献   

12.
Oxidation of hydroxylamines to nitroxide spin labels in living cells   总被引:2,自引:0,他引:2  
In the presence of oxygen, cells can oxidize hydroxylamines, which are the products of the reduction of nitroxides in cells, back to nitroxides. Lipid-soluble hydroxylamines are oxidized much more rapidly than water-soluble ones, and most of this oxidation is inactivated by heat or trichloroacetic acid, indicating that the principal mechanism is enzyme-linked. The rates of oxidation of some lipophilic hydroxylamines are comparable to the rates of reduction of the corresponding nitroxides. Hydroxylamines formed by reduction of aqueous soluble nitroxides are not oxidized by cells, except for slight oxidation of some pyrrolidine derivatives. The latter is due to autoxidation. The kinetics of oxidation of reduced lipid-soluble nitroxides are all first-order with respect to hydroxylamines, regardless of the position of the nitroxide group along the carbon backbone, indicating that the oxidation occurs within the membrane. The oxidation of hydroxylamines in cells in inhibited by cyanide but not by antimycin A or SKF-525A. We also describe an effective method to oxidize hydroxylamines and follow this reaction; the method is based on the use of perdeuterated [15N]Tempone.  相似文献   

13.
Cellular metabolism of proxyl nitroxides and hydroxylamines   总被引:2,自引:0,他引:2  
Previous data from model systems indicated that the proxyl nitroxides should be especially resistant to bioreduction and therefore could be an effective solution to this often problematic characteristic of nitroxides. Therefore, we investigated the rate of reduction by cells and by the usual model system, ascorbate, of four proxyl nitroxides and three reference nitroxides. We found that, while the rate of reduction by ascorbate of the proxyl nitroxides was slower than the rate of a prototypic pyrrolidine nitroxide (PCA), the reverse was true for reduction by cells. We also studied the rate of oxidation of the corresponding hydroxylamines. The rate of oxidation by cells of the proxyl hydroxylamines was relatively fast, especially for the most lipophilic derivative. These results indicate that: (i) proxyl nitroxides may not be unusually resistant to bioreduction by functional biological systems; (ii) accurate knowledge of relative rates of metabolism of nitroxides and hydroxylamines in cells and tissues will require direct studies in these systems because the rates may not closely parallel those observed in model (chemical) systems; and (iii) proxyl nitroxides show potential value as agents to measure oxygen concentrations by the rates of oxidation of their corresponding hydroxylamines.  相似文献   

14.
Nitroxides are stable cyclic radicals of diverse size, charge, and lipophilicity. They are cell-permeative, which effectively protects cells, tissues, isolated organs, and laboratory animals from radical-induced damage. The mechanisms of activity through which nitroxides operate are diverse, including superoxide dismutase-mimetic activity, oxidation of semiquinone radicals, oxidation of reduced metal ions, procatalase-mimetic activity, interruption of radical chain reactions, and indirect modulation of NO levels. Nitroxides possess both a nucleophilic (reducing properties) and an electrophilic (oxidizing properties) nature and, therefore, they may affect different cellular pathways. In the current study, a novel mechanism of action by which nitroxides provide skin protection based on their electrophilic nature is suggested. This study shows that nitroxides may act as electrophiles, directly or indirectly, capable of activating the Keap1–Nrf2–ARE pathway in human keratinocytes (HaCaT) and in human skin (human organ culture model). The high potency of oxoammonium cations versus hydroxylamines in activating the system is demonstrated. The mechanism of action by which nitroxides activate the Keap1–Nrf2–ARE pathway is discussed. Understanding the mechanism of activity may expand the usage of nitroxides as a skin protection strategy against oxidative stress-related conditions.  相似文献   

15.
This article describes a simle method to prepare hydroxylamines from nitroxides by photo-activated flavin mononucleotide. The half-time of reduction varied from 2 to 38.4 s for a series of nitroxides. For most nitroxides short exposures to light (min) were sufficient to produce significant amounts of hydroxylamine; longer periods of exposure increased the yields of other products. Proxyl (2,2,5-trimethyl-5-alkylpyrrolidine-N-oxy) nitroxides were unsually reactive with a much higher yield of products which could not be reoxidized by ferricyanide to the nitroxides. Optimum conditions for reversible reduction depend on the nitroxide and the amounts of other reducible substances such as oxygen and ferricyanide that may be present.  相似文献   

16.
The metabolism of a number of primary and secondary hydroxylamines by hepatic microsomes is described. A cyanide-insensitive, reduced pyridine nucleotide-dependent hydroxylamine reductase activity that is independent of oxygen concentration catalyzes the reduction of hydroxylamine and a number of its mono- and disubstituted derivatives to the parent amines. At the pH optimum of 6.3 for the reductase, NADH is the preferred cofactor. The enzyme does not catalyze the reduction of 4-hydroxyaminoquinoline-1-oxide (HAQO) or of 1- or 2-naphthylhydroxylamine, the only known carcinogenic hydroxylamines tested. A hydroxylamine oxidase activity that requires both oxygen and reduced pyridine nucleotide oxidizes only disubstituted hydroxylamines, and the apparent initial product is the corresponding nitrone. Most nitrones undergo immediate hydrolysis in aqueous solution. At the pH optimum of 7.6 for the oxidase, NADPH is the preferred cofactor. NADPH cannot be replaced by a hydrogen peroxide-generating system, and the reaction is not affected by the addition of large amounts of exogenous catalase. Of the various organs which were assayed, the liver contained the greatest amount of both the reductase and oxidase activities; and the major portion of both activities in liver homogenates was found in the microsomal fraction. The two activities respond differently to agents such as deoxycholate, n-octylamine, and sulfhydryl inhibitors, indicating that the reduction and oxidation of the hydroxylamines are catalyzed by different enzymes or enzyme systems. Both activities are insensitive to carbon monoxide and N,N′-diphenyl-p-phenylenediamine (DPPD), an inhibitor of lipid peroxidation.  相似文献   

17.
Reactive oxygen-derived species and redox-active metals are implicated in mediation of the pathogenesis of gastric mucosal damage and ulceration. Therefore, common strategies of intervention employ metal chelators, antioxidative enzymes, and low-molecular-weight antioxidants (LMWA). The aim of the present study was to elaborate the mechanism(s) responsible for the protection provided by nitroxide radicals in the experimental model of gastric ulceration.

Fasted male rats were treated ig with 1 ml 96% ethanol, with or without ig pretreatment with nitroxide or hydroxylamine. In several experiments, rats were injected ip or iv with iron(III) or iron(II) prior to ethanol administration. Rats were sacrificed 10 min after ethanol administration, the stomach was removed, washed and lesion area measured. Pretreatment with iron(III) complexed to nitrilotriacetate or citrate, aggravated the extent of the gastric injury. Conversely, iron(III) inhibited the formation of lesions. The nitroxides were rapidly reduced to their respective hydroxylamines and demonstrated antiulcerative activity for rats treated with iron. However, injecting the hydroxylamine resulted in a similar tissue distribution of nitroxide/hydroxylamine but did not provide protection.

The results show that: (a) the nitroxide radicals, rather than their respective non-radical reduced form, are the active species responsible for protection; (b) nitroxides protect by dismutating O·-2 and possibly indirectly increasing the NO level; (c) unlike classical LMWA which are reducing agents, nitroxides inhibit gastric damage by acting as mild oxidants, oxidizing reduced metals and pre-empting the Fenton reaction; and (d) the nitroxides act catalytically as recycling antioxidants.  相似文献   

18.
New derivatives of verapamil (1) modified with nitroxides and their precursors were synthesized and screened for reactive oxygen species (ROS)-scavenging activities. The basic structure was modified by changing the nitrile group to an amide or the methyl substituent on tertiary nitrogen with nitroxides and their reduced forms (hydroxylamine and secondary amines). Among the new verapamil derivatives compound 16B [Mohan, I. K.; Kahn, M.; Wisel, S.; Selvendiran, K.; Sridhar, A.; Carnes, C.A.; Bognár, B.; Kálai, T.; Hideg, K.; Kuppusamy, P. Am. J. Physiol. Heart Circ. Physiol. 2009, 296, 140], modified with hydroxylamine salt of 2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridine-1-yloxyl proved to be the best ROS scavenger in vitro and protected HSMC and CHO cells against H2O2 induced damage.  相似文献   

19.
Nitroxide antioxidants can be reduced to hydroxylamines or oxidized to oxoammonium cations. Consequently, nitroxides can modify oxidative damage acting as reducing and/or as oxidizing agents, and in many cases the nitroxides are continuously recycled. They provide protection against oxidative stress via various mechanisms including SOD-mimic activity and detoxification of carbon-, oxygen-, and nitrogen-centered radicals, as well as oxidation of reduced transition metals. In contrast to the common concept, according to which the nitroxides' protective effect takes place via inhibition of the Fenton reaction, there are observations suggesting the opposite. In the present investigation, DNA breakage catalyzed by copper served as an experimental model for studying the anti- and pro-oxidative activity of nitroxides. Nitroxides provided protection in the presence of GSH, which is known to facilitate metal-catalyzed DNA damage. In the absence of a reductant, nitroxides enhanced DNA breakage under aerobic conditions with or without added H(2)O(2) and facilitated H(2)O(2) depletion. The rates of nitroxide-catalyzed DNA breakage and H(2)O(2) depletion increased as the concentrations of copper, H(2)O(2), and nitroxide increased. Although the catalytic activity of nitroxides is low, it is sufficient to induce DNA breakage. The efficacy of DNA breakage by the tested piperidine nitroxides correlated with the nitroxide-induced depletion of H(2)O(2) with the exception of the pyrrolidine nitroxide 3-carbamoylproxyl. The results suggest that the nitroxide and the copper are continuously recycled while catalyzing DNA breakage and depletion of H(2)O(2), which serves both as a source of reducing equivalents and as the electron sink.  相似文献   

20.
Reactive oxygen-derived species and redox-active metals are implicated in mediation of the pathogenesis of gastric mucosal damage and ulceration. Therefore, common strategies of intervention employ metal chelators, antioxidative enzymes, and low-molecular-weight antioxidants (LMWA). The aim of the present study was to elaborate the mechanism(s) responsible for the protection provided by nitroxide radicals in the experimental model of gastric ulceration. Fasted male rats were treated ig with 1 ml 96% ethanol, with or without ig pretreatment with nitroxide or hydroxylamine. In several experiments, rats were injected ip or iv with iron(III) or iron(II) prior to ethanol administration. Rats were sacrificed 10 min after ethanol administration, the stomach was removed, washed and lesion area measured. Pretreatment with iron(III) complexed to nitrilotriacetate or citrate, aggravated the extent of the gastric injury. Conversely, iron(II) inhibited the formation of lesions. The nitroxides were rapidly reduced to their respective hydroxylamines and demonstrated antiulcerative activity for rats treated with iron. However, injecting the hydroxylamine resulted in a similar tissue distribution of nitroxide/hydroxylamnine but did not provide protection. The results show that: (a) the nitroxide radicals, rather than their respective non-radical reduced form, are the active species responsible for protection; (b) nitroxides protect by dismutating O2*- and possibly indirectly increasing the NO level; (c) unlike classical LMWA which are reducing agents, nitroxides inhibit gastric damage by acting as mild oxidants, oxidizing reduced metals and pre-empting the Fenton reaction; and (d) the nitroxides act catalytically as recycling antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号