首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
Freeze tolerance in the frog Rana sylvatica is supported by nonanticipatory mobilization of cryoprotectant (glucose) and redistribution of organ water. Other freeze-tolerant frogs may manifest these responses but differences exist. For example, the gray treefrog (Hyla versicolor) accumulates mostly glycerol as opposed to glucose. The current study reports additional novel features about cryoprotection in H. versicolor. Frogs were acclimated to low temperature for 12 weeks and frozen for 3 days at -2.4 degrees C. Some frogs were then thawed at 3 degrees C for 4 hr. Calorimetry revealed that frozen frogs had 53.9% +/- 11.1% of their body water in ice, and all frogs recovered following this procedure. Plasma glucose was low prior to the onset of freezing (1.1 +/- 0.9 micromol/ml) and it was 20x higher in postfreeze frogs. Constituting nearly 30% of plasma solute, glycerol was 117.2 +/- 13.6 micromol/ml prior to freezing and it remained equally high in postfreeze frogs. Liver water content was moderately lower in frozen frogs when compared to controls (62.9% +/- 3.7% vs. 68.6% +/- 1.7%), whereas postfreeze frogs excessively hydrated their livers (75.7% +/- 2.1%). Less-pronounced changes were seen in muscle water content. H. versicolor can mobilize its major cryoprotectant, glycerol, in response to extended cold acclimation, which is unique in comparison to other freeze-tolerant frogs, and it experiences only moderate organ dehydration during freezing. This species conforms with other freeze-tolerant frogs, however, by mobilizing glucose as a direct response to tissue freezing.  相似文献   

2.
Lyngbya major (a wall alga), survived throughout year, maximally to >80 % at atmospheric temperature (AT) of 17-36 degrees C and relative humidity (RH) 60-100 % in rainy and spring seasons, but the survival was 43-64 % in winter when AT decreased to 5 degrees C and RH was 65-98 %, and 15-23 % in summer when AT reached 48 degrees C and RH was 23-60 %. All soil algae (Lyngbya birgei, Aphanothece pallida, Gloeocapsa atrata, Oscillatoria subbrevis, O. animalis) survived >90 % in rainy season when soil moisture content (SMC) was 89-100 %. Lowering of SMC to a minimum of 55 % in spring and 39 % in winter led L. birgei, O. subbrevis and O. animalis to survive from 75, 66, and 65 %, respectively, in spring and 12, 14, and 20 % in winter, and A. pallida and G. atrata not at all in both seasons. All soil algae did not survive in summer when SMC was 12-30 %. Myxosarcina burmensis survived only in rainy and spring seasons when pond water temperature (PWT) was 19-25 degrees C and 18-26 degrees C, respectively, and not in winter and summer when PWT was 2-14 degrees C and 25-36 degrees C, respectively. L. major and A. pallida survived almost equally well under both submerged and air-exposed conditions for 15 d but less if submerged for more time than air-exposed on moist soil surface, while L. birgei, G. atrata, O. subbrevis, and O. animalis survived submergence in liquid medium better and longer than air-exposure on moist soil surface. Pond alga M. burmensis survived submergence better than air-exposure, true to its aquatic habitat. All algae survived less and died without forming any resistant cells when exposed to physical and physiological water stress (imposed by growing them on highly agarized media or in salinized liquid media), light stress (at 0, 2 and 10 mumol m(-2) s(-1) light intensity) or following UV shock (0.96-3.84 kJ/m(2)). A. pallida and G. atrata cells did not divide on 8 % agarized solid media, in >/=0.3 mol/L salinized liquid media, and in darkness. The presence of sheath over L. major and L. birgei filament cells and mucilage cover over A. pallida and G. atrata cells protect them against physical desiccation to some extent but not against UV shock.  相似文献   

3.
Insects that tolerate severe cold during winter may either supercool or tolerate ice forming within the tissues of the body. To compare the relative advantages of freezing and supercooling, we measured rates of CO(2) production and water loss in frozen and supercooled goldenrod gall fly larvae (Eurosta solidaginis). As an important first step, we measured the time required for ice content and metabolic rate to stabilize upon freezing. Ice content stabilized after only three hours of freezing at -5 degrees C, whereas CO(2) production required 12 hours to stabilize. Subsequent experiments found that freezing greatly reduced both water loss and metabolic rate. Comparisons of supercooled and frozen larvae at -5 degrees C indicated that CO(2) production fell 47% with freezing and water loss decreased 35%. As temperature decreased to -10 and -15 degrees C, CO(2) production fell exponentially and was no longer detectable at -20 degrees C with our measurement system. Our results demonstrate that freezing significantly reduces energy consumption during the winter and may therefore improve winter survival and spring fecundity. The advantages of freezing over supercooling would drive selection toward insect freeze tolerance and also toward higher supercooling points to increase the duration of freezing each winter.  相似文献   

4.
We investigated the overwintering physiology and behavior of Phyllocnistis populiella Chambers, the aspen leaf miner, which has caused severe and widespread damage to aspen in Alaska over the past 10 yr. Active P. populiella moths caught in spring and summer supercooled to an average temperature of -16°C, whereas dormant moths excavated from hibernacula in the leaf litter during fall and winter supercooled to an average of -32°C. None of the moths survived freezing in the laboratory. Counts of overwintering moths in leaf litter across microhabitats in interior Alaska demonstrated that moths occurred at significantly higher density beneath white spruce trees than beneath the aspen host, several other hardwood species, or in open areas among trees. During winter, the temperature 1-2 cm below the surface of the leaf litter beneath white spruce trees was on average 7-9°C colder than beneath aspen trees, and we estimate that during at least one period of the winter the temperature under some white spruce trees may have been cold enough to cause mortality. However, the leaf litter under white spruce trees was significantly drier than the litter from other microhabitats, which may assist P. populiella moths to avoid inoculative freezing because of physical contact with ice. We conclude that in interior Alaska, P. populiella overwinter in a supercooled state within leaf litter mainly under nonhost trees, and may prefer relatively dry microhabitats over moister ones at the expense of lower environmental temperature.  相似文献   

5.
Cold maintenance may be an option for compromised space-borne astronauts. Contemporary aneurysm surgery can involve cooling below 20 degrees C for nearly one hour. Dogs and baboons have survived blood-substituted hypothermia for 1-3 hours. Hamsters have recovered from partial-freezing below -1 degree C, and supercooling at -5 degrees C. Laboratory frogs have survived partial-freezing from -9 degrees C, while in nature, frogs may overwinter in these states. While some invertebrates can tolerate freezing to cryogenic temperatures, no vertebrate has survived complete freezing. The following studies (hypothermia and sub-zero experiments) were conducted to explore low temperature preservation of rodents, dogs and baboons.  相似文献   

6.
Previous studies into the mechanisms governing the freezing of cells in the absence of extracellular ice have been extended to develop a method for the preservation of viable cells in the undercooled state. Deep undercooling of cells is achieved by suspending fine droplets of the cells in oil to make an emulsion, thus minimizing initiation of extracellular ice nucleation. Attempts to preserve yeast cells, cultured sainfoin cells, and dissected shoot-tips (pea and potato) in this way are described. The main findings are that yeast cells can be preserved undercooled at -20 degrees C for at least 16 weeks with no detectable loss of viability, showing that -20 degrees C is a low enough temperature for inhibition of significant biochemical deterioration and that the emulsions are stable over long periods. In preliminary experiments, sainfoin cells survived 24 hr at -10 degrees C, and shoot-tips survived 48 hr at -10 degrees C. Sainfoin cells, conditioned by growth in medium supplemented with sorbitol, showed enhanced survival after exposure to low temperatures and a lower intracellular freezing point than control cells. Possible reasons for this are discussed.  相似文献   

7.
In the alpine region at Finse, Norway, Phauloppia spp. (Acari, Oribatida) inhabit lichens on top of boulders. Adult mites are about 0.5 mm in length and have a mean weight of ca. 15 μg. Temperatures in the lichens may drop below -35 degrees C in winter and increase to 55 degrees C in the summer. Large seasonal variations were recorded in supercooling points and body fluid osmolality. Mean January values of SCPs and osmolality were -35.3 degrees C and 3756 mOsm, while July values were -9.4 degrees C and 940 mOsm, respectively. Thermal hysteresis proteins were present in both summer and winter acclimated mites. In mid-winter, some of the mites survived more than 49 days in a water vapor saturated atmosphere at -19 degrees C, and more than 42 days enclosed in ice at the same temperature.The mites showed high tolerance to desiccation. Specimens collected in October survived up to 23 days at 22 degrees C and 5% RH. The tolerance to desiccation was lower in specimens collected during the winter. Some mites survived the loss of up to 90% of their total water content and were reactivated when given access to water. Length measurements of individual Phauloppia sp. showed that both male and female mites are clearly divided in two size groups, suggesting that they belong to two closely related species or different populations.  相似文献   

8.
9.
Pemphigus bursarius (L.) is a host alternating root-feeding aphid with a proportion of the population overwintering as asexual hiemalis in the soil. These hiemalis must be sufficiently cold tolerant to survive at the temperatures they would experience in winter, and also be able to overcome a period of prolonged starvation brought about by the absence of secondary host plants. Cold tolerance experiments showed field collected hiemalis to be considerably more cold hardy than laboratory summer apterae, with an LTemp(50) of -13.1 degrees C compared with 2.3 degrees C. In a constant exposure at 0 degrees C some field collected hiemalis survived for 18 days, while no summer apterae survived more than 8 h. Hiemalis, collected from the field in winter and induced in the laboratory, had significantly higher levels of triglycerides, 12.8% fresh weight (39.9% dry wt.) and 11.4% fresh weight (43.7% dry wt.), respectively, compared with summer apterae with a value of 7.1% fresh weight (32.5% dry wt.). These two adaptations of increased cold tolerance and accumulation of energy reserves confirm that the hiemalis morph is adapted for overwintering and hence physiologically distinct from summer morphs, and in turn, contribute to the success of the asexual life cycle strategy in this species.  相似文献   

10.
Tommv I. Olsson 《Ecography》1981,4(3):161-166
In winter the water freezes into the substrate within considerable areas of unregulated northern rivers due to low temperature combined with a lowering of the water level. Living individuals of Nematoda, Gastropoda, Sphaeriidae, Oligochaeta, Hirudinea, Isopoda, Trichoptera and Chironomidae were found in samples of ice and frozen sediment from the bottom frozen hydrolittoral zone of the north Swedish river Vindelälven. All abundant species in the frozen substratum, except Asellus aquaticus , seemed to be well adapted to withstand overwintering in this special habitat free from predation. Generally, between 80 and l00% of enclosed animals survived thawing. Cysts or other kinds of resting stage constructions, similar to those found during drought, were common in several enclosed species. Specimens of Gyraulus acronicus, Pisidium ssp., Molanna albicans and Chironomidae survived exposure to −4°C for five month in a freezing experiment. Extracellular freezing of the invertebrates overwintering in the ice is probable, as the ambient temperature was below the true freezing point of most animals. The composition of the substratum may effect the survival of animals enclosed in ice.  相似文献   

11.
A small number of vertebrate species, including some frogs, are freezing tolerant and survive ice forming in their bodies under ecologically relevant conditions. Habitat use information is critical for interpreting laboratory studies of freezing tolerance, but there is often little known about the winter habitat and behaviours of the species under study. This work describes microhabitats used by the freezing‐tolerant frog Litoria ewingii Duméril and Bibron 1841 and their temperature characteristics. In winter, L. ewingii used microhabitats with wood, located further away from water than in summer. Microhabitat temperature records showed that frog microhabitats regularly fell below the temperature at which frog body fluids freeze (?1°C), and cooled substantially more slowly than did the air temperature. Temperatures were highly variable between microhabitats, seasons and years, with a minimum of ?2.4°C and a maximum cooling rate of 0.77°C h?1. Frozen frogs were observed to recover in the field, demonstrating freezing tolerance. Both the characteristics of microhabitats and their selection are important in ensuring freezing survival.  相似文献   

12.
We examined seasonal changes in freeze tolerance and the susceptibility of larvae of the gall fly, Eurosta solidaginis to inoculative freezing within the goldenrod gall (Solidago sp.). In late September, when the water content of the galls was high (approximately 55%), more than half of the larvae froze within their galls when held at -2.5 degrees C for 24 h, and nearly all larvae froze at -4 or -6 degrees C. At this time, most larvae survived freezing at > or = -4 degrees C. By October plants had senesced, and their water content had decreased to 33%. Correspondingly, the number of larvae that froze by inoculation at -4 and -6 degrees C also decreased, however the proportion of larvae that survived freezing increased markedly. Gall water content reached its lowest value (10%) in November, when few larvae froze during exposure to subzero temperatures > or = -6 degrees C. In winter, rain and melting snow transiently increased gall water content to values as high as 64% causing many larvae to freeze when exposed to temperatures as high as -4 degrees C. However, in the absence of precipitation, gall tissues dried and, as before, larvae were not likely to freeze by inoculation. Consequently, in nature larvae freeze earlier in the autumn and/or at higher temperatures than would be predicted based on the temperature of crystallization (T(c)) of isolated larvae. However, even in early September when environmental temperatures are relatively high, larvae exhibited limited levels of freezing tolerance sufficient to protect them if they did freeze.  相似文献   

13.
The alpine cockroach Celatoblatta quinquemaculata is common at altitudes of around 1500 m on the Rock and Pillar range of Central Otago, New Zealand where it experiences freezing conditions in the winter. The cockroach is freeze tolerant, but only to c. -9 degrees C. The cause of death at temperatures below this is unknown but likely to be due to osmotic damage to cells (shrinkage). This study compared the effect of different ice nucleation temperatures (-2 and -4 degrees C) on the viability of three types of cockroach tissue (midgut, Malpighian tubules and fat body cells) and cooling to three different temperatures (-5, -8, -12 degrees C). Two types of observations were made (i) cryomicroscope observations of ice formation and cell shrinkage (ii) cell integrity (viability) using vital stains. Cell viability decreased with lower treatment temperatures but ice nucleation temperature had no significant effect. Cryomicroscope observations showed that ice spread through tissue faster at -4 than -2 degrees C and that intracellular freezing only occurred when nucleated at -4 degrees C. From temperature records during cooling, it was observed that when freezing occurred, latent heat immediately increased the insect's body temperature close to its melting point (c. -0.3 degrees C). This "rebound" temperature was independent of nucleation temperature. Some tissues were more vulnerable to damage than others. As the gut is thought to be the site of freezing, it is significant that this tissue was the most robust. The ecological importance of the effect of nucleation temperature on survival of whole animals under field conditions is discussed.  相似文献   

14.
We tested the hypothesis that mild winter temperatures are detrimental to the survival and reproductive potential of insects. We measured survival, body size, and potential fecundity of a freeze tolerant insect, the goldenrod gall fly (Eurosta solidaginis), after overwintering in the laboratory for ~3 mo. frozen at -22 degrees C, unfrozen at 0 degrees C, or unfrozen at 12 degrees C. Larvae held at 12 degrees C suffered high mortality (70%) and relatively low potential fecundity as adults (mean+/-SEM=199+/-11 eggs/female), while those held at 0 degrees C had both low mortality (11%) and high potential fecundity (256+/-15 eggs/female). Freezing (-22 degrees C) increased mortality (30% overall) but did not significantly reduce fecundity (245+/-13 eggs/female). Egg length and width were constant regardless of treatment group or female body size. Analysis of covariance indicated that reduced fecundity in the 12 degrees C group was related to reduced larval body weight following treatment. Patterns of larval weight loss in the experimental treatments were generally correlated with previous reports of latitudinal trends in weight loss through the winter. We conclude that mild winter temperatures may be detrimental to some overwintering insects, particularly species that do not feed following winter diapause. Low temperature and even freezing are beneficial, allowing conservation of energy reserves to maintain high survival and potential fecundity.  相似文献   

15.
Y Liu  J Li  J Chen  T Cao 《应用生态学报》2000,11(5):687-692
The net photosynthesis of Thuidium cymbifolium and Chrysocladium retrorsum, two species of wintering host mosses for gullaphids, and its response to light, temperature and water content were measured with CI-301PS(CID Inc. USA) both in winter and spring. The photosynthetic capacity of Thuidium cymbifolium and Chrysocladium retrorsum was about 141 and 117 mumolCO2kg-1dw.s-1, respectively, and trended to increase from winter to spring. The light saturation point of these two mosses at 800-900 mumol.m-2.s-1 was much higher than that of many other mosses, and the compensation point ranged from 40 to 50 mumol.m-2.s-1. The temperature response curves of these two mosses were similar, with optium temperature ranging from 25 to 36 degrees C in spring, and from 20 to 30 degrees C in winter. When the temperature was below the freezing point(-15 to 0 degree C), they both maintained a distinct net photosynthesis, with the optimum water content ranging from 200 to 300(400)% dw. The photosynthesis started to be restrained evidently, when the water content declined to about 150% dw. The gas exchange ceased or became negative, when the water content was as low as 40-50% dw. It can be inferred that these two species might be both poikilothermal and poikilohydric organisms, but the resistibility of T. cymbifolium to intense light and high temperature was higher than that of C. retrorsum.  相似文献   

16.
Temperature and adrenoceptors in the frog heart   总被引:1,自引:0,他引:1  
1. Cardiac adrenergic receptors in a frog, Rana tigrina, were examined in winter and summer months using isolated atria preparation maintained at 24 degrees, 14 degrees and 6 degrees C. Treatments included an examination of the atrial responses to selective alpha and beta adrenergic agonists (phenylephrine and isoproterenol respectively) and antagonists (phentolamine and propranolol). 2. Basal atrial beating rates differed between summer and winter months and increased with temperature. 3. Phenylephrine produced dose-dependent increases in the atrial beating rate and tension in the winter frogs only at 6 degrees C. These increases were blunted by phentolamine. 4. Isoproterenol produced positive chronotropic effects of 14 degrees and 24 degrees C but not at 6 degrees C in both summer and winter frogs; these effects were abolished by propranolol. Further, at 6 degrees C, the contractile response of the atrial tissue to isoproterenol was very sensitive. 5. Data suggests that the alpha adrenoceptor might be physiologically important to the frog in the low temperature environment of the cold season, during which period the cardiac beta adrenergic activity would be minimal or even absent.  相似文献   

17.
The eelpout Zoarces viviparus is a common inhabitant in the shallow waters along the Danish coastline. Specimens were caught in the brackish (12-16 per thousand) Roskilde fjord where water temperatures range from >20 degrees C during summer to subzero in winter. The serum melting points found in Z. viviparus varied between -0.76 (September) to -0.94 degrees C (January). Eighty to 97% of the serum melting points could be attributed to sodium, chloride and potassium. Hysteresis freezing points showed seasonal variation varying from -0.83 (September) to -2.08 degrees C (February). Serum antifreeze activity showed a seasonal variation with high levels (>1.2 degrees C) in winter and low levels (<0.1 degrees C) during summer and autumn. Antifreeze proteins are responsible for this antifreeze activity. Antifreeze activity was also found in Z. viviparus during their embryological development in the female ovary. Embryo thermal hysteresis reached the maximum level (approx. 0.6 degrees C) during December and maintained this level until parturition in January. Antifreeze activity seems unaffected by diminishing ice crystal fractions at ice fractions below 0.1 whereas ice fractions above 0.1 caused a decline in antifreeze activity.  相似文献   

18.
Acid snow might be an environmental stress factor for wintering plants since acid precipitates are locally concentrated in snow and the period in which ice crystals are in contact with shoots might be longer than that of acid precipitates in rain. In this study, 'equilibrium' and 'prolonged' freezing tests with sulfuric acid, which simulate situations of temperature depression and chronic freezing at a subzero temperature with acid precipitate as acid snow stress, respectively, were carried out using leaf segments of cold-acclimated winter wheat. When leaf segments were frozen in the presence of sulfuric acid solution (pH 4.0, 3.0 or 2.0) by equilibrium freezing with ice seeding, the survival rate of leaf samples treated with sulfuric acid solution of pH 2.0 decreased markedly. Leaf samples after supercooling to -4 and -8 degrees C in the presence of sulfuric acid solution (pH 2.0) without ice seeding were less damaged. When leaf samples were subjected to prolonged freezing at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0), the survival rates of leaf samples exposed to sulfuric acid decreased more than those of leaf samples treated with water. On the other hand, leaf samples were less damaged by prolonged supercooling at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0). The results suggest that an acid condition (pH 2.0) in the process of extracellular freezing and/or thawing promotes freezing injury of wheat leaves.  相似文献   

19.
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thawing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.  相似文献   

20.
The mechanism of cell injury during slow freezing was examined using PC-3 human prostate adenocarcinoma cells suspended in NaCl solutions. The objective was to evaluate contribution of extracellular ice and the 'solution effects' to freezing injury separately. The solution effects that designate the influence of elevated concentration were evaluated from a pseudo-freezing experiment, where cells were subjected to the milieu that simulated a freeze-thaw process by changing the NaCl concentration and the temperature at the same time. The effect of extracellular ice formation on cell injury was then estimated from the difference in cell survival between the pseudo-freezing experiment and a corresponding freezing experiment. When cells were frozen to a relatively higher freezing temperature at -10 degrees C, about 30% of cells were damaged mostly due to extracellular ice formation, because the concentration increase without ice formation to 2.5-M NaCl, i.e., the equilibrium concentration at -10 degrees C, had no effect on cell survival. In contrast, in the case of the lower freezing temperature at -20 degrees C, about 90% of cells were injured by both effects, particularly 60-80% by the solution effects among them. The present results suggested that the solution effects become more crucial to cell damage during slow freezing at lower temperatures, while the effect of ice is limited to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号