首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文提出用单形寻优与微分方程数值解法的联合方法,进行生态学中一些微分动力系统的参数的优化估计。用这种方法来估计崔-Lawson和Logistic方程的各参数效果极好。  相似文献   

2.
本文提出Logistic方程参数优化估计的人工神经网络方法,并选取一组标样进行具体尝试。结果表明,用这种方法估计Logistic方程参数效果极好。  相似文献   

3.
生态学数学模型参数优化估计的遗传算法   总被引:1,自引:0,他引:1  
本文提出用遗传算法,对生态学中的一些数学模型参数进行优化估计,并以崔-lawson方程为例.尝试了遗传算法的效果.结果表明,该方法性能良好,可望成为生态学中各类非线性模型辨识的有效参数.  相似文献   

4.
Logistic方程参数估计中的错误与修正   总被引:2,自引:0,他引:2  
Logistic方程在种群生态学研究中被广泛应用,其积分式为N=k/(1+e~(a-rt)),式中e~a=(k-N_0)/N_0。以往对该模型参数的各种估计方法,均将r,K和a作为三个相互独立的参数对待,而与e~a=(K-N_0)/N_0的假设相矛盾。由此估计出的参数K和a使实验初值N_0(t=0时的N值)发生偏离。笔者认为N_0是一个不带随机误差的常数,a值决定于K和N_0,而不是一个独立的参数,因而以往的参数估计方法是错误的,必须予以修正。本文提出了具体的修正方法,即用Marquardt方法或单纯形加速法求参数r和K,然后根据实验初值N_0求a,从而使Logistic微积分方程的共同参数r和K的估计一致。  相似文献   

5.
本文提出崔──Lawson方程参数估计的人工神经网络方法,并选取一组标样进行了具体尝试。结果表明,用这种方法估计崔──Lawson方程参数效果极好。  相似文献   

6.
Logistic、Mitscherlich、Gompertz方程是一类三参数饱和增长曲线模型,广泛地应用于许多学科领域.本文基于logistic方程饱和值K估计的三点法、四点法,推导出Mitscherlich、Gompertz方程K值的三点法、四点法估计公式,并以南亚热带季风常绿阔叶林中两种优势乔木厚壳桂、黄果厚壳桂种群为例,先用三点法或四点法估计出K值,再通过线性回归与非线性回归相结合的方法,可获得三个增长模型中三个参数的最优无偏估计.实例研究表明,两个优势种群增长数据均符合三个增长模型,但更符合增长曲线呈S形的logistic、Gompertz方程,且以logistic方程最适合于观察;黄果厚壳桂种群增长快于厚壳桂种群.  相似文献   

7.
密度制约竞争二种群Volterra方程解的有界性及参数估计   总被引:2,自引:0,他引:2  
本文给出密度制约且相互竞争二种群Volterra方程解的一种有界性及存在唯一性的证明。基于此,参考单种群Logistic方程反问题的方法”,给出了该Volterra方程参数的一种估计。  相似文献   

8.
本文提出发酵动力学模型参数辩识的人工神经网络方法,并对几种典型的模型进行了具体尝试,结果表明,用这种方法估计参数效果极好。  相似文献   

9.
一类病菌模型初边值问题的动力性态   总被引:2,自引:0,他引:2  
吕淑娟 《生物数学》1997,1(2):17-20
本文研究一个描述病菌传播的反应的散方程组,考虑它的初边值问题。用积分估计方法证明了整体吸引子的存在性。  相似文献   

10.
刘文忠  王钦德 《遗传学报》2004,31(7):695-700
探讨R法遗传参数估值置信区间的计算方法和重复估计次数(NORE)对参数估值的影响,利用4种模型通过模拟产生数据集。基础群中公、母畜数分别为200和2000头,BLUP育种值选择5个世代。利用多变量乘法迭代(MMI)法,结合先决条件的共扼梯度(PCG)法求解混合模型方程组估计方差组分。用经典方法、Box-Cox变换后的经典方法和自助法计算参数估值的均数、标准误和置信区间。结果表明,重复估计次数较多时,3种方法均可;重复估计次数较少时,建议使用自助法。简单模型下需要较少的重复估计,但对于复杂模型则需要较多的重复估计。随模型中随机效应数的增加,直接遗传力高估。随着PCG和MMI轮次的增大,参数估值表现出低估的趋势。  相似文献   

11.
MOTIVATION: Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. RESULTS: We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.  相似文献   

12.
Reconstruction of a biological system from its experimental time series data is a challenging task in systems biology. The S-system which consists of a group of nonlinear ordinary differential equations (ODEs) is an effective model to characterize molecular biological systems and analyze the system dynamics. However, inference of S-systems without the knowledge of system structure is not a trivial task due to its nonlinearity and complexity. In this paper, a pruning separable parameter estimation algorithm (PSPEA) is proposed for inferring S-systems. This novel algorithm combines the separable parameter estimation method (SPEM) and a pruning strategy, which includes adding an l? regularization term to the objective function and pruning the solution with a threshold value. Then, this algorithm is combined with the continuous genetic algorithm (CGA) to form a hybrid algorithm that owns the properties of these two combined algorithms. The performance of the pruning strategy in the proposed algorithm is evaluated from two aspects: the parameter estimation error and structure identification accuracy. The results show that the proposed algorithm with the pruning strategy has much lower estimation error and much higher identification accuracy than the existing method.  相似文献   

13.

Background

The investigation of network dynamics is a major issue in systems and synthetic biology. One of the essential steps in a dynamics investigation is the parameter estimation in the model that expresses biological phenomena. Indeed, various techniques for parameter optimization have been devised and implemented in both free and commercial software. While the computational time for parameter estimation has been greatly reduced, due to improvements in calculation algorithms and the advent of high performance computers, the accuracy of parameter estimation has not been addressed.

Results

We propose a new approach for parameter optimization by using differential elimination, to estimate kinetic parameter values with a high degree of accuracy. First, we utilize differential elimination, which is an algebraic approach for rewriting a system of differential equations into another equivalent system, to derive the constraints between kinetic parameters from differential equations. Second, we estimate the kinetic parameters introducing these constraints into an objective function, in addition to the error function of the square difference between the measured and estimated data, in the standard parameter optimization method. To evaluate the ability of our method, we performed a simulation study by using the objective function with and without the newly developed constraints: the parameters in two models of linear and non-linear equations, under the assumption that only one molecule in each model can be measured, were estimated by using a genetic algorithm (GA) and particle swarm optimization (PSO). As a result, the introduction of new constraints was dramatically effective: the GA and PSO with new constraints could successfully estimate the kinetic parameters in the simulated models, with a high degree of accuracy, while the conventional GA and PSO methods without them frequently failed.

Conclusions

The introduction of new constraints in an objective function by using differential elimination resulted in the drastic improvement of the estimation accuracy in parameter optimization methods. The performance of our approach was illustrated by simulations of the parameter optimization for two models of linear and non-linear equations, which included unmeasured molecules, by two types of optimization techniques. As a result, our method is a promising development in parameter optimization.
  相似文献   

14.
ABSTRACT: BACKGROUND: Ordinary differential equations are widely-used in the field of systems biology andchemical engineering to model chemical reaction networks. Numerous techniques havebeen developed to estimate parameters like rate constants, initial conditions or steady stateconcentrations from time-resolved data. In contrast to this countable set of parameters, theestimation of entire courses of network components corresponds to an innumerable set ofparameters. RESULTS: The approach presented in this work is able to deal with course estimation for extrinsicsystem inputs or intrinsic reactants, both not being constrained by the reaction networkitself. Our method is based on variational calculus which is carried out analytically toderive an augmented system of differential equations including the unconstrainedcomponents as ordinary state variables. Finally, conventional parameter estimation isapplied to the augmented system resulting in a combined estimation of courses andparameters. CONCLUSIONS: The combined estimation approach takes the uncertainty in input courses correctly intoaccount. This leads to precise parameter estimates and correct confidence intervals. Inparticular this implies that small motifs of large reaction networks can be analysedindependently of the rest. By the use of variational methods, elements from control theoryand statistics are combined allowing for future transfer of methods between the two fields.  相似文献   

15.
MOTIVATION: Time-series measurements of metabolite concentration have become increasingly more common, providing data for building kinetic models of metabolic networks using ordinary differential equations (ODEs). In practice, however, such time-course data are usually incomplete and noisy, and the estimation of kinetic parameters from these data is challenging. Practical limitations due to data and computational aspects, such as solving stiff ODEs and finding global optimal solution to the estimation problem, give motivations to develop a new estimation procedure that can circumvent some of these constraints. RESULTS: In this work, an incremental and iterative parameter estimation method is proposed that combines and iterates between two estimation phases. One phase involves a decoupling method, in which a subset of model parameters that are associated with measured metabolites, are estimated using the minimization of slope errors. Another phase follows, in which the ODE model is solved one equation at a time and the remaining model parameters are obtained by minimizing concentration errors. The performance of this two-phase method was tested on a generic branched metabolic pathway and the glycolytic pathway of Lactococcus lactis. The results showed that the method is efficient in getting accurate parameter estimates, even when some information is missing.  相似文献   

16.
Mathematical models based on ordinary differential equations (ODE) have had significant impact on understanding HIV disease dynamics and optimizing patient treatment. A model that characterizes the essential disease dynamics can be used for prediction only if the model parameters are identifiable from clinical data. Most previous parameter identification studies for HIV have used sparsely sampled data from the decay phase following the introduction of therapy. In this paper, model parameters are identified from frequently sampled viral-load data taken from ten patients enrolled in the previously published AutoVac HAART interruption study, providing between 69 and 114 viral load measurements from 3-5 phases of viral decay and rebound for each patient. This dataset is considerably larger than those used in previously published parameter estimation studies. Furthermore, the measurements come from two separate experimental conditions, which allows for the direct estimation of drug efficacy and reservoir contribution rates, two parameters that cannot be identified from decay-phase data alone. A Markov-Chain Monte-Carlo method is used to estimate the model parameter values, with initial estimates obtained using nonlinear least-squares methods. The posterior distributions of the parameter estimates are reported and compared for all patients.  相似文献   

17.
We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator–prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator–prey system relevant to biological control problems.  相似文献   

18.
This study is aimed at setting a method of experimental parameter estimation for large-deforming nonlinear viscoelastic continuous fibre-reinforced composite material model. Specifically, arterial tissue was investigated during experimental research and parameter estimation studies, due to medical, scientific and socio-economic importance of soft tissue research. Using analytical formulations for specimens under combined inflation/extension/torsion on thick-walled cylindrical tubes, in vitro experiments were carried out with fresh sheep arterial segments, and parameter estimation procedures were carried out on experimental data. Model restrictions were pointed out using outcomes from parameter estimation. Needs for further studies that can be developed are discussed.  相似文献   

19.
The research presented in this paper addresses the problem of fitting a mathematical model to epidemic data. We propose an implementation of the Landweber iteration to solve locally the arising parameter estimation problem. The epidemic models considered consist of suitable systems of ordinary differential equations. The results presented suggest that the inverse problem approach is a reliable method to solve the fitting problem. The predictive capabilities of this approach are demonstrated by comparing simulations based on estimation of parameters against real data sets for the case of recurrent epidemics caused by the respiratory syncytial virus in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号