首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of the calcium uniporter of rat liver mitochondria, allosterically enhanced by a pulse of calcium, decreases with time and in dependence on extramitochondrial Ca2+ concentration. Therefore, the initial velocity of calcium uptake by mitochondria depends on the extramitochondrial Ca2+ concentration prior to uptake. The allosteric activation by calcium and the hysteretic behaviour of the uniporter are the reasons why the course of calcium distribution between mitochondria and extramitochondrial space is determined for many minutes by the initial extramitochondrial Ca2+ concentration. This dependence and also the independence on the intramitochondrial calcium content are shown in an in vitro system, simulating conditions prevailing in vivo during the action of alpha-adrenergic agonists or vasoactive peptides on liver and during the early phase of carbon tetrachloride intoxication.  相似文献   

2.
For the study of Ca2+ handling by mitochondria of an insulin secretory tissue, a method for the isolation of functionally intact insulinoma mitochondria is described. The mitochondria had a respiratory control ratio of 6.3 +/- 0.3 with succinate as a substrate. The regulation of extramitochondrial [Ca2+]o concentration by suspensions of insulinoma mitochondria was studied using Ca2+-selective minielectrodes. The mitochondria were found to maintain an ambient free Ca2+ concentration of about 0.3 and 0.9 microM in the absence or presence of Mg2+ (1 mM), respectively. The addition of Na+ resulted in a dose-dependent (half-maximal 4 mM Na+) increase in steady state [Ca2+]o. Na+ accelerated the ruthenium red-induced Ca2+ efflux, suggesting the existence of a Ca2+/2Na+ antiporter, as described in mitochondria of excitable tissues. Experiments were performed to study the effects of various agents on the steady state extramitochondrial free Ca2+. cAMP, 3-isobutyl-1-methylxanthine, and NADH were found to have no effect, whereas phosphoenolpyruvate induced a net Ca2+ efflux, the kinetic of which suggests deleterious effects on mitochondrial functions. A small decrease in pH (0.1 unit) of the incubation buffer resulted in an increase of the extramitochondrial Ca2+ steady state that was reversible upon restoration of the pH to its initial value. In conclusion, insulinoma mitochondria were able to maintain an extramitochondrial [Ca2+]o steady state in the submicromolar range that was markedly influenced by the ionic composition of the incubation medium. Thus, mitochondria may play a role in the regulation of cellular calcium homeostasis and insulin release.  相似文献   

3.
Studies were undertaken on the age-associated peculiarities of the Ca2+ transport systems of the rat brain synaptosomes. It has been found that 45Ca2+ uptake reduced with ageing. The above reduction was not linked with the changes in the permeability of potential-dependent synaptosomal membrane Ca2+ depending upon the membrane potential. The distribution of calcium across the mitochondrial membrane changed with ageing, shifting towards higher extramitochondrial calcium levels in old rats, both in isolated and in synaptosomal mitochondria. While studying calcium efflux from mitochondria, it was found that, at equivalent calcium loads, the calcium efflux rates were slower in old rats as compared to adult animals. As observed, both resting [Ca2+]i and that obtained after K-depolarization drastically increased in old animals. The possible pathogenic mechanisms in neuronal injury, conditioned by this increase, are discussed.  相似文献   

4.
The independent pathway for Ca2+ efflux of rat liver mitochondria exhibits a sharp temperature and pH dependence. The Arrhenius plot displays a break at 18 degrees C, activation energy being about 117 kJ/mol below 18 degrees C and 59 kJ/mol above 18 degrees C. The pH profile is bell-shaped, with a broad optimum at pH 7.0. These properties of the efflux pathway, together with the membrane potential modulation recently described (Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383), suggest an explanation for the phenomenon of rebounding Ca2+ transport. Addition of a Ca2+ pulse to respiring mitochondria causes (i) a phase of rapid Ca2+ uptake, leading to a decrease of extramitochondrial free Ca2+ to a lower level with respect to that maintained before Ca2+ addition, and (ii) a slower phase of net Ca2+ efflux, leading to restoration of the steady-state extramitochondrial free Ca2+ preceeding Ca2+ addition. Evidence is provided that the excess Ca2+ uptake is linked to transient inactivation of the efflux pathway due to membrane depolarization. Conversely, the efflux phase is linked to reactivation of the efflux pathway upon repolarization. The efflux component of the rebound cycle and the isolated efflux pathway exhibit similar dependence on temperature, pH and membrane potential.  相似文献   

5.
In a previous investigation, I have shown that the kinetics of the Ca uniporter change fundamentally when mitochondria have transitorily lost their membrane potential. The sigmoidal kinetics, usually observed in liver mitochondria, became almost hyperbolic. This means an increase in the affinity for calcium, and hence a considerable acceleration of Ca uptake in the range of low, e.g., physiological calcium concentration. In this investigation I show that extramitochondrial calcium released from the deenergized mitochondria causes the allosteric activation of the Ca uniporter. The dependence of the allosterical activation on the extramitochondrial Ca2+ concentration and on time is described. It is also reported that it is possible to activate allosterically the Ca uniporter of energized mitochondria by a short-term elevation of the extramitochondrial Ca2+ concentration. The process of activation is reversible. It is quickly reversed by the addition of chelators for Ca2+, and it is slowly reversed when the activating Ca2+ has to be removed by the mitochondrial Ca uniporter, though the bulk of extramitochondrial calcium is taken up by it very quickly. Several kinetics of the Ca uniporter are described. The implications of continually changing kinetics of the Ca uniporter are considered for carbon tetrachloride intoxication and the action of alpha 1-adrenergic agonists in liver cells.  相似文献   

6.
Sodium-dependent calcium efflux from rat liver mitochondria has been studied as a function of mitochondrial calcium loads (2 to 40 nmol/mg) and extramitochondrial sodium concentrations (5 to 40 mM). The resulting data can be fit to a terreactant model which exhibits simultaneous kinetics (i.e. both sodium and calcium must be bound simultaneously for transport to occur). The Hill coefficients for the calcium and sodium dependences were 1.0 +/- 0.1 and 2.0 +/- 0.2, respectively. The cooperativity of the sodium dependence allows the terreactant model to be reduced to a bireactant model in which the sodium concentration only appears mathematically as the square of the sodium concentration. The data then fit the relationship (Formula: see text) The experimentally determined value of Vmax is found to be 2.6 +/- 0.5 nmol/mg/min, and the load of calcium (KCa) and concentration of sodium (KNa) necessary to stimulate the efflux to half its maximal calcium-dependent activity and sodium-dependent activity, respectively, were 8.1 +/- 1.4 nmol of Ca2+/mg and 9.4 +/- 0.6 mM Na+. This sodium-dependent calcium efflux from liver mitochondria was inhibited by magnesium, by ruthenium red, and by tetraphenylphosphonium. Fifty percent inhibition was obtained at 1.0-1.5 mM magnesium, at 12 nmol of ruthenium red/mg of protein, and at 0.2 microM tetraphenylphosphonium.  相似文献   

7.
The presence and significance of Na+-induced Ca2+ release from rat liver mitochondria was investigated by the arsenazo technique. Under the experimental conditions used, the mitochondria, as expected, avidly extracted Ca2+ from the medium. However, when the uptake pathway was blocked with ruthenium red, only a small rate of 'basal' release of Ca2+ was seen (0.3 nmol Ca2+ X min-1 X mg-1), in marked contrast to earlier reports on a rapid loss of sequestered Ca2+ from rat liver mitochondria. The addition of Na+ in 'cytosolic' levels (20 mM) led to an increase in the release rate by about 1 nmol Ca2+ X min-1 X mg-1. This effect was specific for Na+. The significance of this Na+-induced Ca2+ release, in relation to the Ca2+ uptake mechanism, was investigated (in the absence of uptake inhibitors) by following the change in the extramitochondrial Ca2+ steady-state level (set point) induced by Na+. A five-fold increase in this level, from less than 0.2 microM to more than 1 microM, was induced by less than 20 mM Na+. The presence of K+ increased the sensitivity of the Ca2+ homeostat to Na+. The effect of Na+ on the extramitochondrial level was equally well observed in an K+/organic-anion buffer as in a sucrose buffer. Liver mitochondria incubated under these circumstances actively counteracted a Ca2+ or EGTA challenge by taking up or releasing Ca2+, so that the initial level, as well as the Na+-controlled level, was regained. It was concluded that liver mitochondria should be considered Na+-sensitive, that the capacity of the Na+-induced efflux pathway was of sufficient magnitude to enable it to influence the extramitochondrial Ca2+ level biochemically and probably also physiologically, and that the mitochondria have the potential to act as active, Na+-dependent regulators of extramitochondrial ('cytosolic') Ca2+. It is suggested that changes of cytosolic Na+ could be a mediator between certain hormonal signals (notably alpha 1-adrenergic) and changes in this extramitochondrial ('cytosolic') Ca2+ steady state level.  相似文献   

8.
Calcitonin was studied in isolated kidney cells and in isolated mitochondria. A concentration of 10 ng/ml of synthetic calcitonin increases the cellular accumulation of 45Ca and the total cell calcium. The mitochondrial pool is increased several-fold. Kinetic analysis of the data shows that although the total cellular exchangeable calcium pool is enlarged, calcium influx and efflux are significantly depressed by calcitonin. The absence of phosphate or the presence of inhibitors of mitochondrial calcium transport completely abolish the effects of the hormone. In isolated mitochondria, the hormone stimulates the active calcium uptake and depresses the extramitochondrial calcium activity. Calcitonin counteracts the effects of cyclic AMP which stimulates the release of calcium from mitochondria and increases the extramitochondrial calcium activity. These data indicate that cellular calcium homeostasis is controlled by the mitochondrial calcium turnover. They suggest that calcitomin regulates the cell calcium metabolism and inhibits the transcellular calcium transport by stimulating the rate of calcium uptake by mitochondria which depresses cytoplasmic calcium activity.  相似文献   

9.
A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8-7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes.  相似文献   

10.
The previously reported (Hall et al., Biochem. Soc. Trans. 1973) halothane-dependent, calcium-induced loss of respiratory control in rat liver mitochondria is relatively specific to calcium; the effect of strontium ions is much smaller, and comparable additions of potassium salts have no effect on mitochondrial respiration on succinate in the presence of halothane. The calcium-dependent loss of respiratory control can be prevented, or reversed, respectively, by the prior or subsequent addition of agents that either chelate extramitochondrial Ca2plus or inhibit calcium accumulation, or that inhibit the efflux of accumulatec calcium. These results suggest that the halothane-dependent, calcijm-induced loss of respiratory control is due to a cyclic flux of calcium uptake and release.  相似文献   

11.
The efflux of adenine nucleotides from three human tumor mitochondria has been investigated with mitochondria prelabeled with radioactive ATP. Uncouplers induce a large efflux of adenine nucleotides from mitochondria from human hepatoma and oat cell carcinoma while efflux from astrocytoma mitochondria is less. This efflux does not require exchangeable anions, i.e., adenine nucleotides or pyrophosphate, in the extramitochondrial medium, and is not sensitive to atractyloside. The efflux is more extensive with dinitrophenol and CCCP than with valinomycin-K+, and may account for the differential effects of the two types of uncouplers on uncoupler-stimulated ATPase of tumor mitochondria previously reported by us. Dinitrophenol and CCCP do not elicit any efflux of adenine nucleotides from normal liver mitochondria. Efflux of orthophosphate from tumor mitochondria is also greater with dinitrophenol and CCCP; however, the more interesting finding is that the concentration of orthophosphate in these mitochondria is unusually high, i.e., 10-40-times greater than the intramitochondrial phosphate concentration of liver mitochondria. Atractyloside sensitive transport of ATP and ADP in human tumor mitochondria has also been determined. Vmax values for both ADP and ATP transport are lower than those obtained with liver mitochondria, especially with ADP transport. ATP transport in tumor mitochondria is not affected by CCCP in contrast to the 4-5-fold stimulation observed in liver mitochondria.  相似文献   

12.
A nondisruptive technique developed by Bellomo et al. (Bellomo, G., Jewell, S. A., Thor, H., and Orrenius, S. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 6842-6846) has been used to examine the distribution of calcium ions between mitochondrial and extramitochondrial compartments in the perfused rat liver. The amount of calcium released by the uncoupler 2,4-dinitrophenol from the mitochondrial compartment was 19 +/- 2 nmol X g-1, wet weight, which is equivalent to a total calcium concentration of 3.5 X 10(-4) M in the mitochondria and is by several orders of magnitude smaller than the concentration thought to be present in these organelles. The amount of calcium released from the liver in the presence of the divalent cation ionophore A 23187 was 96 +/- 7 nmol X g-1, wet weight, which is of the same order of magnitude as the amount released by the calcium-dependent hormone vasopressin (97 +/- 11 nmol X g-1, wet weight). Experiments with different sequential combinations of hormone with uncoupler or ionophore reveal that in the perfused liver, in contrast to isolated hepatocytes or isolated mitochondria, the amount of calcium attributable to the mitochondria is too small to account for the calcium released during hormonal stimulation. Consequently extramitochondrial calcium stores are the main source of cellular calcium mobilized under this condition. In addition these findings imply that in the liver several mitochondrial enzymes, e.g. alpha-oxoglutarate dehydrogenase, can be effectively regulated by calcium and that the role of mitochondria in buffering the cytosolic free calcium in vivo has to be reconsidered.  相似文献   

13.
When mammalian mitochondria are exposed to high calcium and phosphate, a massive swelling, uncoupling of respiration, and release of cytochrome c occur. These changes are mediated by opening of the mitochondrial permeability transition pore (MPTP). Activation of the MPTP in vivo in response to hypoxic and oxidative stress leads to necrotic and apoptotic cell death. Considering that embryos of the brine shrimp Artemia franciscana tolerate anoxia for years, we investigated the MPTP in this crustacean to reveal whether pore opening occurs. Minimum molecular constituents of the regulated MPTP in mammals are believed to be the voltage-dependent anion channel, the adenine nucleotide translocators, and cyclophilin D. Western blot analysis revealed that mitochondria from A. franciscana possess all three required components. When measured with a calcium-sensitive fluorescent probe, rat liver mitochondria are shown to release matrix calcium after addition of >/=100 microM extramitochondrial calcium (MPTP opening), whereas brine shrimp mitochondria continue to take up extramitochondrial calcium and do not release internal stores even up to 1.0 mM exogenously added calcium (no MPTP opening). Furthermore, no swelling of A. franciscana mitochondria in response to added calcium was observed, and no release of cytochrome c could be detected. HgCl(2)-dependent swelling and cytochrome c release were readily confirmed, which is consistent with the presence of an "unregulated pore." Although the absence of a regulated MPTP in A. franciscana mitochondria could contribute to the extreme hypoxia tolerance in this species, we speculate that absence of the regulated MPTP may be a general feature of invertebrates.  相似文献   

14.
Mitochondria from guinea-pig cerebral cortex incubated in the presence of Pi or acetate are unable to regulate the extramitochondrial free Ca2+ at a steady-state which is independent of the Ca2+ accumulated in the matrix. This is due to the superimposition on kinetically regulated Ca2+ cycling of a membrane-potential-dependent reversal of the Ca2+ uniporter. The latter efflux is a consequence of a low membrane potential, which correlates with a loss of adenine nucleotide loss from the matrix, enable the mitochondria to maintain a high membrane potential and allow the mitochondria to buffer the extramitochondrial free Ca2+ precisely when up to 200 nmol of Ca2+/mg of protein is accumulated in the matrix. The steady-state extramitochondrial free Ca2+ is maintained as low as 0.3 microM. The Na+-activated efflux pathway is functional in the presence of ATP and oligomycin and accounts precisely for the change in steady-state free Ca2+ induced by Na+ addition. The need to distinguish carefully between kinetic and membrane-potential-dependent efflux pathways is emphasized and the competence of brain mitochondria to regulate cytosolic free Ca2+ concentrations in vivo is discussed.  相似文献   

15.
Labeled cAMP incubated with rat liver mitochondria penetrates not only through outer mitochondrial membranes, but also into mitoplasts, where it is accumulated mainly in the matrix. Damage of mitochondrial membranes caused by single freezing-thawing treatment promotes no influx, but efflux of cAMP from mitoplasts. cAMP molecules penetrate inside mitochondria largely in an unchanged state in all submitochondrial fractions, as was demonstrated by the TLC method. cAMP transport into mitochondria can serve as a reason for: 1) stimulation of mitochondrial function by hormones whose effects are realized through activation of cytoplasmic adenylate cyclase and by extramitochondrial (cytosolic) cAMP; 2) existence of cAMP-dependent protein kinase and cAMP-phosphodiesterase in mitochondria.  相似文献   

16.
Isolated rat liver mitochondria, energized either by succinate oxidation or by ATP hydrolysis, present a transient increase in the rate of Ca2+ efflux concomitant to NAD(P)H oxidation by hydroperoxides when suspended in a medium containing 3 mM ATP, 4 mM Mg2+ and acetate as permeant anion. This is paralleled by an increase in the steady-state concentration of extramitochondrial Ca2+, a small decrease in delta psi and an increase in the rate of respiration and mitochondrial swelling. With the exception of mitochondrial swelling all other events were found to be reversible. If Ca2+ cycling was prevented by ruthenium red, the changes in delta psi, the rate of respiration and the extent of mitochondrial swelling were significantly diminished. In addition, there was no significant decrease in the content of mitochondrial pyridine nucleotides. Mitochondrial coupling was preserved after a cycle of Ca2+ release and re-uptake under these experimental conditions. It is concluded that hydroperoxide-induced Ca2+ efflux from intact mitochondria is related to the redox state of pyridine nucleotides.  相似文献   

17.
The status of glutathione (GSH) was studied in isolated rat liver mitochondria under conditions which induce a permeability transition. This transition, which is inhibited by cyclosporin A (CyA), requires the presence of Ca2+ and an inducing agent such as near physiological levels (3 mM) of inorganic phosphate (Pi). The transition is characterized by an increased inner membrane permeability to some low molecular weight solutes and by large amplitude swelling under some experimental conditions. Addition of 70 microM Ca2+ and 3 mM Pi to mitochondria resulted in mitochondrial swelling and extensive release of GSH that was recovered in the extramitochondrial medium as GSH. Both swelling and the efflux of mitochondrial GSH were prevented by CyA. Incubation of mitochondria in the presence of Ca2+, Pi, and GSH followed by addition of CyA provided a mechanism to load mitochondria with exogenous GSH that was greater than the rate of uptake by untreated mitochondria. Thus, GSH efflux from mitochondria may occur under toxicological and pathological conditions in which mitochondria are exposed to elevated Ca2+ in the presence of near physiological concentrations of Pi through a nonspecific pore. Cyclical opening and closing of the pore could also provide a mechanism for uptake of GSH by mitochondria.  相似文献   

18.
1. A method for the isolation of functionally intact mitochondria from lymphocytes is described. It involves digitonin breakage of the plasma membrane, followed by differential centrifugation. The yield was 36 mg of mitochondrial protein/200 g of pig mesenteric lymph node (6 mg of mitochondrial protein/10(9) lymphocytes). The mitochondrial had a respiratory-control ratio of 2--3.5 with succinate as substrate. 2. Ca2+ transport by these mitochondria was investigated. They were able to regulate the extramitochondrial free [Ca2+] very precisely, by buffering any displacements from the steady-state. The exact extramitochondrial free [Ca2+] of this steady-state depended on the conditions of incubation. In a medium designed to resemble the cytoplasmic environment, with added Ca2+, lymphocyte mitochondria maintained a steady-state free [Ca2+] of 0.63 microM (pCa of 6.2). The rates of Ca2+ uptake and efflux under these conditions, with both lymphocyte and liver mitochondria, were very much lower than those in a less complex medium. 3. Lymphocyte mitochondria were shown to possess an Na+-independent Ruthenium Red-insensitive efflux pathway similar to that of liver mitochondria. Ruthenium Red totally inhibited the electrophoretic uniporter. Although Na+ had no effect on the steady-state maintained by lymphocyte mitochondria, they were shown to possess an Na+/H+ antiporter.  相似文献   

19.
The transport of phosphoenolpyruvate by the adenine nucleotide translocase system of heart mitochondria may be directly involved in the mechanism of phosphoenolpyruvate-induced calcium ion efflux. In contrast to liver mitochondria, the transport of phosphoenolpyruvate via the tricarboxylate carrier system is low or absent in heart mitochondria. The translocation of phosphoenolpyruvate which catalyzed adenine nucleotide and calcium efflux from heart mitochondria was inhibited by palmitoyl-CoA as well as atractylate and ATP. These results suggest that phosphoenolpyruvate, which is preferentially transported on the tricarboxylate carrier of liver mitochondria, is transported primarily via the adenine nucleotide translocase system in heart mitochondria. As a result of its inward transport, phosphoenolpyruvate is able to catalyze calcium ion as well as adenine nucleotide efflux from the mitochondrial matrix. Although not yet proven, either or both phosphoenolpyruvate and long chain acyl-CoA esters may act as natural physiological effectors in the regulation and distribution of intracellular calcium.  相似文献   

20.
We report here initial studies on phosphoenolpyruvate metabolism in coupled mitochondria isolated from Jerusalem artichoke tubers. It was found that: (1) phosphoenolpyruvate can be metabolized by Jerusalem artichoke mitochondria by virtue of the presence of the mitochondrial pyruvate kinase, shown both immunologically and functionally, located in the inner mitochondrial compartments and distinct from the cytosolic pyruvate kinase as shown by the different pH and inhibition profiles. (2) Jerusalem artichoke mitochondria can take up externally added phosphoenolpyruvate in a proton compensated manner, in a carrier-mediated process which was investigated by measuring fluorimetrically the oxidation of intramitochondrial pyridine nucleotide which occurs as a result of phosphoenolpyruvate uptake and alternative oxidase activation. (3) The addition of phosphoenolpyruvate causes pyruvate and ATP production, as monitored via HPLC, with their efflux into the extramitochondrial phase investigated fluorimetrically. Such an efflux occurs via the putative phosphoenolpyruvate/pyruvate and phosphoenolpyruvate/ATP antiporters, which differ from each other and from the pyruvate and the adenine nucleotide carriers, in the light of the different sensitivity to non-penetrant compounds. These carriers were shown to regulate the rate of efflux of both pyruvate and ATP. The appearance of citrate and oxaloacetate outside mitochondria was also found as a result of phosphoenolpyruvate addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号