首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of bio-molecules has entered a new age since the development of methodologies capable of studies at the level of single molecules. In biology, most molecules show a complex dynamical behavior, with individual motions and transitions between different states, occurring as highly correlated in space and time within an arrangement of various elements. In order to resolve such dynamical changes in ensemble average techniques, one would have to synchronize all molecules, which is hard to achieve and might interfere with important system properties. Single molecule studies, in contrast, do not require pretreatment of the system and resume, therefore, much less invasive methodologies. Here, we review recent employments for the investigation of bio-molecules on surfaces, in which the high local and temporal resolution of two complementary techniques, atomic force microscopy and single molecule fluorescence microscopy, is used to address single molecules. Novel methodologies for the characterization of biologically relevant parameters, functions and dynamical aspects of individual molecules are described.  相似文献   

2.
3.
4.
5.
The composition and electrolyte concentration of the aqueous bathing environment have important consequences for many biological processes and can profoundly affect the behavior of biomolecules. Nevertheless, because of computational limitations, many molecular simulations of biophysical systems can be performed only at specific ionic conditions: either at nominally zero salt concentration, i.e., including only counterions enforcing the system’s electroneutrality, or at excessive salt concentrations. Here, we introduce an efficient molecular dynamics simulation approach for an atomistic DNA molecule at realistic physiological ionic conditions. The simulations are performed by employing the open-boundary molecular dynamics method that allows for simulation of open systems that can exchange mass and linear momentum with the environment. In our open-boundary molecular dynamics approach, the computational burden is drastically alleviated by embedding the DNA molecule in a mixed explicit/implicit salt-bathing solution. In the explicit domain, the water molecules and ions are both overtly present in the system, whereas in the implicit water domain, only the ions are explicitly present and the water is described as a continuous dielectric medium. Water molecules are inserted and deleted into/from the system in the intermediate buffer domain that acts as a water reservoir to the explicit domain, with both water molecules and ions free to enter or leave the explicit domain. Our approach is general and allows for efficient molecular simulations of biomolecules solvated in bathing salt solutions at any ionic strength condition.  相似文献   

6.
7.
Five dispersant-molecule models of succinimide, acrylate, imide, phenylsulfonic and salicyl were used to study their interactions with the water surface (001). The interaction energy, molecular configuration, charge distribution and radial distribution function (RDF) curve for each of the dispersant molecules were analyzed from the molecular mechanics (MM) and molecular dynamics (MD) simulation results. It can be seen that the system energies, mostly electrostatic and hydrogen bond energies, were reduced significantly when the dispersant molecules interacted with the water surface. The hydrophilic group of a dispersant molecule can attach itself to the water surface firmly and reach for a stable energy-minimized configuration, which is helpful to the dispersants' dispersancy. The influence exerted by the hydrophobic group of the dispersant molecule, which was the substituted hydrocarbon chain of n-octadecanyl in this paper, is discussed in comparison with the naked polar headgroup. Steric configuration, charge distribution and substitute hydrocarbon chain of the dispersant molecule influenced the interaction between dispersants and polar water surface.  相似文献   

8.
Gao X  Stassinopoulos A  Ji J  Kwon Y  Bare S  Goldberg IH 《Biochemistry》2002,41(16):5131-5143
Our previous structure elucidation of the complexes of DNA and postactivated neocarzinostatin chromophore (NCS-chrom) compounds revealed two distinctly different binding modes of this antitumor molecule. A thorough understanding of these results will provide the molecular basis for the binding and DNA chain cleavage properties of NCS-chrom. NCSi-gb is one of the postactivated mimics of NCS-chrom which is formed under thiol-free conditions and is able to bind to DNA. This report describes the structure refinement of the NCSi-gb-bulge-DNA complex [Stassinopoulos, A., Jie, J., Gao, X., and Goldberg, I. H. (1996) Science 272, 1943-1946] and the NMR characterization of the free bulge-DNA and free NCSi-gb. These results reveal that the formation of the complex involves conformational changes in both the DNA and the ligand molecule. Of mechanistic importance for the NCS-chrom-DNA interaction, the two ring systems of the drug are brought closer to each other in the complex. This conformation correlates well with the previously observed marked enhancement of the formation of a DNA bulge cleaving species in the presence of bulge-DNA sequences, due to the promotion of the intramolecular radical quenching of the activated NCS-chrom. Interestingly, the binding of NCSi-gb promotes the formation of a bulge binding pocket; this was not found in the unbound DNA. NCS-chrom is unique among the enediyne antibiotics in its ability to undergo two different mechanisms of activation to form two different DNA binding and cleaving species. The two corresponding DNA complexes are compared. One, the bulge-DNA binder NCSi-gb, involves the major groove, and the second, the duplex binder NCSi-glu which is generated by glutathione-induced activation, involves the minor groove. Since the two NCS-chrom-related ligand molecules contain some common chemical structural elements, such as the carbohydrate ring, the striking differences in their DNA recognition and chain cleavage specificity provide insights into the fundamental principles of DNA recognition and ligand design.  相似文献   

9.
A molecular simulation approach has been used to investigate the mechanism of entropic trapping for model linear DNA molecules as they go from a deep channel to a shallow channel driven by an electric field. In such a system, a molecule whose radius of gyration is larger than the gap of the shallow channel will tend to get temporarily trapped at its entrance. The free energy of the molecules as a function of chain position and the trapping times were obtained via Monte Carlo simulations. In weak to moderate electrical fields, the free energy barrier for escape ( F max increases with chain length approaching a plateau value; in a strong electrical field, ( F max exhibits a mild decreasing trend with chain length. At weak electric fields, shorter chains escape faster than longer chains because of their lower associated ( F max . At moderate and strong fields, longer chains escape faster than shorter ones because, in the absence of significant differences in ( F max , larger chains access a larger entrance area to the narrow channel; these results are in agreement with reported experimental observations. Preliminary results on the effect of chain branching on the escape rate are also presented.  相似文献   

10.
The flow birefringence, extinction angles, and intrinsic viscosity have been determined at low velocity gradients for a complex of T2 bacteriophage DNA and methylated serum albumin prepared in dilute solution to a stoichiometry of approximately 90 proteins per DNA molecule. Comparative data upon equivalent solutions of pure uncomplexed T2 DNA are also presented, and these data are completely in accord with the results of previous study. The experimental data are interpreted in terms of current dynamical theory and indicate that the complex has an essentially linear chain structure, consisting of approximately two DNA molecules, which is hydrodynamically indistinguishable from the pure DNA and that extensive internal or intramolecular binding in the complex does not occur. Although interpretation of the results is hampered by an apparent moderate degree of polydispersity in the complex preparations and by relatively large shear extrapolations, the data for both DNA and the complex are substantially in accord with dynamical theory for a nondraining bead subchain model having high kinetic segmental rigidity.  相似文献   

11.
12.
13.
Mitochondrial DNA damage and the aging process: facts and imaginations   总被引:5,自引:0,他引:5  
  相似文献   

14.
We have performed the molecular dynamics simulations for the free cholesterol cluster and the same cluster located near the carbon nanotube. We have found that the cholesterol molecules quite evenly cover the surface of single walled armchair (10, 10) carbon nanotube, forming the molecular layer. Moreover, the characteristic alignment of cholesterol molecules within the layer (along the nanotube) is observed. The comparison of the structural and dynamical observable characterizing cholesterol molecule is presented and discussed, both for the cluster with and without the presence of the nanotube.  相似文献   

15.
Early in its differentiative pathway, a given B lymphocyte expresses immunoglobulin of the mu heavy chain class (IgM). Subsequent differentiative processes may involve rearrangement within the immunoglobulin heavy chain chromosomal locus to enable cells of the same lineage to synthesize immunoglobulins of other heavy chain classes (e. g. IgG, IgE or IgA), but with specificity for the same antigen as the original IgM molecule. Switch recombination, the molecular event which facilitates this chromosomal rearrangement, has been shown to occur between segments of DNA consisting of tandemly repeated unit sequences. These DNA segments have been functionally defined as switch regions. We have cloned the gamma 1 switch region from the BALB/c germline, and have demonstrated that significantly divergent sequence elements are interspersed among the tandemly repeated units characteristic of this switch region. We show that these unique elements exist in at least three copies within the switch segment, and discuss the implications of this novel and previously unreported primary structure.  相似文献   

16.
We have conducted molecular dynamics simulations to gain insight into the atomic-scale properties of an isotropic system of cholesteryl oleate (CO) molecules. Cholesteryl esters are major constituents of low density lipoprotein particles, the key players in the formation of atherosclerosis, as well as the storage form of cholesterol. Here the aim is to clarify structural and dynamical properties of CO molecules under conditions, which are suggestive of those in the core of low density lipoprotein particles. The simulations in the fluid phase indicate that the system of CO molecules is characterized by an absence of translational order, as expected, while the orientational order between distinct CO molecules is significant at short distances, persisting over a molecular size. As for intramolecular properties, the bonds along the oleate chain are observed to be weakly ordered with respect to the sterol structure, unlike the bonds along the short hydrocarbon chain of cholesterol where the ordering is significant. The orientational distribution of the oleate chain as a whole with respect to the sterol moiety is of broad nature, having a major amount of extended and a less considerable proportion of bended structures. Distinct transient peaks at specific angles also appear. The diffusion of CO molecules is found to be a slow process and characterized by a diffusion coefficient of the order of 2x10(-9) cm2/s. This is considerably slower than diffusion, e.g., in ordered domains of lipid membranes rich in sphingomyelin and cholesterol. Analysis of the rotational diffusion rates and trans-to-gauche transition rates yield results consistent with experiments.  相似文献   

17.
The interaction of mitoxantrone, ametantrone and their Pd(II) complexes with DNA have been studied using absorption and circular dichroism spectroscopy. We have shown that mitoxantrone forms with Pd(II) a complex in which two Pd(II) ions are bound to two molecules of drug (D1 and D2). One Pd(II) ion is bound to the two nitrogens of the side chain on C-5 of molecule D1 and to the two nitrogens of the side chain on C-5 of molecule D2, whereas the second Pd(II) ion is bound to the nitrogens of the side chain on C-8 of molecule D1 and of molecule D2. The same complex is formed between Pd(II) and ametantrone. The stability constants for these complexes are, respectively, beta M = (1.4 +/- 0.5).10(19) and beta A = (2.5 +/- 0.5).10(18). They display antitumor activity against P 388 leukemia which compares with that of the free drugs. Interactions of the free drugs with DNA have been studied. Mitoxantrone and ametantrone are not optically active by themselves. However, through interaction with DNA, there is an induction of optical activity within the electronic transitions of both drugs. At a nucleotide/drug molar ratio lower than about 5 a CD signal of the couplet type is observed, suggesting that there is a coupling between the pi----pi transitions of the molecules of drugs intercalated between the base pairs. This coupling disappears when the molar ratio is increased. The interactions of the Pd(II) complexes with DNA do not give rise to induction of optical activity within the electronic transition of the drugs, indicating that the presence of the metal ion prevents the intercalation of the drugs between the base pairs.  相似文献   

18.
19.
Naturally occurring bio-molecular machines work in every living cell and display a variety of designs. Yet the development of artificial molecular machines centers on devices capable of directional motion, i.e. molecular motors, and on their scaled-down mechanical parts (wheels, axels, pendants etc). This imitates the macro-machines, even though the physical properties essential for these devices, such as inertia and momentum conservation, are not usable in the nanoworld environments. Alternative designs, which do not follow the mechanical macromachines schemes and use mechanisms developed in the evolution of biological molecules, can take advantage of the specific conditions of the nanoworld. Besides, adapting actual biological molecules for the purposes of nano-design reduces potential dangers the nanotechnology products may pose. Here we demonstrate the assembly and application of one such bio-enabled construct, a semi-artificial molecular device which combines a naturally-occurring molecular machine with artificial components. From the enzymology point of view, our construct is a designer fluorescent enzyme-substrate complex put together to perform a specific useful function. This assembly is by definition a molecular machine, as it contains one. Yet, its integration with the engineered part - fluorescent dual hairpin - re-directs it to a new task of labeling DNA damage. Our construct assembles out of a 32-mer DNA and an enzyme vaccinia topoisomerase I (VACC TOPO). The machine then uses its own material to fabricate two fluorescently labeled detector units (Figure 1). One of the units (green fluorescence) carries VACC TOPO covalently attached to its 3'end and another unit (red fluorescence) is a free hairpin with a terminal 3'OH. The units are short-lived and quickly reassemble back into the original construct, which subsequently recleaves. In the absence of DNA breaks these two units continuously separate and religate in a cyclic manner. In tissue sections with DNA damage, the topoisomerase-carrying detector unit selectively attaches to blunt-ended DNA breaks with 5'OH (DNase II-type breaks), fluorescently labeling them. The second, enzyme-free hairpin formed after oligonucleotide cleavage, will ligate to a 5'PO(4) blunt-ended break (DNase I-type breaks), if T4 DNA ligase is present in the solution. When T4 DNA ligase is added to a tissue section or a solution containing DNA with 5'PO(4) blunt-ended breaks, the ligase reacts with 5'PO(4) DNA ends, forming semi-stable enzyme-DNA complexes. The blunt ended hairpins will interact with these complexes releasing ligase and covalently linking hairpins to DNA, thus labeling 5'PO(4) blunt-ended DNA breaks. This development exemplifies a new practical approach to the design of molecular machines and provides a useful sensor for detection of apoptosis and DNA damage in fixed cells and tissues.  相似文献   

20.
A comparison of the conformation of Folch-Pi apoprotein in organic solvent and in aqueous solutions has been made by ESR, infrared and circular dichroism spectroscopy studies. Electrophoresis and ultracentrifugation have been carried out in order to correlate molecular weight and charge of the molecule with its conformation. It appears that the protein is monomeric in organic solution. In water, only one component is present but the molecules behave as a polydisperse system of associating molecules. Hydrophobic interacitons seem to be important for this polymerisation which does not appear to be accompanied by the formation of beta-structure. After the transfer of the protein from organic solution to water, the ESR spectra of the protein labelled on the free SH groups show an heterogeneity in the motional environment of the label which permits to assume that different areas of association exist in the polymeric molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号