首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.  相似文献   

2.
肠益生菌临床应用新进展   总被引:2,自引:0,他引:2  
探讨国内益生菌制剂临床应用进展。从中国生物医学文献数据库和CHKD期刊全文数据库检索相关文献,选择临床应用类的论文进行总结分析。结果提示肠益生菌抑制有害病原菌生长,保护肠屏障功能的作用。可以认为益生菌制剂在国内外已用于多种疾病的治疗,取得积极的疗效。  相似文献   

3.
Mannan-oligosaccharides (MOSs) are mannose-rich substrates with several intestinal health-promoting properties. The aim of this study was to investigate the potential capacity of Salmosan (S-βGM), a β-galactomannan-rich MOS product, to restore epithelial barrier function independently from its capacity to reduce bacterial invasion. In addition, the combination of S-βGM with the proven probiotic Lactobacillus plantarum (LP) was also tested. Paracellular permeability was assessed by transepithelial electrical resistance (TER) in co-cultures of Caco-2 cells and macrophages (differentiated from THP-1 cells) stimulated with LPS of Salmonella Enteritidis and in Caco-2 cell cultures stimulated with TNF-α in the absence or presence of 500 μg/ml S-βGM, LP (MOI 10) or a combination of both. In both culture models, TER was significantly reduced up to 25% by LPS or TNF-α stimulation, and the addition of S-βGM or LP alone did not modify TER, whereas the combination of both restored TER to values of nonstimulated cells. Under LPS stimulation, TNF-α production was significantly increased by 10-fold, whereas IL-10 and IL-6 levels were not modified. The combination of S-βGM and LP reduced TNF-α production to nonstimulated cell values and significantly increased IL-10 and IL-6 levels (5- and 7.5-fold, respectively). Moreover, S-βGM has the capacity to induce an increase of fivefold in LP growth. In conclusion, we have demonstrated that S-βGM in combination with LP protects epithelial barrier function by modulation of cytokine secretion, thus giving an additional value to this MOS as a potential symbiotic.  相似文献   

4.
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.  相似文献   

5.

Background  

Intestinal barrier function is important for preserving health, as a compromised barrier allows antigen entry and can induce inflammatory diseases. Probiotic bacteria can play a role in enhancing intestinal barrier function; however, the mechanisms are not fully understood. Existing studies have focused on the ability of probiotics to prevent alterations to tight junctions in disease models, and have been restricted to a few tight junction bridging proteins. No studies have previously investigated the effect of probiotic bacteria on healthy intestinal epithelial cell genes involved in the whole tight junction signalling pathway, including those encoding for bridging, plaque and dual location tight junction proteins. Alteration of tight junction signalling in healthy humans is a potential mechanism that could lead to the strengthening of the intestinal barrier, resulting in limiting the ability of antigens to enter the body and potentially triggering undesirable immune responses.  相似文献   

6.
7.
Probiotic bacteria are used to treat disturbed intestinal microflora and increased gut permeability which are characteristic to many intestinal disorders. Examples include children with acute rotavirus diarrhoea, subjects with food allergy, subjects with colonic disorders and patients undergoing pelvic radiotherapy and sometimes changes associated with colon cancer development. In all such disease states altered intestinal microflora, impaired gut barrier and different types of intestinal inflammation are present. Successful probiotic bacteria are able to survive gastric conditions and colonize the intestine, at least temporarily, by adhering to the intestinal epithelium. Such probiotic microorganisms appear to be promising candidates for the treatment of clinical conditions with abnormal gut microflora and altered gut mucosal barrier functions. They are also promising ingredients to future functional foods and clinical foods for specific disease states provided that basic requirements for strains and clinical studies are carefully followed.  相似文献   

8.
The gut associated lymphoid tissue (GALT) should protect intestinal mucosa against pathogens, but also avoid hypersensitivity reactions to food proteins, normal bacterial flora and other environmental macromolecules. The interaction between epithelial cells and microflora is fundamental to establish gut mucosal barrier and GALT development. The normal colonization of intestine by commensal bacteria is thus crucial for a correct development of mucosal immune system. Probiotic bacteria are normal inhabitants of microflora and may confer health benefits to the host. The modification of the intestinal microflora towards a healthier probiotics enriched microflora may generate beneficial mucosal immunomodulatory effects and may represent a new strategy to cure intestinal and allergic diseases. The health benefits may be specific for different probiotic strains. Ongoing research is providing new insights into the probiotic beneficial effects and related mechanisms. This review represents an update of immunomodulatory activity of different probiotics and of the more accredited mechanisms underlying such activities. Presented at the Second Probiotic Conference, Košice, 15–19 September 2004, Slovakia.  相似文献   

9.
The aim of the study was to investigate the effect of living probiotics, probiotic DNA and the synthetic oligodeoxynucleotides containing CpG motifs (CpG-ODN) on both immune response and intestinal barrier function in ovalbumin-sensitized rat and the underlying mechanisms. Brown-Norway rats were orally sensitized with ovalbumin, and living probiotics, probiotic DNA extraction, synthetic CpG-ODN or non-CpG ODN control was administered. In the living probiotics, probiotic DNA and CpG-ODN groups, the allergic response was significantly inhibited, the Th1/Th2 cytokine balance was shifted away from Th2 side, the percentage of CD4(+) CD25(+high) Treg cells was increased, and the intestinal barrier function was improved. The levels of toll-like receptor (TLR) 9 mRNA and nuclear factor (NF)-κB activity, as well as the IκB-α phosphorylation (p-IκB-α) was significantly increased in these three intervention groups compared with the OVA-positive group, whereas no such effects were found in the non-CpG ODN control group. These data show that the probiotic genomic DNA and the synthetic CpG-ODN was comparable with living probiotics in preventing food allergic response by immune modulation and intestinal barrier function enhancement, and the activation of TLR9/NF-κB signal pathway might be involved in this process.  相似文献   

10.
11.
Escherichia coli Nissle 1917 (EcN) is a probiotic used for the treatment of intestinal disorders. EcN improves gastrointestinal homeostasis and microbiota balance; however, little is known about how this probiotic delivers effector molecules to the host. Outer membrane vesicles (OMVs) are constitutively produced by Gram‐negative bacteria and have a relevant role in bacteria–host interactions. Using 1D SDS–PAGE and highly sensitive LC–MS/MS analysis we identified in this study 192 EcN vesicular proteins with high confidence in three independent biological replicates. Of these proteins, 18 were encoded by strain‐linked genes and 57 were common to pathogen‐derived OMVs. These proteins may contribute to the ability of this probiotic to colonize the human gut as they fulfil functions related to adhesion, immune modulation or bacterial survival in host niches. This study describes the first global OMV proteome of a probiotic strain and provides evidence that probiotic‐derived OMVs contain proteins that can target these vesicles to the host and mediate their beneficial effects on intestinal function. All MS data have been deposited in the ProteomeXchange with identifier PXD000367 ( http://proteomecentral.proteomexchange.org/dataset/PXD000367 ).  相似文献   

12.
昆虫肠道微生物在宿主营养代谢、生长发育、免疫以及抵御病原菌等方面具有重要作用。研究不同蛋白水平饵料饲养对德国小蠊(Blattella germanica)雄成虫肠道细菌群落组成及其功能的作用,探究德国小蠊肠道细菌对宿主营养和健康的影响,以期为发展生物防治的诱食性饵料提供理论支持。分别取连续饲喂低蛋白(LP2组:5%)、高蛋白(HP3组:65%)以及正常蛋白水平饵料(CD1组:25%)21 d的德国小蠊雄成虫,饥饿24 h后无菌条件下分离并提取肠道总基因组DNA,采用特异引物扩增细菌16S rDNA的V4可变区并进行高通量测序,分析德国小蠊肠道细菌群落组成及其功能特征。结果表明德国小蠊肠道细菌主要由拟杆菌门(Bacteroidetes)、变形菌门(Proteobacteria)、梭杆菌门(Fusobacteria)和厚壁菌门(Firmicutes)等细菌群落组成。饲喂低蛋白饵料LP2组的德国小蠊肠道细菌中拟杆菌属(Bacteroides)细菌丰度(47.44%)显著高于HP3组(23.97%)和对照CD1(7.04%)。饲喂高蛋白饵料的HP3组梭杆菌门丰度显著高于其他两组。LEfSe物种差异分析也表明HP3组德国小蠊肠道细菌中梭杆菌属(Fusobacterium)细菌与低蛋白饵料LP2组和对照CD1组有显著差异。基于Tax4Fun功能预测显示,HP3高蛋白饵料组的德国小蠊肠道细菌中与能量代谢功能相关基因的相对丰度极显著高于对照组CD1组,外源性物质代谢与降解和其他氨基酸代谢功能基因的相对丰度显著高于低蛋白LP2组。本研究结果表明饵料中蛋白质水平的差异能够显著改变德国小蠊肠道中细菌群落结构组成,并影响其代谢功能。  相似文献   

13.
Inorganic polyphosphate (polyP) was previously identified as a probiotic-derived substance that enhances intestinal barrier function. PolyP-accumulating bacteria are expected to have beneficial effects on the human gastrointestinal tract. In this study, we selected Lactobacillus paracasei JCM 1163 as a strain with the potential to accumulate polyP, because among the probiotic bacteria stored in our laboratory, it had the largest amount of polyP. The chain length of polyP accumulated in L. paracasei JCM 1163 was approximately 700 phosphate (Pi) residues. L. paracasei JCM 1163 accumulated polyP when Pi was added to Pi-starved cells. We further improved the ability of L. paracasei JCM 1163 to accumulate polyP by nitrosoguanidine mutagenesis. The mutant accumulated polyP at a level of 1500 nmol/mg protein—approximately 190 times that of the wild-type strain. PolyP extracted from the L. paracasei JCM 1163 significantly suppressed the oxidant-induced intestinal permeability in mouse small intestine. In conclusion, we have succeeded in breeding the polyP-accumulating Lactobacillus mutant that is expected to enhance intestinal barrier function.  相似文献   

14.
目的:探讨胆道梗阻合并胆道感染的病原学特征和危险因素,并分析胆道感染与肝脏损伤的关系。方法:回顾性分析250例胆道梗阻患者的临床资料,分析胆道梗阻合并胆道感染的病原菌分布和主要病原菌的耐药性,分析胆道梗阻合并胆道感染的危险因素,比较各组的肝功能指标[天冬氨酸氨基转移酶(AST)、丙氨酸氨基转移酶(ALT)、谷氨酰转移酶(GGT)、直接胆红素(DBIL)]和肝纤维化指标[层黏蛋白(LN)、透明质酸(HA)、Ⅲ型前胶原(PCⅢ)、Ⅳ型胶原(Ⅳ-C)]。结果:250例胆道梗阻中共有132例合并胆道感染,感染率为52.80%,共分离出病原菌150株,以革兰阴性菌和革兰阳性菌为主。粪肠球菌对红霉素的耐药率最高,屎肠球菌对林可霉素的耐药率最高,均对万古霉素的耐药率最低;大肠埃希菌和肺炎克雷伯菌均对氨苄西林的耐药率最高,对妥布霉素的耐药率最低。年龄≥60岁、有胆道手术史、肝功能Child-Pugh评分≥11分是胆道梗阻合并胆道感染的危险因素(P<0.05)。胆道感染组的AST、ALT、GGT、DBIL、LN、HA、PCⅢ、Ⅳ-C水平高于无胆道感染组和对照组,且无胆道感染组高于对照组(P<0.05)。结论:胆道梗阻患者胆道感染的发生率较高,并且胆道感染会进一步加重胆道梗阻患者的肝脏损伤,临床应根据其病原学特征和危险因素做好相应的防治工作。  相似文献   

15.
The gastrointestinal tract provides a physical barrier to the diffusion of foreign materials from the lumen into the circulatory system. Impairment of the intercellular tight junction (TJ) shield, which is the major determinant of intestinal barrier function, is associated with various diseases. Dietary flavonoids demonstrate various beneficial effects on our health; however, the information regarding their effects on TJ function is quite limited. To date, four flavonoids — epigallocatechin gallate (EGCG), genistein, myricetin and quercetin — have been reported to exhibit promotive and protective effects on intestinal TJ barrier functions. Genistein, a major soybean isoflavone, protects TJ barrier function against oxidative stress, acetaldehyde, enteric bacteria and inflammatory cytokines. Genistein blocks the tyrosine phosphorylation of the TJ proteins induced by oxidative stress and acetaldehyde, which results in the disassembly of the proteins from the junctional complex. Quercetin, a flavonol, enhances intestinal TJ barrier function through the assembly and expression of TJ proteins. The change in phosphorylation status is responsible for the quercetin-mediated assembly of TJ proteins. TJ protein induction has an additional role in this effect. This review presents the recent advances in our understanding of the flavonoid-mediated promotive and protective effects on intestinal TJ barrier function with a particular focus on intracellular molecular mechanisms.  相似文献   

16.
Clinical studies have suggested that so-called probiotic bacteria may be effective as therapy in inflammatory bowel disease. However, the molecular mechanisms of their interaction with the intestinal surface remain undefined. The influence of whole probiotic bacteria [Escherichia coli Nissle 1917 (EcN); probiotic mixture VSL#3 (PM)], bacterial cell lysates, and conditioned media on transepithelial resistance (TER), IL-8 secretion, mucin gene expression, and tight junction proteins were determined in T84 and HT-29 intestinal epithelial cells (IEC). In addition, effects on pathogen (Salmonella dublin)-induced alterations were analyzed. EcN as well as debris and cell extracts induced IL-8 secretion from IEC, whereas no such effect was observed following incubation with the PM. The PM and soluble protein(s) released from the PM increased TER, prevented pathogen-induced decrease in TER, and were shown to stabilize tight junctions. The PM induced expression of mucins in IEC, and these organisms as well as EcN diminished S. dublin-induced cell death. Inhibition of MAPKs with PD-98059 or SB-203580 significantly decreased alterations in IL-8 synthesis and mucin expression and affected the regulation of TER. Probiotics and protein(s) released by these organisms may functionally modulate the intestinal epithelium of the host by different mechanisms, including the competition of whole organisms for contact with the epithelial surface as well as stabilization of the cytoskeleton and barrier function and the induction of mucin expression. Gram-negative and gram-positive organisms differ in the mechanisms activated, and a combination of organisms might be more effective than the application of a single strain.  相似文献   

17.
Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease.  相似文献   

18.
Enterobacter sakazakii is an opportunistic pathogen and an occasional contaminant in powdered infant formula. Interaction between specific probiotics and E. sakazakii may reduce the risk of infection. The aim of this study was to characterize in vitro the ability of probiotics (alone and in combinations) to inhibit, compete with and displace the adhesion of E. sakazakii to immobilized human mucus and to assess their capacity to aggregate with pathogen. Specific probiotic strains have proved to aggregate E. sakazakii cells and, through competitive exclusion, inhibition and displacement of the adhered pathogen, were able to inhibit E. sakazakii action on intestinal mucus. The ability to inhibit and to displace adhered pathogen depended on both the probiotic and the pathogen, suggesting that several complementary mechanisms are involved in the processes. We suggest that the selection of specific probiotic strains and their combinations may be a useful means of counteracting E. sakazakii contamination in infant formula and thus to reduce the risk of emerging infection. This approach may also allow the development of new probiotic combinations to counteract the risks associated with other pathogens by improving the intestinal barrier against pathogens.  相似文献   

19.

Background

For a good probiotic candidate, the abilities to adhere to intestinal epithelium and to fortify barrier function are considered to be crucial for colonization and functionality of the strain. The strain Lactobacillus acidophilus LAB20 was isolated from the jejunum of a healthy dog, where it was found to be the most pre-dominant lactobacilli. In this study, the adhesion ability of LAB20 to intestinal epithelial cell (IECs) lines, IECs isolated from canine intestinal biopsies, and to canine, porcine and human intestinal mucus was investigated. Further, we studied the ability of LAB20 to fortify the epithelial cell monolayer and to reduce LPS-induced interleukin (IL-8) release from enterocytes.

Results

We found that LAB20 presented higher adhesion to canine colonic mucus as compared to mucus isolated from porcine colon. LAB20 showed adhesion to HT-29 and Caco-2 cell lines, and importantly also to canine IECs isolated from canine intestinal biopsies. In addition, LAB20 increased the transepithelial electrical resistance (TER) of enterocyte monolayers and thus strengthened the intestinal barrier function. The strain showed also anti-inflammatory capacity in being able to attenuate the LPS-induced IL-8 production of HT-29 cells.

Conclusion

In conclusion, canine indigenous strain LAB20 is a potential probiotic candidate for dogs adhering to the host epithelium and showing intestinal barrier fortifying and anti-inflammatory effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0337-9) contains supplementary material, which is available to authorized users.  相似文献   

20.
益生菌是调节机体微生态失衡的有效途径。肝功能异常影响肠道微生物,慢性肝衰竭、2型糖尿病、动脉粥样硬化相关心血管疾病等与肠道微生态失衡密切相关。同时肠道菌群亦受环境、遗传等复合条件影响,改变菌群组成可能导致疾病的发生发展。提倡益生菌对疾病的预防、治疗、预后,改善机体微环境,提高生命质量。近年来,益生菌、益生元、合生元三方面的研究飞速发展,对肠道益生菌研发已经取得一定成果。呼吸道作为与外界相通的腔道其优势菌群已经有相关报道,但对呼吸道益生菌的探索尚不明确,呼吸道内的优势菌是否可以制成益生菌制剂尚有待研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号