首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kim S  Bae YH 《Biomacromolecules》2003,4(6):1550-1557
Using a polymeric sulfonylurea (PSU) designed from glibenclamide, we examined the interactions of sulfonylurea with pancreatic islets rather than genetically remodeled beta-cell lines to clarify the biological roles of ATP-sensitive K+ (KATP) channels to which sulfonylurea binds. PSU enhanced insulin secretion from the islets with 10 nM (SU equivalent) treatment, especially at low glucose concentration, but its activity was inhibited by 100 microM diazoxide. Confocal microscopy visualized PSU interactions with the islet and revealed that the modulation of intracellular Ca2+ occurred in the same region of an islet where PSU was also bound. In quantification method of the confocal microscopic images, competition of PSU with glibenclamide on its binding sites and glucose inhibition against PSU binding were confirmed. In this study, it was concluded that the PSU was a comparable drug with glibenclamide and offered a new standard method to study intact islets.  相似文献   

2.
3.
Summary

Reductions in salinity can have adverse effects on larval development and larval survival in some invertebrate taxa but not others. Salinity tolerance of larvae may be particularly important in echinoderms because they are both poor ion regulators and stenohaline. I examined the effect of six levels of salinity (15, 18, 21, 24, 27 and 33 PSU) on survival and rate of development of larvae in the subtropical sea urchin Echinometra lucunter. In the short-term, mortality rate was significantly lower in 33 PSU than in all other salinities except 27 PSU, and it was significantly greater in 15 and 18 PSU than in all higher salinities. In the long-term, daily and cumulative mortality were significantly greater in 15 PSU than in most other salinities over 11 days of development (except for cumulative mortality in 18 PSU). They were significantly greater in 18 PSU than in 21 PSU or 33 PSU over a period of 13 days. Furthermore, daily mortality was significantly greater in 18 PSU than in 24 PSU or 27 PSU at 13 d after fertilization. Daily and cumulative mortality were significantly lower in 33 PSU than in 21, 24 or 27 PSU over a period of 17 days. Although in the control (33 PSU) 75% of larvae completed development to the 8-arm stage at 35 d, no larvae developed further than the 4-arm stage in 18, 21, 24 or 27 PSU; in 15 PSU, ~60% of larvae did not develop further than swimming blastulae. Since prolonged exposure to salinities as high as 27 PSU (frequently recorded in the adult habitat) can result in great larval losses, adaptive behaviours that prevent larvae from entering water layers of low salinity will enhance their chance for survival.  相似文献   

4.
Fetisova  Z. G. 《Molecular Biology》2004,38(3):434-440
In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structure optimization for light-harvesting antennae of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.  相似文献   

5.
In accordance with our concept of rigorous optimization of photosynthetic machinery by a functional criterion, this series of papers continues purposeful search in natural photosynthetic units (PSU) for the basic principles of their organization that we predicted theoretically for optimal model light-harvesting systems. This approach allowed us to determine the basic principles for the organization of a PSU of any fixed size. This series of papers deals with the problem of structural optimization of light-harvesting antenna of variable size controlled in vivo by the light intensity during the growth of organisms, which accentuates the problem of antenna structure optimization because optimization requirements become more stringent as the PSU increases in size. In this work, using mathematical modeling for the functioning of natural PSUs, we have shown that the aggregation of pigments of model light-harvesting antenna, being one of universal optimizing factors, furthermore allows controlling the antenna efficiency if the extent of pigment aggregation is a variable parameter. In this case, the efficiency of antenna increases with the size of the elementary antenna aggregate, thus ensuring the high efficiency of the PSU irrespective of its size; i.e., variation in the extent of pigment aggregation controlled by the size of light-harvesting antenna is biologically expedient.  相似文献   

6.
The native area of gammarids from the so-called ‘Caspian complex’, Pontogammarus robustoides (G.O. Sars, 1894), Obesogammarus crassus (G.O. Sars, 1894), Dikerogammarus haemobaphes (Eichwald, 1841) and D. villosus (Sowinsky, 1894), is associated with brackish waters. Over the last several decades they have colonized the European inland waters and part of the brackish Baltic Sea. It is believed that anthropogenic increase in the salinity of inland waters facilitated their expansion. However, the influence of salinity on the dispersal of gammarid species outside their native area is not fully understood. We tested the hypothesis that salinity was a major factor in determining distribution, based on the abundance of Gammaridae in three coastal areas of low salinity (brackish Baltic), i.e. 0.3, 3.4 and 7.3 PSU, successfully inhabited by them. Additionally, for the first time, the effect of water salinity on the osmoregulatory capacity of O. crassus was examined under laboratory conditions, for the salinities given above. The experiments showed that similarly as in the case of other Caspian complex species, salinity values of about 7 PSU create better conditions for osmoregulation in O. crassus than lower salinities (i.e. 0.3 and 3.4 PSU). In the environmental part of the study, we observed that only D. villosus achieved a significantly higher abundance in the area of 7.3 PSU. Thus, we concluded that in the range of 0.3–7.3 PSU, salinity is not a key factor governing the distribution of Ponto-Caspian gammarids.  相似文献   

7.
Response to selection and evolvability of invasive populations   总被引:3,自引:0,他引:3  
Lee CE  Remfert JL  Chang YM 《Genetica》2007,129(2):179-192
While natural selection might in some cases facilitate invasions into novel habitats, few direct measurements of selection response exist for invasive populations. This study examined selection response to changes in salinity using the copepod Eurytemora affinis. This copepod has invaded fresh water from saline habitats multiple times independently throughout the Northern Hemisphere. Selection response to a constant intermediate salinity (5 PSU) was measured in the laboratory for saline source and freshwater invading populations from the St. Lawrence drainage (North America). These populations were reared under three conditions: (1) native salinities (0 or 15 PSU) for at least two generations, (2) 5 PSU for two generations, and (3) 5 PSU for six generations. Full-sib clutches taken from populations reared under these three conditions were split across four salinities (0, 5, 15, and 25 PSU) to determine reaction norms for survival and development time. Contrasts in survival and development time across the three rearing conditions were treated as the selection response. Selection at 5 PSU resulted in a significant decline in freshwater (0 PSU) tolerance for both the saline and freshwater populations. Yet, evolutionary differences in freshwater tolerance persisted between the saline and freshwater populations. The saline and freshwater populations converged in their high-salinity (25 PSU) tolerance, with an increase in the freshwater population and decline in the saline population. Development time did not shift greatly in response to selection at 5 PSU. For all three rearing conditions, the freshwater population exhibited retarded larval development and accelerated juvenile development relative to the saline population. Results from this study indicate that both the saline and freshwater populations exhibit significant responses to selection for a fitness-related trait critical for invasions into a novel habitat. For the Symposium on “Evolvability and Adaptation of Invasive Species,” Society for the Study of Evolution 2004.  相似文献   

8.
Anger  Klaus  Riesebeck  Kim  P&#;schel  Cornelia 《Hydrobiologia》2000,426(1):161-168
The neotropical crab Armases miersii (Rathbun, 1897) breeds in supratidal rock pools, where great salinity variations occur. In laboratory experiments, all larval stages and the first juveniles were reared at six different salinities (5–55 PSU, intervals of 10 PSU). In five series of experiments, exposure to these conditions began either from hatching (Zoea I) or from the onset of successively later stages (Zoea II, III, Megalopa, Crab I). Growth was measured in terms of dry weight, carbon, nitrogen and hydrogen content. At osmotically extreme conditions (5 and 55 PSU, resp.), all stages showed minimum biomass accumulation; this was consistent with maximum mortality and longest duration of development (data presented in a separate paper). Successively later exposure to these salinities tended to reduce these effects. Lowest mortality and shortest time of development occurred generally at 15–25 PSU, indicating an optimum at moderately reduced salinities. This response pattern, however, was not congruent with that observed in growth. Biomass accumulation was initially maximum within a wide range of salinities (15–45 PSU), but in the Zoea II and III stages, this range tended to narrow and to shift towards higher salinities (35–45 PSU). These trends reversed in the Megalopa and Crab I, where maximum growth occurred again in a wider range and at lower salinities (15–35 PSU). The reduction of zoeal growth in moderately dilute media (15–25 PSU), which were optimal for survival and development, is interpreted as an energetic cost of hyper-osmoregulation, which begins already at hatching. Five PSU caused hypo-osmotic stress, exceeding in the long term the larval capacity for hyper-regulation. Poor zoeal survival and growth at 55 PSU are interpreted as effects of hyper-osmotic stress. In the Megalopa and Crab I, reduced growth at salinities 35 PSU may reflect the energetic costs of hypo-osmoreguation beginning in these stages. Our data suggest that the physiological adaptations of larval and early juvenile A. miersii allowing for survival and development in a physically harsh and unpredictable habitat imply a trade-off with reduced growth, due to energetic costs of osmoregulation.  相似文献   

9.
A mechanistic model is developed to present the photosynthetic response of phytoplankton to irradiance at the physiological level. The model is operated on photosynthetic units (PSU), and each PSU is assumed to have two states: reactive and activated. Light absorption that drives a reactive PSU into the activated state results from the effective absorption of the PSU. Transitions between the two states are asymmetrical in rate. A PSU in the reactive state becomes activated much faster than it recovers from the activated state to the reactive one. The turnover time for an activated PSU to transit into the reactive one is defined by the turnover time of the electron transport chain. The present model yields a photosynthesis-irradiance curve (PE-curve) in a hyperbola, which is described by three physiological parameters: effective cross-section (sigmaPSII), turnover time of electron transport chain (tau) and number of PSUs (N). The PE-curve has an initial slope of sigmaPSII x N, a half-saturated irradiance of 1/(tau sigmaPSII), and a maximal photosynthetic rate of N/tau at the saturated irradiance. The PE-curve from the present model is comparable to the empirical function based on the target theory described by the Poisson distribution.  相似文献   

10.
In this study, hypersaline media were used for ocean cultivation of the marine microalga Tetraselmis sp. KCTC12432BP for enhanced biomass and fatty acid (FA) productivity. Hypersaline media (55, 80, and 105 PSU) were prepared without sterilization by addition of NaCl to seawater obtained from Incheon, Korea. The highest biomass productivity was obtained at 55 PSU (0.16 g L?1 day?1) followed by 80 PSU (0.15 g L?1 day?1). Although the specific growth rate of Tetraselmis decreased at salinities higher than 55 PSU, prevention of contamination led to higher biomass productivity at 80 PSU than at 30 PSU (0.03 g L?1 day?1). FA content of algal biomass increased as salinity increased to 80 PSU, above which it declined, and FA productivity was highest at 80 PSU. Ocean cultivation of Tetraselmis was performed using 50-L tubular module photobioreactors and 2.5-kL square basic ponds, closed- and open-type ocean culture systems, respectively. Culturing microalgae in hypersaline medium (80 PSU) improved biomass productivities by 89 and 152% in closed and open cultures, respectively, compared with cultures with regular salinity. FA productivity was greatly improved by 369% in the closed cultures. The efficacy of salinity shift and N-deficiency to enhance FA productivity was also investigated. Lowering salinity to 30 PSU with N-starvation following cultivation at 80 PSU improved FA productivity by 19% in comparison with single-stage culture without N-deficiency at 30 PSU. The results show that salinity manipulation could be an effective strategy to improve biomass and FA productivity in ocean cultivation of Tetraselmis sp.  相似文献   

11.
Heat-injured cells of Listeria monocytogenes were recovered from heated raw milk containing noninjured Enterococcus faecium by combining a simple method for obtaining strict anaerobiosis with a novel enrichment broth, Penn State University broth (PSU broth). Strictly anaerobic conditions were rapidly achieved by adding 0.5 g of filter-sterilized cysteine per liter to PSU broth and then purging the preparation with N2 gas. Little resuscitation or growth occurred in strictly anaerobic PSU broth without lithium chloride because of overgrowth by E. faecium. The growth of E. faecium decreased dramatically with increasing LiCl concentration; LiCl concentrations of 8 and 10 g/liter were completely bacteriostatic. The mechanism of inhibition by LiCl appeared to involve competition with the divalent cations Ca2+ and Mg2+. Heat-injured L. monocytogenes consistently recovered and grew rapidly in strictly anaerobic PSU broth containing 4, 6, or 7 g of LiCl per liter. The use of strictly anaerobic PSU broth containing 7 g of LiCl per liter permitted detection of severely heat-injured L. monocytogenes in one simple recovery-enrichment step by eliminating oxygen toxicity and inhibiting the growth of background microflora, without preventing the resuscitation and subsequent growth of heat-injured L. monocytogenes. L. monocytogenes heated in raw milk at 62.8 degrees C for 10, 15, and 20 min could be consistently recovered from strictly anaerobic PSU broth enrichment cultures at 30 degrees C after 48, 96, and 144 h, respectively, and hence, use of PSU broth may result in better recovery of both injured and noninjured cells from foods than currently used U.S. Department of Agriculture and Food and Drug Administration preenrichment procedures.  相似文献   

12.
The individual components of the photosynthetic unit (PSU), the light-harvesting complexes (LH2 and LH1) and the reaction center (RC), are structurally and functionally known in great detail. An important current challenge is the study of their assembly within native membranes. Here, we present AFM topographs at 12 A resolution of native membranes containing all constituents of the PSU from Rhodospirillum photometricum. Besides the major technical advance represented by the acquisition of such highly resolved data of a complex membrane, the images give new insights into the organization of this energy generating apparatus in Rsp. photometricum: (i) there is a variable stoichiometry of LH2, (ii) the RC is completely encircled by a closed LH1 assembly, (iii) the LH1 assembly around the RC forms an ellipse, (iv) the PSU proteins cluster together segregating out of protein free lipid bilayers, (v) core complexes cluster although enough LH2 are present to prevent core-core contacts, and (vi) there is no cytochrome bc1 complex visible in close proximity to the RCs. The functional significance of all these findings is discussed.  相似文献   

13.
A combination of an amphipathic-indicator-dilution (ID) diffusing tracer 1,4[14C]butanediol (B) and a hydrophilic tracer ([14C]urea) (U) was hypothesized to provide a capillary surface area- (S) independent assessment of lung microvascular permeability (P). We performed ID studies on isolated perfused dog lungs and administered randomly two interventions, increasing P by alloxan infusion and reduction in S by lobar ligation. The ratio of PS product of U (PSU) to that for butanediol (PSB) was sensitive to changes in P yet insensitive to changes in S. We performed ID studies in which the dependence of PSU and PSB on flow, hematocrit, and plasma protein binding were examined. Measurements of PSU and PSB after flow and hematocrit were changed suggested that these factors have no significant independent effects. From ID and in vitro studies we also found that no significant binding of B to plasma proteins (albumin) occurred. We concluded that ID techniques using B and U provide a consistent measure of P, despite changes in S, hematocrit, plasma protein concentration, and recruitment.  相似文献   

14.
Using nuclear magnetic resonance spectroscopy, we identified and characterized accumulated compatible solutes in cells of the haptophyte alga Pavlova sp. strain CCMP504. The predominant organic solutes were d ‐1,4/2,5‐cyclohexanetetrol (CHT), 1,3,5/2,4‐cyclohexanepentol (CHP) and scyllo‐inositol. We then profiled the intracellular organic solutes present in Pavlova sp. grown in medium with salinity ranging from 23 practical salinity units (PSU) (hyposaline) to 35 PSU (optimum salinity for growth), to 47 PSU (hypersaline). The results of these analyses reveal progressive accumulation of CHT and CHP in response to increasing growth medium salinity. We also observed altered accumulation of CHT and CHP in samples subjected to salinity shock. To further characterize the CHT and CHP biosynthesis in Pavlova sp., we carried out stable isotope feeding experiments. Specific labeling of CHT and CHP with d ‐13C‐glucose suggested that d ‐glucose is a biosynthetic precursor of these cyclitols. The salinity‐induced accumulation of CHT and CHP suggests that these cyclitols act as compatible solutes. Our results therefore provide new evidence supporting classification of CHP as a compatible solute.  相似文献   

15.
By breeding selection for the extreme values of platelet serotonin level (PSL), two sublines of Wistar-derived rats, with constitutionally high or low PSL and platelet serotonin uptake (PSU), have been developed. Searching for the basis of these differences, we performed quantitative western blot analysis of serotonin transporter (5HTt) in platelet membranes isolated from both rat sublines. A polyclonal anti-5HTt antibody labeled a single, 5HTt-related 94 kDa protein band in platelet membranes, with significantly stronger intensity in membranes from rats that exhibited a high PSL. We conclude that the inherited differences in PSL and PSU in rats, following breeding selection, are determined by the level of 5HTt expression in platelet membranes.  相似文献   

16.
Variation of the distribution of bacteriochlorophyll a (BChl a) between external antenna (LH2) and core complexes (LH1 + RC) of the photosynthetic membrane of the sulfur bacterium Allochromatium minutissimum was studied at light intensities of 5 and 90 Wt/m2 in the temperature range of 12–43°C. The increase of light intensity was shown to result in a 1.5-to 2-times increase of a photosynthetic unit (PSU). PSU sizes pass through a maximum depending on growth temperature, and the increase of light intensity (5 and 90 Wt/m2) results in a shift of the maximal PSU size to higher temperatures (15 and 20°C, respectively). In the narrow temperature interval of ~14–17°C, the ratio of light intensity to PSU size is typical of phototrophs: lower light intensity corresponds to larger PSU size. The pattern of PSU size change depending on light intensity was shown to differ at extreme growth temperatures (12°C and over 35°C). The comparison of Alc. minutissimum PSU size with the data on Rhodobacter capsulatus and Rhodopseudomonas palustris by measuring the effective optical absorption cross-section for the reaction of photoinhibition of respiration shows a two to four times greater size of light-harvesting antenna for Alc. minutissimum, which seems to correspond to the maximum possible limit for purple bacteria.  相似文献   

17.
盐度波动对中国对虾稚虾蜕皮、生长和能量收支的影响   总被引:1,自引:0,他引:1  
采用实验生态学方法研究了在盐度为20的条件下,4个盐度波动幅度(2、4、6、8)对中国对虾稚虾蜕皮和生长的影响.结果表明:中国对虾的蜕皮率为13.3%~15.4%,处理间差异未达到显著水平;盐度波动幅度为4的情况下,对虾的特定生长率最大,用在生长上的能量最高,用于呼吸的能量最低,生长迅速;盐度波动幅度为2的情况下,中国对虾的摄食量最低;盐度波动幅度为2和4的情况下,对虾的食物转化效率最高;不同处理中国对虾用在蜕皮上的能量差异不显著.盐度波动幅度过大不利于中国对虾稚虾的生长,但对蜕皮无影响.  相似文献   

18.
The dominant seagrass in Florida Bay, Thalassia testudinum Banks ex König, is a stenohaline species with optimum growth around marine salinity (30-40 PSU). Previous studies have examined the responses of mature short shoots of T. testudinum to environmental stresses. Our goal was to assess responses of seedlings to changes in water chemistry in Florida Bay that might occur as part of the Comprehensive Everglades Restoration Plan (CERP). Specifically, we examined seedling survival, growth, photosynthesis, respiration and osmolality in response to hypo- and hyper-salinity conditions, as well as possible synergistic effects of depleted and elevated ammonium concentrations. The study was conducted in mesocosms on T. testudinum seedlings collected during August 2003 near Florida Bay. Hyper- and hypo-saline conditions were detrimental to the fitness of T. testudinum seedlings. Plants at 0 and 70 PSU exhibited 100% mortality and a significant decrease in survival was observed in the 10, 50 and 60 PSU treatments. Increased levels of ammonium further decreased growth in the lower salinity treatments. Seedlings in 30 and 40 PSU had the greatest growth. Quantum yield and relative electron transport rate, measured using PAM fluorometry, showed a decrease in photosynthetic performance on either side of the 30-40 PSU optimum. Tissue osmolality decreased significantly with decreased salinity but tissue remained consistently hyperosmotic to the media across all salinity treatments. Maintaining negative water potential and allocating more energy to osmoregulation may decrease the productivity of this species in salinity-stress conditions. Our results suggest that the salinity-tolerance limits of this seagrass at the seedling stage are not as broad as those reported for mature plants. Increased fresh water inflow, especially if co-occurring with an increase in water-column ammonium, could negatively affect successful recruitment of T. testudinum seedlings in northern regions of Florida Bay.  相似文献   

19.

Objective

Little is known about the effects of polysubstance use and cigarette smoking on brain morphometry. This study examined neocortical brain morphometric differences between abstinent polysubstance dependent and alcohol-only dependent treatment seekers (ALC) as well as light drinking controls (CON), the associations of cigarette smoking in these polysubstance users (PSU), and morphometric relationships to cognition and inhibitory control.

Methods

All participants completed extensive neuropsychological assessments and 4 Tesla brain magnetic resonance imaging. PSU and ALC were abstinent for one month at the time of study. Parcellated morphological data (volume, surface area, thickness) were obtained with FreeSurfer methodology for the following bilateral components: dorso-prefrontal cortex (DPFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and insula. Regional group differences were examined and structural data correlated with domains of cognition and inhibitory control.

Results

PSU had significantly smaller left OFC volume and surface area and trends to smaller right DPFC volume and surface area compared to CON; PSU did not differ significantly from ALC on these measures. PSU, however, had significantly thinner right ACC than ALC. Smoking PSU had significantly larger right OFC surface area than non-smoking PSU. No significant relationships between morphometry and quantity/frequency of substance use, alcohol use, or age of onset of heavy drinking were observed. PSU exhibited distinct relationships between brain structure and processing speed, cognitive efficiency, working memory and inhibitory control that were not observed in ALC or CON.

Conclusion

Polysubstance users have unique morphometric abnormalities and structure-function relationships when compared to individuals dependent only on alcohol and light drinking controls. Chronic cigarette smoking is associated with structural brain irregularities in polysubstance users. Further elucidation of these distinctive characteristics could help inform the development of targeted and thus potentially more effective treatments in this large but understudied population.  相似文献   

20.
Halophytes, such as seagrasses, predominantly form habitats in coastal and estuarine areas. These habitats can be seasonally exposed to hypo-salinity events during watershed runoff exposing them to dramatic salinity shifts and osmotic shock. The manifestation of this osmotic shock on seagrass morphology and phenology was tested in three Indo-Pacific seagrass species, Halophila ovalis, Halodule uninervis and Zostera muelleri, to hypo-salinity ranging from 3 to 36 PSU at 3 PSU increments for 10 weeks. All three species had broad salinity tolerance but demonstrated a moderate hypo-salinity stress response – analogous to a stress induced morphometric response (SIMR). Shoot proliferation occurred at salinities <30 PSU, with the largest increases, up to 400% increase in shoot density, occurring at the sub-lethal salinities <15 PSU, with the specific salinity associated with peak shoot density being variable among species. Resources were not diverted away from leaf growth or shoot development to support the new shoot production. However, at sub-lethal salinities where shoots proliferated, flowering was severely reduced for H. ovalis, the only species to flower during this experiment, demonstrating a diversion of resources away from sexual reproduction to support the investment in new shoots. This SIMR response preceded mortality, which occurred at 3 PSU for H. ovalis and 6 PSU for H. uninervis, while complete mortality was not reached for Z. muelleri. This is the first study to identify a SIMR in seagrasses, being detectable due to the fine resolution of salinity treatments tested. The detection of SIMR demonstrates the need for caution in interpreting in-situ changes in shoot density as shoot proliferation could be interpreted as a healthy or positive plant response to environmental conditions, when in fact it could signal pre-mortality stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号