首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purified mesophyll protoplasts from the C4 plant Digitaria sanguinalis were used to prepare intact mesophyll chloroplasts with low cytoplasmic contamination. The procedure involved breakage of protoplasts, differential centrifugation, partition in a dextran-polyethylene glycol two-phase system, and Percoll density gradient centrifugation. The final chloroplast preparation contained about 80% intact chloroplasts with a phosphoenolpyruvate carboxylase contamination of 0.2–1% of the original protoplast activity, corresponding to 1–6 μmol 14CO2 fixed/mg Chl h. The purified chloroplasts showed substrate-dependent oxygen evolution in the range of 40–150 μmol substrate reduced/mg Chl h, with phosphoglycerate or oxaloacetate as substrate. Both reactions were stimulated 1.5 fold by pyruvate and further by addition of the other substrate. These measurements indicated that phosphoglycerate reduction was limited by substrate transport across the chloroplast envelope. Without added substrate, the chloroplasts consumed oxygen via pseudo-cyclic electron transport in the light. Also this reaction was stimulated by pyruvate. Phosphoglycerate-dependent oxygen evolution was inhibited by Pi and by phosphoenolpyruvate to about the same extent with purified chloroplasts, but only by Pi with protoplast extracts. This suggests that phosphoglycerate, Pi and phosphoenolpyruvate share a common carrier, similar to the Pi-translocator in C3 chloroplasts, and that the lack of inhibition obtained with phosphoenolpyruvate and unpurified chloroplasts is artefactual, possibly due to oxaloacetate formation from added phosphoenolpyruvate and concomitant stimulation of oxygen evolution by oxaloacetate reduction. Furthermore, the results suggest that phosphoenolpyruvate is transported with a Km similar to that of Pi in C4 mesophyll chloroplasts.  相似文献   

2.
Photosynthetic activities of bundle sheath cell strands isolated from several C4 pathway species were examined. These included species that decarboxylate C4 acids via either NADP-malic enzyme (Zea mays, NADP-malic enzyme-type), NAD-malic enzyme (Atriplex spongiosa and Panicum miliaceum, NAD-malic enzyme-type) or phosphoenolpyruvate carboxykinase (Chloris gayana and Panicum maximum, phosphoenolpyruvate carboxykinase-type). Preparations from each of these species fixed 14CO2 at rates ranging between 1.2 and 3.5 μmol min?1 mg?1 of chlorophyll, with more than 90% of the 14C being assimilated into Calvin cycle intermediates. With added HCO3? the rate of light-dependent O2 evolution ranged between 2 and 4 μmol min?1 mg?1 of chlorophyll for cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species but with Z. mays cells there was no O2 evolution detectable. Most of the 14CO2 fixed by Z. mays cells provided with H14CO3? plus ribose 5-phosphate accumulated in the C-1 of 3-phosphoglycerate. However, 3-phosphoglycerate reduction was increased several fold when malate was also provided. Cells from all species rapidly decarboxylated C4 acids under appropriate conditions, and the CO2 released from the C-4 carboxyl was reassimilated via the Calvin cycle. Malate decarboxylation by Z. mays cells was dependent upon light and an endogenous or exogenous source of 3-phosphoglycerate. Bundle sheath cells of NAD-malic enzyme-type species rapidly decarboxylated [14C]malate when aspartate and 2-oxoglutarate were also provided, and [14C]aspartate was decarboxylated at similar rates when 2-oxoglutarate was added. Cells from phosphoenolpyruvate carboxykinase-type species decarboxylated [14C]aspartate when 2-oxoglutarate was added and they also catalyzed a slower decarboxylation of malate. Cells from NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type species evolved O2 in the light when C4 acids were added. These results are discussed in relation to proposed mechanisms for photosynthetic metabolism in the bundle sheath cells of species utilizing C4 pathway photosynthesis.  相似文献   

3.
Stomatal movement is an energetic oxygen-requiring process. In the present study, the effect of oxygen concentration on mitochondrial respiratory activity and red-light-dependent photosynthetic oxygen evolution by Vicia faba and Brassica napus guard cell protoplasts was examined. Comparative measurements were made with mesophyll cell protoplasts isolated from the same species. At air saturated levels of dissolved oxygen in the protoplast suspension media, respiration rates by mesophyll protoplasts ranged from 6 to 10μmoles O2 mg?1 chl h?1, while guard cell protoplasts respired at rates of 200–300 μmoles O2 mg chl?1 h?1, depending on the species. Lowering the oxygen concentration below 50–60 mmol m?3 resulted in a decrease in guard cell respiration rates, while rates by mesophyll cell protoplasts were reduced only at much lower concentrations of dissolved oxygen. Rates of photosynthesis in mesophyll cell protoplasts isolated from both species showed only a minor reduction in activity at low oxygen concentrations. In contrast, photosynthesis by guard cell protoplasts isolated from V. faba and B. napus decreased concomitantly with respiration. Oligomycin, an inhibitor of oxidative phos-phorylation, reduced photosynthesis in mesophyll cell protoplasts by 27–46% and in guard cell protoplasts by 51–58%. The reduction in both guard cell photosynthesis and respiration following exposure to low oxygen concentrations suggest close metabolic coupling between the two activities, possibly mediated by the availability of substrate for respiration associated with photosynthetic electron transport activity and subsequent export of redox equivalents.  相似文献   

4.
Abstract The chloroplast ultrastructure, especially the thylakoid organization, the polypeptide composition of the thylakoid membranes and photosynthetic O2 evolution rate, chlorophyll (Chl) content and Chi a/b ratio were studied in leaves of nine plants growing in contrasting biotopes in the wild in South Finland. All the measurements were made at the beginning of the period of main growth on leaves approaching full expansion, when the CO2-saturated O2 evolution rate (measured at 20°C and 1500 μmol photons m?2s?1) was at a maximum, ranging from 19.2 to 6.9 μmol O2 cm?2 h?1. Among the species, the Chi a/b ratio varied between 3.75 and 2.71. In the mesophyll chloroplasts, the ratio of the total length of appressed to non-appressed thylakoid membranes varied between 1.07 and 1.79, the number of partitions per granum varied between 2.8 and 12.0 and the grana area between 21 and 42% of the chloroplast area. There was a significant relationship between the rate of O2 evolution of the leaf discs and the thylakoid organization in the mesophyll chloroplasts. The higher the O2 evolution rate, the lower was the ratio of the total length of appressed to non-appressed thylakoid membranes and also the lower the grana area. Although the relationship of the photosynthetic rate with the Chi content and the Chi a/b ratio of the leaves was not as clear, a significant negative correlation existed between the Chi a/b ratio and the ratio of appressed to non-appressed thylakoid membranes, indicating lateral heterogeneity in the distribution of different Chl- protein complexes.  相似文献   

5.
A technique has been developed for the enzymatic isolation of leaf cells from the Crassulacean acid-metabolism plant Sedum telephium. The cells exhibited high activity in both 14CO2 incorporation (30–70 mol CO2 mg-1 chlorophyll h-1) and O2 evolution in the presence of bicarbonate (60–110 mol O2 mg-1 chlorophyll h-1). Half-maximum saturation of 14CO2 incorporation occurred at a bicarbonate concentration of ca. 2 mM (20 M CO2) at pH 8.4 and 30°C. Two types of light-dependent O2 evolution are reported: O2 evolution in the absence of exogenously supplied bicarbonate (endogenous O2 evolution), and bicarbonate-stimulated O2 evolution. Oxygen evolution in the presence of approximately ambient concentrations of CO2 appeared to be a combination of the endogenous O2 evolution and O2 evolution from fixation of the exogenously supplied CO2.Abbreviations CAM Crassulacean acid metabolism - cirlo chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - PEP phosphoenolpyruvate - RuDP ribulose-1,5-diphosphate  相似文献   

6.
7.
J. W. Anderson  D. A. Walker 《Planta》1983,159(3):247-253
(Ammonia plus 2-oxoglutarate)-dependent O2 evolution by intact chloroplasts was enhanced three- to five fold by 2 mM L- and D-malate, attaining rates of 9–15 μmol mg-1 Chl h-1. Succinate and fumarate also promoted activity but D-aspartate and, in the presence of aminooxyacetate, L-aspartate inhibited the malate-promoted rate. A reconstituted chloroplast system supported (ammonia plus 2-oxoglutarate)-dependent O2 evolution at rates of 6-11 μmol mg-1 Chl h-1 in the presence of MgCl2, NADP(H), ADP plus Pi (or ATP), ferredoxin and L-glutamate. The concentrations of L-glutamate and ATP required to support 0.5 V max were 5 mM and 0.25 mM, respectively. When the reaction was initiated with NH4Cl, O2 evolution was preceded by a lag phase before attaining a constant rate. The lag phase was shortened by addition of low concentrations of L-glutamine or by preincubating in the dark in the presence of glutamate, ATP and NH4Cl. Oxygen evolution was inhibited by 2 mM azaserine and, provided it was added initially, 2 mM methionine sulphoximine. The (ammonia plus 2-oxoglutarate)-dependent O2 evolution was attributed to the synthesis of glutamine from NH4Cl and glutamate which reacted with 2-oxoglutarate in a reaction catalysed by ferredoxin-specific glutamate synthase using H2O as the ultimate electron donor. The lag phase was attributed to the establishment of a steady-state pool of glutamine. L-Malate did not affect the activity of the reconstituted system.  相似文献   

8.
W. Kaiser  W. Urbach 《BBA》1976,423(1):91-102
1. Dihydroxyacetone phosphate in concentrations ? 2.5 mM completely inhibits CO2-dependent O2 evolution in isolated intact spinach chloroplasts. This inhibition is reversed by the addition of equimolar concentrations of Pi, but not by addition of 3-phosphoglycerate. In the absence of Pi, 3-phosphoglycerate and dihydroxyacetone phosphate, only about 20% of the 14C-labelled intermediates are found in the supernatant, whereas in the presence of each of these substances the percentage of labelled intermediates in the supernatant is increased up to 70–95%. Based on these results the mechanism of the inhibition of O2 evolution by dihydroxyacetone phosphate is discussed with respect to the function of the known phosphate translocator in the envelope of intact chloroplasts.2. Although O2 evolution is completely suppressed by dihydroxyacetone phosphate, CO2 fixation takes place in air with rates of up to 65μ mol · mg?1 chlorophyll · h?1. As non-cyclic electron transport apparently does not occur under these conditions, these rates must be due to endogenous pseudocyclic and/or cyclic photophosphorylation.3. Under anaerobic conditions, the rates of CO2 fixation in presence of dihydroxyacetone phosphate are low (2.5–7 μmol · mg?1 chlorophyll · h?1), but they are strongly stimulated by addition of dichlorophenyl-dimethylurea (e.g. 2 · 10?7 M) reaching values of up to 60 μmol · mg?1 chlorophyll · h?1. As under these conditions the ATP necessary for CO2 fixation can be formed by an endogenous cyclic photophosphorylation, the capacity of this process seems to be relatively high, so it might contribute significantly to the energy supply of the chloroplast. As dichlorophenyl-dimethylurea stimulates CO2 fixation in presence of dihydroxyacetone phosphate under anaerobic but not under aerobic conditions, it is concluded that only under anaerobic conditions an “overreduction” of the cyclic electron transport system takes place, which is removed by dichlorophenyl-dimethylurea in suitable concentrations. At concentrations above 5 · 10?7 M dichlorophenyl-dimethylurea inhibits dihydroxyacetone phosphate-dependent CO2 fixation under anaerobic as well as under aerobic conditions in a similar way as normal CO2 fixation. Therefore, we assume that a properly poised redox state of the electron transport chain is necessary for an optimal occurrence of endogenous cyclic photophosphorylation.4. The inhibition of dichlorophenyl-dimethylurea-stimulated CO2 fixation in presence of dihydroxyacetone phosphate by dibromothymoquinone under anaerobic conditions indicates that plastoquinone is an indispensible component of the endogenous cyclic electron pathway.  相似文献   

9.
A mass spectrometric method combining 16O/18O and 12C/13C isotopes was used to quantify the unidirectional fluxes of O2 and CO2 during a dark to light transition for guard cell protoplasts and mesophyll cell protoplasts of Commelina communis L. In darkness, O2 uptake and CO2 evolution were similar on a protein basis. Under light, guard cell protoplasts evolved O2 (61 micromoles of O2 per milligram of chlorophyll per hour) almost at the same rate as mesophyll cell protoplasts (73 micromoles of O2 per milligram of chlorophyll per hour). However, carbon assimilation was totally different. In contrast with mesophyll cell protoplasts, guard cell protoplasts were able to fix CO2 in darkness at a rate of 27 micromoles of CO2 per milligram of chlorophyll per hour, which was increased by 50% in light. At the onset of light, a delay observed for guard cell protoplasts between O2 evolution and CO2 fixation and a time lag before the rate of saturation suggested a carbon metabolism based on phosphoenolpyruvate carboxylase activity. Under light, CO2 evolution by guard cell protoplasts was sharply decreased (37%), while O2 uptake was slowly inhibited (14%). A control of mitochondrial activity by guard cell chloroplasts under light via redox equivalents and ATP transfer in the cytosol is discussed. From this study on protoplasts, we conclude that the energy produced at the chloroplast level under light is not totally used for CO2 assimilation and may be dissipated for other purposes such as ion uptake.  相似文献   

10.
Cells of potato (Solanum tuberosum L.) were obtained which were capable of photoautotrophic growth in liquid suspension culture under a photon flux density of 90–110 μmol m?2 s?1 PAR and in an atmosphere enriched with 2% CO2. These photoautotrophic cells contained between 100 to 200 μg Chl (g fresh weight)?1 and fixed CO2 at a maximum rate of 16 μmol CO2 (g fresh weight)?1h?1. In order to obtain cells capable of photoautotrophic growth it was necessary to adapt highly chlorophyllous heterotrophic cells (>50 μg Chl (g fresh weight)?1) for growth in medium with 2.5 g sucrose 1?1 (photomixotrophic cells). The photomixotropic cells had a Chl content of ca 100 μg Chl (g fresh weight)?1 and were capable of photosynthetic activity which allowed them to survive after sugars had been depleted from the medium. It was from the photomixotrophic cells that cells capable of photoautotrophic growth were obtained. Heterotrophic cells initially established in liquid medium with 25 g sucrose I?1 from chlorophyllous callus contained about 50 to 150 μg Chl (g fresh weight)?1. However, after 5 to 10 passages the Chl content decreased to a maximum of 15 μg Chl (g fresh weight)?1. These cells could not be adapted to photomixotrophic or photoautotrophic growth. These cells also were not able to regain Chl or initiate high rates of CO2 fixation during the stationary phase of growth as did photomixotrophic cells or chlorophyllous heterotrophic cells. The loss of Chl exhibited by the cells during adaption to heterotrophic growth could be attributed at least in part to unbalanced growth (when cell division and growth exceeds Chl accumulation). Sucrose appeared to have an inhibitory effect directly on photosynthesis independent of Chl accumulation.  相似文献   

11.
Total respiration (vT) increased after exposure to UV, but a decrease in the capacity of SHAM-sensitive-alternative respiration (Valt) was accompanied by an increase in residual respiration (vres). The capacity for CN sensitive-cytochrome c respiration (Vcyt) was not inhibited by UV-A. After 4 h of irradiation of high-CO2-grown cells of Chlamydomonas reinhardtii with UV-A (2 μW. CM?2) in the presence of white light (300μE.m?2.s?1), the capacity of Vast was reduced from 10 to 4 μmol O2. mg?1Chl.h?1, a 60 % reduction. After a similar exposure to UV-A, the capacity of Valt in pea leaves was reduced from 13 to 5 μmol O2.g?1 fr wt.h?1. Exposure to UV-C was not inhibitory, but UV-B caused up to 25% inhibition of the Valt. Twenty to 48 h after exposure to UV-A radiation, the capacity of alternative respiration had recovered. UV-A inhibition of the alternative respiration was consistent with UV-A absorption by quinones, except that UV-A did not inhibit the cyt c pathway of electron transport that also involves the ubiquinones.  相似文献   

12.
C. K. M. Rathnam 《Planta》1979,145(1):13-23
The potential for glycolate and glycine metabolism and the mechanism of refixation of photorespiratory CO2 in leaves of C4 plants were studied by parallel inhibitor experiments with thin leaf slices, different leaf cell types and isolated mitochondria of C3 and C4 Panicum species. CO2 evolution by leaf slices of P. bisulcatum, a C3 species, fed glycolate or glycine was light-independent and O2-sensitive. The C4 P. maximum and P. miliaceum leaf slices fed glycolate or glycine evolved CO2 in the dark but not in the light. In C4 species, dark CO2 evolution was abolished by the addition of phosphoenolpyruvate (PEP)4. The addition of maleate, a PEP carboxylase inhibitor, resulted in photorespiratory CO2 efflux by C4 leaf slices in the light also. However, PEP and maleate had no effect on either glycolate-dependent O2 uptake by the C4 leaf slices or on glycolate and glycine metabolism in C3 leaf slices. The rate of photorespiratory CO2 evolution in the C3 Panicum species was 3 times higher than that observed with the C4 species. The ratio of glycolate-dependent CO2 evolution to O2 uptake in both groups was 1:2. Isolated C4 mesophyll protoplasts or their mitochondria did not metabolize glycolate or glycine. However, both C3 mesophyll protoplasts and C4 bundle sheath strands readily metabolized glycolate and glycine in a light-independent, O2-sensitive manner, and the addition of PEP or maleate had no effect. C4 bundle sheath- and C3-mitochondria were capable of oxidizing glycine. This oxidation was linked to the mitochondrial electron transport chain, was coupled to three phosphorylation sites and was sensitive to electron transport inhibitors. C4 bundle sheath- and C3-mitochondrial glycine decarboxylation was stimulated by oxaloacetate and NAD had no effect. In marked contrast, mitochondria isolated from C4 mesophyll cells were incapable of oxidizing or decarboxylating added glycine. The results suggest that in leaves of C4 plants bundle sheath cells are the primary site of O2-sensitive photorespiratory CO2 evolution and the PEP carboxylase present in the mesophyll cells has the Potential for efficiently refixing CO2 before it escapes out of the leaf. The relative role of the PEP carboxylase mediated CO2 pump and reassimilation of photorespiratory CO2 are discussed in relation to the apparent lack of photorespiration in leaves of C4 species.Abbreviations BSA bovine serum albumin - Chl chlorophyll - PEP phosphoenolpyruvate - Rbu-P 2 ribulose 1,5-bisphosphate - Rib-5-P ribose-5-phosphate - Ru-5-P ribuluse-5-phosphate - FCCP carbonyl cyanide p-trifluoromethoxyphenylhydrazone Journal Series Paper, New Jersey Agricultural Experiment Station  相似文献   

13.
Isolated mesophyll protoplasts, and protoplast extracts containing intact chloroplasts, from the C4 species Digitaria sanguinalis have been used to study Compartmentation and export of C4 acids, using different C3 precursors as substrate for 14CO2 fixation. Mg2+ was necessary for maximum 14CO2 fixation rates with both protoplasts and protoplast extracts, whereas Mg2+ was inhibitory for oxaloacetate and phosphoglycerate reduction. This inhibition could be overcome by preincubating the materials in the light with excess of EDTA before addition of Mg2+. Under these conditions pyruvate as substrate for 14CO2 fixation induced mainly malate formation, whereas phosphoglycerate as substrate induced oxaloacetate formation, indicating competition for available NADPH between oxaloacetate and phosphoglycerate reduction. Oxaloacetate could be exported from the protoplasts at rates comparable to the rates of 14CO2 fixation in intact leaves (200 μmol/mg Chl × h). This product probably passed the plasma membrane by simple diffusion, whereas the export of malate and aspartate seemed to be regulated, with the size of the intraprotoplast pool being relatively independent of the export rate. It is concluded that transport via the plasma membrane-cell wall path may play a role in metabolite flow during photosynthesis in C4 plants.  相似文献   

14.
Huber SC 《Plant physiology》1978,62(3):321-325
Magnesium was most inhibitory to photosynthetic reactions by intact chloroplasts when the magnesium was added in the dark before illumination. Two millimolar MgCl2, added in the dark, inhibited CO2-dependent O2 evolution by Hordeum vulgare L. and Spinacia oleracea L. (C3 plants) chloroplasts 70 to 100% and inhibited (pyruvate + oxaloacetate)-dependent O2 evolution by Digitaria sanguinalis L. (C4 plant) mesophyll chloroplasts from 80 to 100%. When Mg2+ was added in the light, O2 evolution was reduced only slightly. O2 evolution in the presence of phosphoglycerate was less sensitive to Mg2+ inhibition than was CO2-dependent O2 evolution.

Magnesium prevented the light activation of several photosynthetic enzymes. Two millimolar Mg2+ blocked the light activation of NADP-malate dehydrogenase in D. sanguinalis mesophyll chloroplasts, and the light activation of phosphoribulokinase, NADP-linked glyceraldehyde-3-phosphate dehydrogenase, and fructose 1,6-diphosphatase in barley chloroplasts. The results suggest that Mg2+ inhibits chloroplast photosynthesis by preventing the light activation of certain enzymes.

  相似文献   

15.
Cells were isolated by enzymic digestion from a number of aquatic macrophytes and their photosynthetic activities were determined. Eichhornia crassipes (Mart.) Solms, Myriophyllum spicatum L. and M. brasiliense Cambess provided photosynthetically-active cells after digestion with commercial pectinase. Cells from emergent leaves of M. brasiliense were approximately 3 times more active than cells from submersed leaves (56.1 vs. 17.4 μmoles CO2 mg?2 Chl h?1). Cells could be isolated from E. crassipes by grinding as well as by digestion, but the former were less active (3.1 vs. 24.2 μmoles CO2 mg Chl h?1). Attempts to isolate cells from Hydrilla verticillata (L.f.) Royle or Potamogeton pectinatus L. were not successful.  相似文献   

16.
Mesophyll protoplasts of pea required only 74.1 μM CO2 for maximal photosynthesis, unlike chloroplasts, which required up to 588 μM CO2. Such a markedly low requirement for CO2 could be because of an internal carbon source and/or a CO2 concentrating mechanism in mesophyll protoplasts. Ethoxyzolamide (EZA), an inhibitor of internal carbonic anhydrase (CA) suppressed photosynthesis by mesophyll protoplasts at low CO2 (7.41 μM) but had no significant effect at high CO2 (741 μM). However, acetazolamide, another inhibitor of CA, did not exert as much dramatic effect as EZA. Three photorespiratory inhibitors, aminoacetonitrile or glycine hydroxamate (GHA) or aminooxyacetate inhibited markedly photosynthesis at low CO2 but not at high CO2. Inhibitors of glycolysis or tricarboxylic acid cycle (NaF, sodium malonate) or phosphoenolpyruvate carboxylase (3,3‐dichloro‐2‐dihydroxy phosphinoyl‐methyl‐2‐propenoate) had no significant effect on photosynthesis. The CO2 requirement of protoplast photosynthesis and the sensitivity of photosynthesis to EZA were much higher at low oxygen (65 nmol ml?1) than that at normal oxygen (212 nmol ml?1). In contrast, the inhibitory effect of photorespiratory inhibitors on protoplast photosynthesis was similar in both normal and low oxygen medium. The marked elevation of glycine/serine ratio at low O2 or in presence of GHA confirmed the suppression of photorespiratory decarboxylation by GHA. While demonstrating interesting difference between the response of protoplasts and chloroplasts to CO2, we suggest that photorespiration could be a significant source of CO2 for photosynthesis in mesophyll protoplasts at limiting CO2 and at atmospheric levels of oxygen. Obviously, carbonic anhydrase is essential to concentrate or retain CO2 in mesophyll cells.  相似文献   

17.
Abstract. The photosynthetic characteristics of Elodea nuttallii grown in wastewater in continuous flow reactors in a greenhouse were investigated. The diurnal changes in dissolved inorganic carbon (DIC), dissolved oxygen (DO) and pH were monitored. Photosynthesis removed both CO2(aq) and HCO3? from the reactors. A stoichiometry of 1.19:1 was observed between HCO3? removal during photosynthesis and OH? production during photosynthesis, consistent with theories regarding direct bicarbonate utilization. In laboratory experiments, the light compensation points (гPPFD) were similar (31–35μmol m?2 s?1) to reported values for other macrophytes; however, the light saturation level was high (1100μmol m?2 s?1) and similar to values reported for aerial portions Of heterophyllous macrophytes. The kinetics of photosynthetic oxygen evolution (Km (CO2) = 96mmol m?3; Vmax= 133mmol g?1 Chl h?1) and the CO2 compensation point (г= 44cm3 m?3) suggested an adaptive, low photorespiratory state in response to low carbon concentrations. Photosynthetic Vmax values were slightly, but significantly higher (P 0.001) at pH 8.0 compared to pH 4.5. While CO2 utilization at pH 8 could account for most of the observed phototsynthetic rates, an HCO3? component was present, suggesting two separate transport systems for HCO3? and CO2(aq) in E. nuttallii. The activity of RUBISCO (160.3 mmol g?1 Chl h?1 was one of the highest reported values for aquatic macrophytes. Compared to RUBISCO, we observed lower activities of the β-carboxylating enzymes phopho enolpyruvate carboyxlase (PEPcase), 24.1 mmol g?1 Chl h?1; phosphor enol pyruvate carboxykinase (PEPCKase), 14 mmol g?1 Chl h?1. This suggests that the potential light-independent fixation of carbon in E. nuttallii was much less than RUBISCO-dependent fixation. The RUBISCO/PEPcase ratio was 6.6, indicating that E. nuttallii was similar to Myriophyllum sp. in possessing a physiological adaptation to low CO2 levels which is hypothesized to include carbonic anhydrase (CA) and an active transport system for HCO3?. CA levels were surprisingly low in E. nuttallii (14.2 EUmg Chl?).  相似文献   

18.
Mitochondria isolated from the Crassulacean acid metabolism plant Sedum praealtum were demonstrated to decarboxylate added malate at basal rates of 30–50 μmol mg?1 original chlorophyll h?1. The basal rate could be stimulated markedly by the addition of ADP, oxaloacetic acid, an uncoupler of oxidative phosphorylation, or NAD, with maximum rates of 70–100 μmol mg?1 original chlorophyll h?1 observed. These observed rates were high enough to account for a large proportion of the estimated rate of malate decarboxylation in vivo. The major products of malate oxidation by the mitochondria in most cases were found to be pyruvate and CO2, indicating that malate oxidation in these mitochondria proceeds mainly through NAD malic enzyme rather than NAD malate dehydrogenase. Under conditions employed little of the pyruvate formed was further oxidized, suggesting a fate other than oxidation (conversion to starch) for this pyruvate. Malate decarboxylation by mitochondria and by partially purified NAD malic enzyme was markedly inhibited by NaHCO3. A possible physiological role is suggested for this inhibition as a feedback control on the enzyme.  相似文献   

19.
Activities of ribulose-1,5-bisphosphate carboxylase and rates of photosynthetic O2 evolution were measured in guard-cell and mesophyll protoplasts from Vicia faba. The ribulose-1,5-bisphosphate carboxylase activity of guard-cell protoplasts was 30% of that of mesophyll protoplasts; however, the O2 evolution rate was 3 times higher in guard-cell protoplasts than in mesophyll protoplasts on a chlorophyll basis. When the dark-adapted, guard-cell protoplasts were illuminated by red light, O2 was evolved with an induction period, which became shorter when the protoplasts were reilluminated. High activity of irreversible NADP-glyceraldehyde-3-phosphate dehyrogenase was found in guard-cell protoplasts. Several lines of evidence revealed that there was virtually no contamination by mesophyll cells in guard-cell preparations. These results indicate that guard cells fix CO2 photosynthetically and imply that the cells utilize a considerable proportion of reducing equivalents from water for reactions other than CO2 fixation.  相似文献   

20.
Protoplasts were prepared from Ulva fasciata Delile, and their photosynthetic performance was measured and compared with that of thalli discs. These protoplasts maintained maximal rates of photosynthesis as high as those of thalli (up to 300 μmol O2·mg chlorophyll?1·h?1) for several hours after preparation and were therefore considered suitable for kinetic studies of inorganic carbon utilization. The photosynthetic K1/2(inorganic carbon) at pH 6.1 was 3.8 μM and increased to 67, 158, and 1410 μM at the pH values 7.0, 7.9, and 8.9, respectively. Compared with these protoplasts, thalli had a much lower affinity for CO2 but approximately the same affinity for HCO3?. Comparisons between rates of photosynthesis and the spontaneous dehydration of HCO3? (at 50 μM inorganic carbon) revealed that photosynthesis of both protoplasts (which lacked apparent activity of extracellular/surface-bound carbonic anhydrase) and thalli (which were only 25% inhibited by the external carbonic anhydrase inhibitor acetazolamide) could not be supported by CO2 formation in the medium at the higher pH values, indicating HCO3? uptake. Since both protoplasts and thalli were sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulfonate, we suggest that HCO3? transport was facilitated by the membrane-located anion exchange protein recently reported to function in certain Ulva thalli. These findings suggest that the presence of a cell wall may constitute a diffusion barrier for CO2, but not for HCO3?, utilization under natural seawater conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号