首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Whether the diaphragm retains a vasodilator reserve at maximal exercise is controversial. To address this issue, we measured respiratory and hindlimb muscle blood flows and vascular conductances using radiolabeled microspheres in rats running at their maximal attainable treadmill speed (96 +/- 5 m/min; range 71-116 m/min) and at rest while breathing either room air or 10% O(2)-8% CO(2) (balance N(2)). All hindlimb and respiratory muscle blood flows measured increased during exercise (P < 0.001), whereas increases in blood flow while breathing 10% O(2)-8% CO(2) were restricted to the diaphragm only. During exercise, muscle blood flow increased up to 18-fold above rest values, with the greatest mass specific flows (in ml. min(-1). 100 g(-1)) found in the vastus intermedius (680 +/- 44), red vastus lateralis (536 +/- 18), red gastrocnemius (565 +/- 47), and red tibialis anterior (602 +/- 44). During exercise, blood flow was higher (P < 0.05) in the costal diaphragm (395 +/- 31 ml. min(-1). 100 g(-1)) than in the crural diaphragm (286 +/- 17 ml. min(-1). 100 g(-1)). During hypoxia+hypercapnia, blood flows in both the costal and crural diaphragms (550 +/- 70 and 423 +/- 53 ml. min(-1). 100 g(-1), respectively) were elevated (P < 0.05) above those found during maximal exercise. These data demonstrate that there is a substantial functional vasodilator reserve in the rat diaphragm at maximal exercise and that hypoxia + hypercapnia-induced hyperpnea is necessary to elevate diaphragm blood flow to a level commensurate with its high oxidative capacity.  相似文献   

2.
Little attention has focused on sympathetic influences on skeletal muscle blood flow at the onset of exercise. We hypothesized that 1) the sympathetic nervous system constrains muscle blood flow and 2) the decline from peak blood flow is mediated by increasing sympathetic vasoconstrictor tone. Mongrel dogs (n = 7) ran on a treadmill after intra-arterial infusion of saline (control) or combined alpha(1)- and alpha(2)-adrenergic blockade (prazosin and rauwolscine). Immediate and rapid increases in hindlimb blood flow occurred at commencement of exercise with peak iliac blood flows averaging 933 +/- 79 and 1,227 +/- 90 ml/min during control and blockade conditions, respectively. At 1 min of exercise, hindlimb blood flow had decreased to 629 +/- 54 and 1,057 +/- 89 ml/min. In the absence of sympathetic vasoconstrictor tone, there was an enhanced peak blood flow at the onset of exercise. In addition, alpha-blockade attenuated the overshoot of hindlimb blood flow compared with the control condition. These data suggest that an immediate and sustained increase in sympathetic outflow restrains hindlimb blood flow at the onset of exercise and is responsible, at least in part, for an overshoot of blood flow to exercising skeletal muscle.  相似文献   

3.
The muscle pump theory holds that contraction aids muscle perfusion by emptying the venous circulation, which lowers venous pressure during relaxation and increases the pressure gradient across the muscle. We reasoned that the influence of a reduction in venous pressure could be determined after maximal pharmacological vasodilation, in which the changes in vascular tone would be minimized. Mongrel dogs (n = 7), instrumented for measurement of hindlimb blood flow, ran on a treadmill during continuous intra-arterial infusion of saline or adenosine (15-35 mg/min). Adenosine infusion was initiated at rest to achieve the highest blood flow possible. Peak hindlimb blood flow during exercise increased from baseline by 438 +/- 34 ml/min under saline conditions but decreased by 27 +/- 18 ml/min during adenosine infusion. The absence of an increase in blood flow in the vasodilated limb indicates that any change in venous pressure elicited by the muscle pump was not adequate to elevate hindlimb blood flow. The implication of this finding is that the hyperemic response to exercise is primarily attributable to vasodilation in the skeletal muscle vasculature.  相似文献   

4.
Although it is well established that maximal O(2) uptake (Vo(2 max)) declines from adulthood to old age, the role played by alterations in skeletal muscle is unclear. Specifically, because during whole body exercise reductions in convective O(2) delivery to the working muscles from adulthood to old age compromise aerobic performance, this obscures the influence of alterations within the skeletal muscles. We sought to overcome this limitation by using an in situ pump-perfused hindlimb preparation to permit matching of muscle convective O(2) delivery in young adult (8 mo; muscle convective O(2) delivery = 569 +/- 42 micromol O(2) x min(-1) x 100 g(-1)) and late middle-aged (28-30 mo; 539 +/- 62 micromol O(2) x min(-1) x 100 g(-1)) Fischer 344 x Brown Norway F1 hybrid rats. The distal hindlimb muscles were electrically stimulated for 4 min (60 tetani/min), and Vo(2 max) was determined. Vo(2 max) normalized to the contracting muscle mass was 22% lower in the 28- to 30-mo-old (344 +/- 17 micromol O(2). min(-1) x 100 g(-1)) than the 8-mo-old (441 +/- 20 micromol O(2) x min(-1) x 100 g(-1); P < 0.05) rats. The flux through the electron transport chain complexes I-III was 45% lower in homogenates prepared from the plantaris muscles of the older animals. Coincident with these alterations, the tension at Vo(2 max) and lactate efflux were reduced in the 28- to 30-mo-old animals, whereas the percent decline in tension was greater in the 28- to 30-mo-old vs. 8-mo-old animals. Collectively, these results demonstrate that alterations within the skeletal muscles, such as a reduced mitochondrial oxidative capacity, contribute to the reduction in Vo(2 max) with aging.  相似文献   

5.
Distribution of blood flow in muscles of miniature swine during exercise   总被引:7,自引:0,他引:7  
The purpose of this study was to determine how the distribution of blood flow within and among the skeletal muscles of miniature swine (22 +/- 1 kg body wt) varies as a function of treadmill speed. Radiolabeled microspheres were used to measure cardiac output (Q) and tissue blood flows in preexercise and at 3-5 min of treadmill exercise at 4.8, 8.0, 11.3, 14.5, and 17.7 km/h. All pigs (n = 8) attained maximal O2 consumption (VO2max) (60 +/- 4 ml X min-1 X kg-1) by the time they ran at 17.7 km/h. At VO2max, 87% of Q (9.9 +/- 0.5 l/min) was to skeletal muscle, which constituted 36 +/- 1% of body mass. Average total muscle blood flow at VO2max was 127 +/- 14 ml X min-1 X 100 g-1; average limb muscle flow was 135 +/- 17 ml X min-1 X 100 g-1. Within the limb muscles, blood flow was distributed so that the deep red parts of extensor muscles had flows about two times higher than the more superficial white portions of the same muscles; the highest muscle blood flows occurred in the elbow flexors (brachialis: 290 +/- 44 ml X min-1 X 100 g-1). Peak exercise blood flows in the limb muscles were proportional (P less than 0.05) to the succinate dehydrogenase activities (r = 0.84), capillary densities (r = 0.78), and populations of oxidative (slow-twitch oxidative + fast-twitch oxidative-glycolytic) fiber types (r = 0.93) in the muscles. Total muscle blood flow plotted as a function of exercise intensity did not peak until the pigs attained VO2max, although flows in some individual muscles showed a plateau in this relationship at submaximal exercise intensities. The data demonstrate that blood flow in skeletal muscles of miniature swine is distributed heterogeneously and varies in relation to fiber type composition and exercise intensity.  相似文献   

6.
Nitric oxide (NO) is potentially involved in several responses to acute exercise. We tested the hypotheses that inhibition of NO formation reduces maximal O(2) delivery to muscle, but does not affect O(2) utilization by muscle, therefore lowering maximal O(2) consumption. To test these hypotheses, swine (approximately 30 kg) drank either tap water (Con, n = 25) or water with N(G)-nitro-l-arginine methyl ester (8.0 +/- 0.4 mg x kg(-1) x day(-1) for >or=4 wk; LN, n = 24). Treatment efficacy was reflected by higher mean arterial pressure and lower plasma NO metabolite concentration in LN than Con (both P < 0.05). Swine completed two graded treadmill running tests to maximum. In the first test, O(2) consumption was determined at rest through maximal exercise intensity. O(2) consumption did not differ between groups at rest or at most exercise intensities, including maximum (Con, 40.8 +/- 1.8 ml x min(-1) x kg(-1); LN, 40.4 +/- 2.9; not significant). In the second test, tissue-specific blood flows were determined using the radiolabeled-microsphere technique. At rest, blood flows were lower (P < 0.05) in LN compared with Con for a number of tissues, including kidney, adrenal, lung, and several skeletal muscles. During both submaximal and maximal exercise, however, blood flows were similar between Con and LN for all 16 muscles examined; only blood flows to kidney (Con, 99 +/- 16 ml x min(-1) x 100 g; LN, 55 +/- 15; P < 0.05) and pancreas (Con, 25 +/- 7; LN, 6 +/- 2; P < 0.05) were lower in LN at maximum. Endothelium-dependent, but not -independent, relaxation of renal arterial segments was reduced (P < 0.05) in vitro. These data indicate that exercise-induced increases in muscle blood flows are maintained with chronic inhibition of NO formation and that maximal O(2) consumption is therefore preserved. Redundant vasodilatory pathways and/or upregulation of these pathways may underlie these findings.  相似文献   

7.
Few studies have examined potential for endothelium-dependent vasodilation in skeletal muscles of different fiber-type composition. We hypothesized that muscles composed of slow oxidative (SO)- and/or fast oxidative glycolytic (FOG)-type fibers have greater potential for endothelium-dependent vasodilation than muscles composed of fast glycolytic (FG)-type fibers. To test this hypothesis, the isolated perfused rat hindlimb preparation was used with a constant-flow, variable-pressure approach. Perfusion pressure was monitored continuously, and muscle-specific flows were determined by using radiolabeled microspheres at four time points: control, at peak effect of acetylcholine (ACh I; 1-2 x 10(-4) M), at peak effect of ACh after infusion of an endothelial inhibitor (ACh II), and at peak effect of sodium nitroprusside (SNP; 4-5 x 10(-4) M). Conductance was calculated by using pressure and flow data. In the SO-type soleus muscle, conductance increased with ACh and SNP, but the increase in conductance with ACh was partially abolished by the endothelial inhibitor N(G)-nitro-l-arginine methyl ester (control, 0.87 +/- 0.19; ACh I, 2.07 +/- 0.29; ACh II, 1.32 +/- 0.15; SNP, 1.76 +/- 0.19 ml. min(-1). 100 g(-1). mmHg(-1); P < 0.05, ACh I and SNP vs. control). In the FOG-type red gastrocnemius muscle, similar findings were obtained (control, 0.64 +/- 0.11; ACh I, 1.36 +/- 0.21; ACh II, 0.73 +/- 0.16; SNP, 1.30 +/- 0.21 ml. min(-1). 100 g(-1). mmHg; P < 0.05, ACh I and SNP vs. control). In the FG-type white gastrocnemius muscle, neither ACh nor SNP increased conductance. Similar findings were obtained when muscles were combined into high- and low-oxidative muscle groups. Indomethacin had no effect on responses to ACh. These data indicate that endothelium-dependent vasodilation is exhibited by high-oxidative, but not low-oxidative, rat skeletal muscle. Furthermore, endothelium-dependent vasodilation in high-oxidative muscle appears to be primarily mediated by nitric oxide.  相似文献   

8.
To utilize the rat spinotrapezius muscle as a model to investigate the microcirculatory consequences of exercise training, it is necessary to design an exercise protocol that recruits this muscle. There is evidence that the spinotrapezius is derecruited during standard treadmill exercise protocols performed on the uphill treadmill (i.e., 6 degrees incline). This investigation tested the hypothesis that downhill running would effectively recruit the spinotrapezius muscle as assessed by the presence of an exercise hyperemia response. We used radioactive 15-microm microspheres to determine blood flows in the spinotrapezius and selected hindlimb muscles of female Sprague-Dawley rats at rest and during downhill (i.e., -14 degrees incline; 331 +/- 5 g body wt, n = 7) and level (i.e., 0 degrees incline; 320 +/- 11 g body wt, n = 5) running at 30 m/min. Both level and downhill exercise increased blood flow to all hindlimb muscles (P < 0.01). However, in marked contrast to the absence of a hyperemic response to level running, blood flow to the spinotrapezius muscle increased from 26 +/- 6 ml.min(-1).100 g(-1) at rest to 69 +/- 8 ml.min(-1).100 g(-1) during downhill running (P < 0.01). These findings indicate that downhill running represents an exercise paradigm that recruits the spinotrapezius muscle and thereby constitutes a tenable physiological model for investigating the adaptations induced by exercise training (i.e., the mechanisms of altered microcirculatory control by transmission light microscopy).  相似文献   

9.
Asymmetrical intrauterine growth restriction is denoted by disproportional reduction of muscle mass compared with body weight reduction. However, effects on contractile function or tissue development of skeletal muscles were not studied until now. Therefore, isometric force output of serial-stimulated hindlimb plantar flexors was measured in thiopental-anesthetized normal weight (NW) and intrauterine growth-restricted (IUGR) 1-day-old piglets under conditions of normal, reduced (aortic cross clamping), and reestablished (clamp release) blood supply (measured by colored microspheres technique). Furthermore, muscle fiber type distribution was determined after histochemical staining, specific muscle force of the plantar flexors [quotient from absolute force divided by muscle mass (N/g)] was calculated, and glycogen content and morphometric data of the investigated muscles were estimated. Regional blood flow of hindlimb muscles was similar in NW (6 +/- 2 ml. min(-1). 100 g(-1)) and IUGR piglets (8 +/- 1 ml. min(-1). 100 g(-1)). Isometric muscle contractions induced a marked increase in regional blood flow of 4.1-fold in NW and 5-fold in stimulated hindlimb muscles of IUGR piglets (baseline blood flow). Specific force of NW piglet muscles (5.2 +/- 0.2 N/g) was significantly lower than IUGR piglet muscles (6.1 +/- 0.6 N/g; P < 0.05). Isometric muscle contractions (NW: 32.7 +/- 4.7 N; IUGR: 21.7 +/- 4.0 N) resulted in a higher rate of force decrease in the calf muscles of NW animals compared with IUGR piglets (8 +/- 2 vs. 3 +/- 1%; P < 0. 01). Functional restoration of contractile performance after hindlimb recirculation was nearly complete in IUGR piglets (98 +/- 1%), whereas in NW piglets a deficit of 9 +/- 3% was found (P < 0. 01). Muscle fiber type estimation revealed an increased proportion of type I fibers in flexor digitalis superficialis and gastrocnemius medialis in IUGR piglets (P < 0.05). These data clearly indicate that contractile function is accelerated in newborn IUGR piglets.  相似文献   

10.
The importance of adenosine in controlling the magnitude and distribution of blood flow among and within skeletal muscles in rats during slow locomotor exercise was tested by systemic infusion of adenosine deaminase (ADA). Blood flows were measured using labeled microspheres before exercise and at 0.5, 15, and 30 min of fast treadmill walking at 15 m/min. An initial infusion of ADA (1,000 U/kg) was given 30 min before the first blood flow measurement and a second injection (1,000 U/kg) was given 5 min into exercise. These infusions maintained ADA activity above 5 U/ml blood throughout the experimental period. This plasma concentration of ADA was shown to be sufficient to result in a 64% decrease in muscle adenosine levels during ischemic contraction. Blood flows were measured in all of the muscles of the hindlimb (28 samples) and in various nonmuscular tissues in ADA-treated and control rats. Preexercise blood flows were primarily directed to slow-twitch muscles and exercise blood flows were highest in muscles with fast-twitch oxidative fibers. ADA treatment did not reduce total muscle blood flow or exercise blood flows in any of the muscles at any time. These findings do not support the hypothesis that adenosine plays an essential role in controlling muscle blood flow in skeletal muscles during normal locomotor activity.  相似文献   

11.
We hypothesized that nitric oxide (NO) opposes ANG II-induced increases in arterial pressure and reductions in renal, splanchnic, and skeletal muscle vascular conductance during dynamic exercise in normal and heart failure rats. Regional blood flow and vascular conductance were measured during treadmill running before (unblocked exercise) and after 1) ANG II AT(1)-receptor blockade (losartan, 20 mg/kg ia), 2) NO synthase (NOS) inhibition [N(G)-nitro-L-arginine methyl ester (L-NAME); 10 mg/kg ia], or 3) ANG II AT(1)-receptor blockade + NOS inhibition (combined blockade). Renal conductance during unblocked exercise (4.79 +/- 0.31 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased after ANG II AT(1)-receptor blockade (6.53 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.12 +/- 0.20 ml x 100 g(-1) x min(-1) x mmHg(-1)) and combined inhibition (3.96 +/- 0.57 ml x 100 g(-1) x min(-1) x mmHg(-1); all P < 0.05 vs. unblocked). In heart failure rats, renal conductance during unblocked exercise (5.50 +/- 0.66 ml x 100 g(-1) x min(-1) x mmHg(-1)) was increased by ANG II AT(1)-receptor blockade (8.48 +/- 0.83 ml x 100 g(-1) x min(-1) x mmHg(-1)) and decreased by NOS inhibition (2.68 +/- 0.22 ml x 100 g(-1) x min(-1) x mmHg(-1); both P < 0.05 vs. unblocked), but it was unaltered during combined inhibition (4.65 +/- 0.51 ml x 100 g(-1) x min(-1) x mmHg(-1)). Because our findings during combined blockade could be predicted from the independent actions of NO and ANG II, no interaction was apparent between these two substances in control or heart failure animals. In skeletal muscle, L-NAME-induced reductions in conductance, compared with unblocked exercise (P < 0.05), were abolished during combined inhibition in heart failure but not in control rats. These observations suggest that ANG II causes vasoconstriction in skeletal muscle that is masked by NO-evoked dilation in animals with heart failure. Because reductions in vascular conductance between unblocked exercise and combined inhibition were less than would be predicted from the independent actions of NO and ANG II, an interaction exists between these two substances in heart failure rats. L-NAME-induced increases in arterial pressure during treadmill running were attenuated (P < 0.05) similarly in both groups by combined inhibition. These findings indicate that NO opposes ANG II-induced increases in arterial pressure and in renal and skeletal muscle resistance during dynamic exercise.  相似文献   

12.
The purpose of this investigation was to examine the effect of rhythmic tetanic skeletal muscle contractions on peak muscle perfusion by using spontaneously perfused canine gastrocnemii in situ. Simultaneous pulsatile blood pressures were measured by means of transducers placed in the popliteal artery and vein, and pulsatile flow was measured with a flow-through-type transit-time ultrasound probe placed in the venous return line. Two series of experiments were performed. In series 1, maximal vasodilation of the muscles' vascular beds was elicited by infusing a normal saline solution containing adenosine (29.3 mg/min) and sodium nitroprusside (180 microg/min) for 15 s and then simultaneously occluding both the popliteal artery and vein for 5 min. The release of occlusion initiated a maximal hyperemic response, during which time four tetanic contractions were induced with supramaximal voltage (6-8 V, 0.2-ms stimuli for 200-ms duration at 50 Hz, 1/s). In series 2, the muscles were stimulated for 3 min before the muscle contractions were stopped for a period of 3 s; stimulation was then resumed. The results of series 1 indicate that, although contractions lowered venous pressure, muscle blood flow was significantly reduced from 2,056 +/- 246 to 1,738 +/- 225 ml x kg(-1) x min(-1) when contractions were initiated and then increased significantly to 1,925 +/- 225 ml x kg(-1) x min(-1) during the first 5 s after contractions were stopped. In series 2, blood flow after 3 min of contractions averaged 1,454 +/- 149 ml x kg(-1) x min(-1). Stopping the contractions for 3 s caused blood flow to increase significantly to 1,874 +/- 172 ml x kg(-1) x min(-1); blood flow declined significantly to 1,458 +/- 139 ml x kg(-1) x min(-1) when contractions were resumed. We conclude that the mechanical action of rhythmic, synchronous, maximal isometric tetanic skeletal muscle contractions inhibits peak muscle perfusion during maximal and near-maximal vasodilation of the muscle's vascular bed. This argues against a primary role for the muscle pump in achieving peak skeletal muscle blood flow.  相似文献   

13.
The systemic and regional hemodynamics effects of ANG-(1-7) were examined in urethane-anesthetized rats. The blood flow distribution (kidneys, skin, mesentery, lungs, spleen, brain, muscle, and adrenals), cardiac output, and total peripheral resistance were investigated by using fluorescent microspheres. Blood pressure and heart rate were recorded from the brachial artery. ANG-(1-7) infusion (110 fmol x min(-1) x 10 min(-1) iv) significantly increased blood flow to the kidney (5.10 +/- 1.07 to 8.30 +/- 0.97 ml x min(-1) x g(-1)), mesentery (0.73 +/- 0.16 to 1.17 +/- 0.49 ml x min(-1) x g(-1)), brain (1.32 +/- 0.44 to 2.18 +/- 0.85 ml x min(-1) x g(-1)), and skin (0.07 +/- 0.02 to 0.18 +/- 0.07 ml x min(-1) x g(-1)) and the vascular conductance in these organs. ANG-(1-7) also produced a significant increase in cardiac index (30%) and a decrease in total peripheral resistance (2.90 +/- 0.55 to 2.15 +/- 0.28 mmHg x ml(-1) x min x 100 g). Blood flow to the spleen, muscle, lungs, and adrenals, as well as the blood pressure and heart rate, were not altered by the ANG-(1-7) infusion. The selective ANG-(1-7) antagonist A-779 reduced the blood flow in renal, cerebral, mesenteric, and cutaneous beds and blocked the ANG-(1-7)-induced vasodilatation in the kidney, mesentery, and skin, suggesting a significant role of endogenous ANG-(1-7) in these territories. The effects of ANG-(1-7) on the cerebral blood flow, cardiac index, systolic volume, and total peripheral resistance were partially attenuated by A-779. A high dose of ANG-(1-7) (11 pmol x min(-1) x 10 min(-1)) caused an opposite effect of that produced by the low dose. Our results show for the first time that ANG-(1-7) has a previously unsuspected potent effect in the blood flow distribution and systemic hemodynamics.  相似文献   

14.
Aerobic exercise increases whole body adipose tissue lipolysis, but is lipolysis higher in subcutaneous adipose tissue (SCAT) adjacent to contracting muscles than in SCAT adjacent to resting muscles? Ten healthy, overnight-fasted males performed one-legged knee extension exercise at 25% of maximal workload (W(max)) for 30 min followed by exercise at 55% W(max) for 120 min with the other leg and finally exercised at 85% W(max) for 30 min with the first leg. Subjects rested for 30 min between exercise periods. Femoral SCAT blood flow was estimated from washout of (133)Xe, and lipolysis was calculated from femoral SCAT interstitial and arterial glycerol concentrations and blood flow. In general, blood flow and lipolysis were higher in femoral SCAT adjacent to contracting than adjacent to resting muscle (time 15-30 min; blood flow: 25% W(max) 6.6 +/- 1.0 vs. 3.9 +/- 0.8 ml x 100 g(-1) x min(-1), P < 0.05; 55% W(max) 7.3 +/- 0.6 vs. 5.0 +/- 0.6 ml x 100 g(-1) x min(-1), P < 0.05; 85% W(max) 6.6 +/- 1.3 vs. 5.9 +/- 0.7 ml x 100 g(-1) x min(-1), P > 0.05; lipolysis: 25% W(max) 102 +/- 19 vs. 55 +/- 14 nmol x 100 g(-1) x min(-1), P = 0.06; 55% W(max) 86 +/- 11 vs. 50 +/- 20 nmol x 100 g(-1) x min(-1), P > 0.05; 85% W(max) 88 +/- 31 vs. -9 +/- 25 nmol x 100 g(-1) x min(-1), P < 0.05). In conclusion, blood flow and lipolysis are generally higher in SCAT adjacent to contracting than adjacent to resting muscle irrespective of exercise intensity. Thus specific exercises can induce "spot lipolysis" in adipose tissue.  相似文献   

15.
We examined the effects of inhibiting nitric oxide synthase with Nomega-nitro-l-arginine-methyl ester (l-NAME) on total hindlimb blood flow, muscle microvascular recruitment, and hindlimb glucose uptake during euglycemic hyperinsulinemia in vivo in the rat. We used two independent methods to measure microvascular perfusion. In one group of animals, microvascular recruitment was measured using the metabolism of exogenously infused 1-methylxanthine (1-MX), and in a second group contrast-enhanced ultrasound (CEU) was used. Limb glucose uptake was measured by arterial-venous concentration differences after 2 h of insulin infusion. Saline alone did not alter femoral artery flow, glucose uptake, or 1-MX metabolism. Insulin (10 mU.min-1.kg-1) significantly increased hindlimb total blood flow (0.69 +/- 0.02 to 1.22 +/- 0.11 ml/min, P < 0.05), glucose uptake (0.27 +/- 0.05 to 0.95 +/- 0.08 micromol/min, P < 0.05), 1-MX uptake (5.0 +/- 0.5 to 8.5 +/- 1.0 nmol/min, P < 0.05), and skeletal muscle microvascular volume measured by CEU (10.0 +/- 1.6 to 15.0 +/- 1.2 video intensity units, P < 0.05). Addition of l-NAME to insulin completely blocked the effect of insulin on both total limb flow and microvascular recruitment (measured using either 1-MX or CEU) and blunted glucose uptake by 40% (P < 0.05). We conclude that insulin specifically recruits flow to the microvasculture in skeletal muscle via a nitric oxide-dependent pathway and that this may be important to insulin's overall action to regulate glucose disposal.  相似文献   

16.
Using near-infrared spectroscopy (NIRS) and the tracer indocyanine green (ICG), we quantified blood flow in calf muscle and around the Achilles tendon during plantar flexion (1-9 W). For comparison, blood flow in calf muscle was determined by dye dilution in combination with magnetic resonance imaging measures of muscle volume, and, for the peritendon region, blood flow was measured by (133)Xe washout. From rest to a peak load of 9 W, NIRS-ICG blood flow in calf muscle increased from 2.4+/-0.2 to 74+/-5 ml x 100 ml tissue(-1) x min(-1), similar to that measured by reverse dye (77+/-6 ml x 100 ml tissue(-1) x min(-1)). Achilles peritendon blood flow measured by NIRS-ICG rose with exercise from 2.2+/-0.5 to 15.1+/-0.2 ml x 100 ml(-1) x min(-1), which was similar to that determined by (133)Xe washout (2.0+/-0.6 to 14.6+/-0.3 ml x 100 ml tissue(-1) x min(-1)). This is the first study using NIRS and ICG to quantify regional tissue blood flow during exercise in humans. Due to its high spatial and temporal resolution, the technique may be useful for determining regional blood flow distribution and regulation during exercise in humans.  相似文献   

17.
The purpose of this study was to describe the relationships between 16 physiological, biochemical, and morphological variables presumed to relate to the oxidative capacity in quadriceps muscles or muscle parts in Standardbred horses. The variables included O2 delivery (blood flow) and mean capillary transit time (MTT) during treadmill locomotion at whole animal maximal O2 consumption (VO2max, 134 +/- 2 ml.min-1 x kg-1), capillary density and capillary-to-fiber ratio, myoglobin concentration, oxidative enzyme activities, glycolytic enzyme activities, fiber type populations, and fiber size. These components of muscle metabolic capacity were found to be interrelated to varying degrees using correlation matrix analysis, with lactate dehydrogenase activity showing the most significant correlations (n = 14) with other variables. Most of the "oxidative" variables occurred in the highest quantities in the deepest muscle of the group (vastus intermedius) and in the deepest parts of the other quadriceps muscles where the highest proportions of type I fibers were localized. The highest blood flow measured with microspheres in the muscle group during exercise was in vastus intermedius muscle (145 ml.min-1 x 100 g-1), and the lowest was in the superficial part of rectus femoris muscle (32 ml.min-1 x 100 g-1). Average muscle blood flow during exercise at whole animal VO2max was 116 ml.min-1 x 100 g-1. Because skeletal muscle comprised 43% of total body mass (453 +/- 34 kg), total muscle blood flow was estimated at 226 l/min, which was approximately 78% of total cardiac output (288 l/min).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have reported in a previous study that adenosine infusion causes fetal placental vascular resistance to increase after 2 min. To determine whether this action is followed by a more prolonged vasodilation, we studied 7 mature fetal lambs. At surgery, catheters were inserted into the fetal hindlimb arteries and veins. After a five day recovery period, control blood flow measurements were made by radiolabeled microsphere technique immediately after an infusion of 0.9% NaCl, (vehicle, 1.03 ml.min-1) into a fetal vein for 2 min. Within 5 min of the control blood flow measurement, adenosine (10 mg/min) was infused for 2 min. Blood flow measurements were repeated 5, 10, 15, 20 and 30 min after the end of the infusion period. Fetal arterial blood pressure dropped from 50 +/- 1 to 34 +/- 5 mmHg immediately after the adenosine infusion and returned to the control value within 5 min after the infusion. No further blood pressure response was detected. However, placental vascular resistance fell from 0.334 +/- 0.040 to 0.269 +/- 0.027 (P less than 0.05) at the 15 min measurement, remained low through the 20 min measurement (P less than 0.001) and was not different from control levels 30 min after the adenosine infusion. We conclude that the fetal placental vasculature responds to systemic adenosine infusion in a biphasic manner. The immediate reaction to adenosine is a transient vasoconstriction in the fetal placental vasculature followed by vasodilation 15 to 20 min after the initial exposure to adenosine.  相似文献   

19.
We imposed opposing oscillations in treadmill speed and grade on nine rats to test for direct mechanical coupling between stride frequency and hindlimb blood flow. Resting hindlimb blood flow was 15.5 +/- 1.7 ml/min. For 90 s at 7.5 m/min, rats alternated walking at -10 degrees for 10 s and +10 degrees for 10 s. This elicited oscillations in hindlimb blood flow having an amplitude of 4.1 +/- 0.5 ml/min (18% of mean flow) with a delay presumably due to metabolic vasodilation. Similar oscillations in speed (5.5-9.5 m/min) elicited oscillations in hindlimb blood flow (amplitude 3.4 +/- 0.5 ml/min, 15% of mean flow) with less of a delay, possibly due to changes in vasodilation and muscle pump function. We then simultaneously imposed these speed and grade oscillations out of phase (slow uphill, fast downhill). The rationale was that the oscillations in vasodilation evoked by the opposing oscillations in speed and grade would cancel each other, thereby testing the degree to which stride frequency affects hindlimb blood flow directly (i.e., muscle pumping). Opposing oscillations in speed and grade evoked oscillations in hindlimb blood flow having an amplitude of 3.3 +/- 0.6 ml/min (16% of mean flow) with no delay and directly in phase with the changes in speed and stride frequency. The finding that hindlimb blood flow changes directly with speed (when vasodilation caused by changes in speed and grade oppose each other) indicates that there is a direct coupling of stride frequency and hindlimb blood flow (i.e., muscle pumping).  相似文献   

20.
Triglyceride hydrolysis by the perfused rat hindlimb is enhanced with serotonin-induced nonnutritive flow (NNF) and may be due to the presence of nonnutritive route-associated connective tissue fat cells. Here, we assess whether NNF influences muscle uptake of 0.55 mM palmitate in the perfused hindlimb. Comparisons were made with insulin-mediated glucose uptake. NNF induced during 60 nM insulin infusion inhibited hindlimb oxygen uptake from 22.0 +/- 0.5 to 9.7 +/- 0.8 micromol x g(-1) x h(-1) (P < 0.001), 1-methylxanthine metabolism (indicator of nutritive flow) from 5.8 +/- 0.4 to 3.8 +/- 0.4 nmol x min(-1) x g(-1) (P = 0.004), glucose uptake from 29.2 +/- 1.7 to 23.1 +/- 1.8 micromol x g(-1) x h(-1) (P = 0.005) and muscle 2-deoxyglucose uptake from 82.1 +/- 4.6 to 41.6 +/- 6.7 micromol x g(-1) x h(-1) (P < 0.001). Palmitate uptake, unaffected by insulin alone, was inhibited by NNF in extensor digitorum longus, white gastrocnemius, and tibialis anterior muscles; average inhibition was from 13.9 +/- 1.2 to 6.9 +/- 1.4 micromol x g(-1) x h(-1) (P = 0.02). Thus NNF impairs both fatty acid and glucose uptake by muscle by restricting flow to myocytes but, as shown previously, favors triglyceride hydrolysis and uptake into nearby connective tissue fat cells. The findings have implications for lipid partitioning in limb muscles between myocytes and attendant adipocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号